Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90544
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周逸儒zh_TW
dc.contributor.advisorYi-Ju Chouen
dc.contributor.author黃翾有zh_TW
dc.contributor.authorHsuan-Yu Huangen
dc.date.accessioned2023-10-03T16:33:53Z-
dc.date.available2023-11-09-
dc.date.copyright2023-10-03-
dc.date.issued2023-
dc.date.submitted2023-08-10-
dc.identifier.citationAPTE, SOURABH V, MARTIN, MATHIEU & PATANKAR, NEELESH A 2009 A numerical method for fully resolved simulation (frs) of rigid particle–flow interactions in complex flows.Journal of Computational Physics 228 (8), 2712–2738.
BAGNOLD, RALPH ALGER 1954 Experiments on a gravity-free dispersion of large solid spheres in a newtonian fluid under shear. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 225 (1160), 49–63.
BATCHELOR, GK & GREEN, JT 1972 The determination of the bulk stress in a suspension of spherical particles to order c2. Journal of Fluid Mechanics 56 (3), 401–427.
BAUMGARTEN, AARON S & KAMRIN, KEN 2019 A general fluid–sediment mixture model and constitutive theory validated in many flow regimes. Journal of Fluid Mechanics 861, 721–764.
BEAM, RICHARD M & WARMING, ROBERT F 1976 An implicit finite-difference algorithm for hyperbolic systems in conservation-law form. Journal of Computational Physics 22 (1), 87–110.
BIEGERT, E., VOWINCKEL, B. & MEIBURG, E. 2017 A collision model for grain-resolving simulations of flows over dense, mobile, polydisperse granular sediment beds. Journal of Computational Physics 340, 105–127.
BIEGERT, EDWARD KRISTOPHER 2018 Eroding uncertainty: towards understanding flows interacting with mobile sediment beds using grain-resolving simulations. University of California, Santa Barbara.
BOYER, FRANÇOIS, GUAZZELLI, ÉLISABETH & POULIQUEN, OLIVIER 2011 Unifying suspension and granular rheology. Physical review letters 107 (18), 188301.
BRANDT, ACHI 1977 Multi-level adaptive solutions to boundary-value problems. Mathematics of computation 31 (138), 333–390.
BRANDT, ACHI 1981 Multigrid solvers on parallel computers. In Elliptic Problem Solvers, pp. 39–83. Elsevier.
BRENNER, HOWARD 1961 The slow motion of a sphere through a viscous fluid towards a plane surface. Chemical engineering science 16 (3-4), 242–251.
CHANG, CHINGYI & POWELL, ROBERT L 1993 Dynamic simulation of bimodal suspensions of hydrodynamically interacting spherical particles. Journal of Fluid Mechanics 253, 1–25.
CHANG, Y.-C., CHIU, T.-Y., HUNG, C.-Y. & CHOU, Y.-J. 2019 Three-dimensional eulerian-lagrangian simulation of particle settling in inclined water columns. Powder Technology 348, 80–92.
CHANG, Y.-J. 2022 Development of an data-driven computational platform for multi-scale modeling of complex suspension flows. PhD thesis, National Taiwan Universtiy, Taipei, Taiwan.
CHIEN, Y.-L. 2019 Development of an immersed boundary method to the numerical simulation of settling of multiple spheres. Master’s thesis, National Taiwan Universtiy, Taipei, Taiwan.
CHORIN, ALEXANDRE JOEL 1967 The numerical solution of the navier-stokes equations for an incompressible fluid. Bulletin of the American Mathematical Society 73 (6), 928– 931.
CHOU, YI-JU, GU, SHIH-HUNG & SHAO, YUN-CHUAN 2015 An euler–lagrange model for simulating fine particle suspension in liquid flows. Journal of Computational Physics 299, 955–973.
