Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90543
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李尉彰