COSTA, PEDRO, BOERSMA, BENDIKS JAN, WESTERWEEL, JERRY & BREUGEM, WIM-PAUL 2015 Collision model for fully resolved simulations of flows laden with finite-size particles. Physical Review E 92 (5), 053012.
COX, RAYMOND G & BRENNER, HOWARD 1967 The slow motion of a sphere through a viscous fluid towards a plane surface—ii small gap widths, including inertial effects. Chemical Engineering Science 22 (12), 1753–1777.
CUI, ANQING 1999 On the parallel computation of turbulent rotating stratified flows. Stanford University.
CUNDALL, PETER A & STRACK, OTTO DL 1979 A discrete numerical model for granular assemblies. geotechnique 29 (1), 47–65.
DBOUK, TALIB, LOBRY, LAURENT & LEMAIRE, ELISABETH 2013 Normal stresses in concentrated non-brownian suspensions. Journal of Fluid Mechanics 715, 239–272.
DEBOEUF, ANGÉLIQUE, GAUTHIER, GEORGES, MARTIN, JÉRÔME, YURKOVETSKY, YEVGENY & MORRIS, JEFFREY F 2009 Particle pressure in a sheared suspension: A bridge from osmosis to granular dilatancy. Physical review letters 102 (10), 108301.
DESERNO, MARKUS 2004 How to generate equidistributed points on the surface of a sphere. If Polymerforshung (Ed.) 99 (2).
EILERS, VON H 1941 Die viskosität von emulsionen hochviskoser stoffe als funktion der konzentration. Kolloid-Zeitschrift 97 (3), 313–321.
EINSTEIN, ALBERT 1906 Zur theorie der brownschen bewegung. Annalen der physik 324 (2), 371–381.
FERDOWSI, BEHROOZ, ORTIZ, CARLOS P, HOUSSAIS, MORGANE & JEROLMACK, DOUGLAS J 2017 River-bed armouring as a granular segregation phenomenon. Nature communica- tions 8 (1), 1–10.
FERZIGER, JOEL H, PERIĆ, MILOVAN & STREET, ROBERT L 2020 Computational methods for fluid dynamics, , vol. 4. Springer.
FOERSTER, SAMUEL F, LOUGE, MICHEL Y, CHANG, HONGDER & ALLIA, KHÉDIDJA 1994 Measurements of the collision properties of small spheres. Physics of Fluids 6 (3), 1108– 1115.
GILLEMOT, KATALIN A, SOMFAI, ELLÁK & BÖRZSÖNYI, TAMÁS 2017 Shear-driven segregation of dry granular materials with different friction coefficients. Soft Matter 13 (2), 415–420.
GOLDHIRSCH, ISAAC 2010 Stress, stress asymmetry and couple stress: from discrete particles to continuous fields. Granular Matter 12 (3), 239–252.
GONDRET, P, LANCE, M & PETIT, L 2002 Bouncing motion of spherical particles in fluids. Physics of fluids 14 (2), 643–652.
GUAZZELLI, ÉLISABETH & POULIQUEN, OLIVIER 2018 Rheology of dense granular suspensions. Journal of Fluid Mechanics 852, P1.
GUILLARD, FRANÇOIS, FORTERRE, YOËL & POULIQUEN, OLIVIER 2016 Scaling laws for segregation forces in dense sheared granular flows. Journal of Fluid Mechanics 807.
HARDIN, DOUG P, MICHAELS, TJ & SAFF, EDWARD B 2016 A comparison of popular point configurations on S2. Dolomites Research Notes on Approximation 9, 16–49.
HARRINGTON, MATT, WEIJS, JOOST H & LOSERT, WOLFGANG 2013 Suppression and emergence of granular segregation under cyclic shear. Physical review letters 111 (7), 078001.
HERTZ, H 1882 Ueber die verdunstung der flüssigkeiten, insbesondere des quecksilbers, im luftleeren raume. Annalen der Physik 253 (10), 177–193.
JAIN, RAMANDEEP, TSCHISGALE, SILVIO & FRÖHLICH, JOCHEN 2019 A collision model for dns with ellipsoidal particles in viscous fluid. International Journal of Multiphase Flow 120, 103087.
JEFFERY, GEORGE BARKER 1922 The motion of ellipsoidal particles immersed in a viscous fluid. Proceedings of the Royal Society of London. Series A, Containing papers of a mathematical and physical character 102 (715), 161–179.
JOP, PIERRE, FORTERRE, YOËL & POULIQUEN, OLIVIER 2006 A constitutive law for dense granular flows. Nature 441 (7094), 727–730.
JOSEPH, GG & HUNT, ML 2004 Oblique particle–wall collisions in a liquid. Journal of Fluid Mechanics 510, 71–93.
JOSEPH, GG, ZENIT, R, HUNT, ML & ROSENWINKEL, AM 2001 Particle–wall collisions in a viscous fluid. Journal of Fluid Mechanics 433, 329–346.
KEMPE, TOBIAS & FRÖHLICH, JOCHEN 2012a Collision modelling for the interface-resolved simulation of spherical particles in viscous fluids. Journal of Fluid Mechanics 709, 445– 489.
KEMPE, TOBIAS & FRÖHLICH, JOCHEN 2012b An improved immersed boundary method with direct forcing for the simulation of particle laden flows. Journal of Computational Physics 231 (9), 3663–3684.
KIDANEMARIAM, AMAN G & UHLMANN, MARKUS 2014 Interface-resolved direct numerical simulation of the erosion of a sediment bed sheared by laminar channel flow. International Journal of Multiphase Flow 67, 174–188.
KIM, JOHN & MOIN, PARVIZ 1985 Application of a fractional-step method to incompressible navier-stokes equations. Journal of Computational Physics 59 (2), 308–323.
KÖVARI, THOMAS & POMMERENKE, CH 1968 On the distribution of fekete points. Mathematika 15 (1), 70–75.
KRUGGEL-EMDEN, HARALD, SIMSEK, ERDEM, RICKELT, STEFAN, WIRTZ, SIEGMAR & SCHERER, VIKTOR 2007 Review and extension of normal force models for the discrete element method. Powder Technology 171 (3), 157–173.
LEONARD, BRIAN P 1979 A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Computer methods in applied mechanics and engi- neering 19 (1), 59–98.
LEOPARDI, PAUL 2006 A partition of the unit sphere into regions of equal area and small diameter. Electronic Transactions on Numerical Analysis 25 (12), 309–327.
LUDING, S. 2008 Cohesive, frictional powders: contact models for tension. Granular matter 10 (4), 235–246.
LUO, K., WANG, Z., TAN, J. & FAN, J. 2019 An improved direct-forcing immersed boundary method with inward retraction of lagrangian points for simulation of particle-laden flows. Journal of Computational Physics 376, 210–227.
MAHMOUDABADBOZCHELOU, MOHAMMADAMIN, CAGGIONI, MARCO, SHAHSAVARI, SETAREH, HARTT, WILLIAM H, EM KARNIADAKIS, GEORGE & JAMALI, SAFA 2021 Data-driven physics-informed constitutive metamodeling of complex fluids: A multifidelity neural network (mfnn) framework. Journal of Rheology 65 (2), 179–198.
MAIONE, RICCARDO, DE RICHTER, SÉBASTIEN KIESGEN, MAUVIEL, GUILLAIN & WILD, GABRIEL 2015 Dem investigation of granular flow and binary mixture segregation in a rotating tumbler: Influence of particle shape and internal baffles. Powder Technology 286, 732–739.
MISHRA, BK & RAJAMANI, RAJ K 1992 The discrete element method for the simulation of ball mills. Applied Mathematical Modelling 16 (11), 598–604.
MITTAL, RAJAT & IACCARINO, GIANLUCA 2005 Immersed boundary methods. Annu. Rev. Fluid Mech. 37, 239–261.
MORRIS, JEFFREY F & BOULAY, FABIENNE 1999 Curvilinear flows of noncolloidal suspensions: The role of normal stresses. Journal of Rheology 43 (5), 1213–1237.
OEVERMANN, MICHAEL, SCHARFENBERG, CARSTEN & KLEIN, RUPERT 2009 A sharp interface finite volume method for elliptic equations on cartesian grids. Journal of Computational Physics 228 (14), 5184–5206.
PERNG, CHIN-YUAN & STREET, ROBERT L 1989 Three-dimensional unsteady flow simulations: alternative strategies for a volume-averaged calculation. International Journal for Numerical Methods in Fluids 9 (3), 341–362.
PERSSON, PER-OLOF & STRANG, GILBERT 2004 A simple mesh generator in matlab. SIAM review 46 (2), 329–345.
PESKIN, CHARLES S 1972 Flow patterns around heart valves: a numerical method. Journal of Computational Physics 10 (2), 252–271.
RAI, MAN MOHAN & MOIN, PARVIZ 1991 Direct simulations of turbulent flow using finite-difference schemes. Journal of Computational Physics 96 (1), 15–53.
RAY, SHOURYYA, KEMPE, TOBIAS & FRÖHLICH, JOCHEN 2015 Efficient modelling of particle collisions using a non-linear viscoelastic contact force. International Journal of Multiphase Flow 76, 101–110.
ROMA, ALEXANDRE M, PESKIN, CHARLES S & BERGER, MARSHA J 1999 An adaptive version of the immersed boundary method. Journal of Computational Physics 153 (2), 509–534.
ROSATO, ANTHONY D, BLACKMORE, DENIS L, ZHANG, NINGHUA & LAN, YIDAN 2002 A perspective on vibration-induced size segregation of granular materials. Chemical Engineering Science 57 (2), 265–275.
SCHWARZ, STEPHAN, KEMPE, TOBIAS & FRÖHLICH, JOCHEN 2016 An immersed boundary method for the simulation of bubbles with varying shape. Journal of Computational Physics 315, 124–149.
SHIN, CHUNGHEON, BAE, JAEHO & MCCARTY, PERRY L 2012 Lower operational limits to volatile fatty acid degradation with dilute wastewaters in an anaerobic fluidized bed reactor. Bioresource Technology 109, 13–20.
SHIN, CHUNGHEON, MCCARTY, PERRY L, KIM, JEONGHWAN & BAE, JAEHO 2014 Pilot-scale temperate-climate treatment of domestic wastewater with a staged anaerobic fluidized membrane bioreactor (saf-mbr). Bioresource Technology 159, 95–103.
SIMEONOV, JULIAN A & CALANTONI, JOSEPH 2012 Modeling mechanical contact and lubrication in direct numerical simulations of colliding particles. International Journal of Multiphase Flow 46, 38–53.
STEVENS, A B & HRENYA, CM 2005 Comparison of soft-sphere models to measurements of collision properties during normal impacts. Powder Technology 154 (2-3), 99–109.
STICKEL, JONATHAN J & POWELL, ROBERT L 2005 Fluid mechanics and rheology of dense suspensions. Annu. Rev. Fluid Mech. 37, 129–149.
THORNTON, COLIN, CUMMINS, SHAREN J & CLEARY, PAUL W 2013 An investigation of the comparative behaviour of alternative contact force models during inelastic collisions. Powder Technology 233, 30–46.
TSCHISGALE, SILVIO, KEMPE, TOBIAS & FRÖHLICH, JOCHEN 2017 A non-iterative immersed boundary method for spherical particles of arbitrary density ratio. Journal of Computational Physics 339, 432–452.
UHLMANN, M. 2005 An immersed boundary method with direct forcing for the simulation of particulate flows. Journal of Computational Physics 209 (2), 448–476.
VAN DER VAART, KASPER, GAJJAR, PARMESH, EPELY-CHAUVIN, GAËL, ANDREINI, NICOLAS, GRAY, JMNT & ANCEY, CHRISTOPHE 2015 Underlying asymmetry within particle size segregation. Physical review letters 114 (23), 238001.
VIGOLO, DANIELE, RADL, STEFAN & STONE, HOWARD A 2014 Unexpected trapping of particles at a t junction. Proceedings of the National Academy of Sciences 111 (13), 4770– 4775.
VOWINCKEL, BERNHARD, BIEGERT, EDWARD, MEIBURG, ECKART, AUSSILLOUS, PASCALE & GUAZZELLI, ÉLISABETH 2021 Rheology of mobile sediment beds sheared by viscous, pressure-driven flows. Journal of Fluid Mechanics 921.
WEINHART, THOMAS, HARTKAMP, REMCO, THORNTON, ANTHONY R & LUDING, STEFAN 2013 Coarse-grained local and objective continuum description of three-dimensional granular flows down an inclined surface. Physics of Fluids 25 (7), 070605.
WEINHART, THOMAS, THORNTON, ANTHONY R, LUDING, STEFAN & BOKHOVE, ONNO 2012 From discrete particles to continuum fields near a boundary. Granular Matter 14 (2), 289–294.
WILLIAMS, JOHN R 1985 The theoretical basis of the discrete element method. In Proc. of the NUMETA’85 Conference, pp. 897–906.
YANG, XIAOLEI, ZHANG, XING, LI, ZHILIN & HE, GUO-WEI 2009 A smoothing technique for discrete delta functions with application to immersed boundary method in moving boundary simulations. Journal of Computational Physics 228 (20), 7821–7836.
ZANG, Y., STREET, R. L. & KOSEFF, J. R. 1994 A non-staggered grid, fractional step method for time-dependent incompressible navier-stokes equations in curvilinear coordinates. Journal of Computational physics 114 (1), 18–33.
ZARRAGA, ISIDRO E, HILL, DAVIDE A & LEIGHTON JR, DAVID T 2000 The characterization of the total stress of concentrated suspensions of noncolloidal spheres in newtonian fluids. Journal of Rheology 44 (2), 185–220.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90544-
dc.description.abstract對於稠密顆粒懸浮於流體中的整體流動行為,皆為非牛頓流體流動,因顆粒懸浮於流體中,導致整體黏滯性不再保持常數,而是隨著顆粒在流體中的體積分率增加而增加。這種流動行為在工業應用中由為常見,如塑膠顆粒的射出成型,混凝土灌漿等等。
本研究利用沉浸邊界法和離散元素法,設計出一個數值流變儀。透過模擬一個簡單剪切流驅動密集懸浮顆粒,分析整體流動的運動行為,計算整體流動的相對黏滯性及顆粒法向應力,並與過去相關研究結果進行比較。接著,為了確認此數值流變儀能夠模擬不同顆粒的材料性質,將透過調整顆粒碰撞模型中使用的模擬參數,如顆粒彈性恢復係數、動摩擦係數、靜摩擦係數等等,進行敏感度分析。使其能透過設定不同的顆粒條件,模擬出不同顆粒、流體的流變特性,來計算其相對應的本構關係。最後,為了模擬更複雜、真實的流動行為,我們將顆粒的外型修改為橢球形狀,首先修改拉格朗日標記點的佈點方式,接著模擬一中性浮力橢球顆粒放置於簡單剪切流中的運動行為。觀察橢球顆粒角速度,隨著橢球顆粒長軸與水平軸夾角的變化,並與過去相關的研究結果進行比較。
zh_TW
dc.description.abstractThe bulk behavior of dense particles suspended in a fluid is characterized by non-Newtonian fluid flow, as the volume fraction of particles in the flow leads to a non-constant viscosity. Suspension of solid particles in liquid flows is a common phenomenon in various industrial flow systems, such as injection molding, concrete pumping, etc.
The purpose of this study is to develop a numerical viscometer by using immersed boundary method and discrete element method. By simulating a simple shearing flow driving dense suspended particles, we analyzed the bulk flow behavior, calculated the relative viscosity and particle normal stresses, and compared the results with relevant previous studies. Furthermore, to verify the applicability of this numerical rheometer to different particle materials, sensitivity analysis was performed by adjusting simulation parameters, such as particle coefficient of restitution, coefficient of kinetic friction, and coefficient of static friction in the collision model. This allowed us to simulate various particle and fluid rheological properties and calculate the corresponding constitutive relationships. Additionally, to model more complex and realistic flow behavior, we modified the particle
shape to be ellipsoidal. We adapted the Lagrangian marker distribution method and simulated the motion of an neutrally buoyant ellipsoidal particles immersed in a simple shearing flow. We observed the angular velocity of the ellipsoidal particles varying with the angle between the long axis and the horizontal axis, and compared the results with relevant past research findings.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:33:53Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-10-03T16:33:53Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
摘要 iii
Abstract v
目錄 vii
圖目錄 xi
表目錄 xv
符號列表 xvii
第一章 緒論 1
1.1 研究背景、動機 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 文獻回顧 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 論文內容概述 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
第二章 理論及數值方法 5
2.1 統御方程式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1 流體運動方程式 . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 顆粒運動方程式 . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.3 流體-顆粒耦合方法 . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 碰撞模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 法向碰撞模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 切向碰撞模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.3 流體動力的影響及潤滑模型 . . . . . . . . . . . . . . . . . . . . 19
2.3 數值方法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.1 流體運動 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.2 顆粒運動 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.3 求解過程 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.4 顆粒上的拉格朗日點 . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.5 正規化狄拉克脈衝函數 . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.6 體積分率 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4 平均方法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4.1 粗粒化方法 (coarse-graining (CG) Method) . . . . . . . . . . . . . 33
第三章 數值黏度計 37
3.1 流變特性量測 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 相對黏滯性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3 顆粒滑移條件的影響 . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4 總結 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
第四章 結果與討論 43
4.1 相對黏滯性與體積分率 . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 顆粒法向應力與體積分率 . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3 敏感度分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3.1 相對黏滯性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3.1.1 彈性恢復係數 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3.1.2 靜摩擦係數 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3.1.3 動摩擦係數 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3.2 第一法向應力 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3.2.1 彈性恢復係數 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3.2.2 靜摩擦係數 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3.2.3 動摩擦係數 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3.3 第二法向應力 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3.3.1 彈性恢復係數 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3.3.2 靜摩擦係數 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3.3.3 動摩擦係數 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3.4 第三法向應力 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3.4.1 彈性恢復係數 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3.4.2 靜摩擦係數 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3.4.3 動摩擦係數 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.4 總結 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
第五章 結論與未來工作 61
5.1 結論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2 未來工作 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
A 橢球顆粒運動行為 63
參考文獻 69
-
dc.language.isozh_TW-
dc.title利用沉浸邊界法及離散元素法發展一數值黏度計之數值模擬分析zh_TW
dc.titleDevelopment of a numerical viscometer by using immersed boundary method and discrete element methoden
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee曾建洲;牛仰堯;林洸銓zh_TW
dc.contributor.oralexamcommitteeChien-Chou Tseng;Yang-Yao Niu;Kuang-Chuan Linen
dc.subject.keyword沉浸邊界法,離散元素法,流變學,本構關係,流變儀,zh_TW
dc.subject.keywordimmersed boundary method,discrete element method,rheology,constitutive relations,rheometer,en
dc.relation.page76-
dc.identifier.doi10.6342/NTU202302776-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-08-11-
dc.contributor.author-college工學院-
dc.contributor.author-dept應用力學研究所-
dc.date.embargo-lift2028-08-02-
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  目前未授權公開取用
5.23 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved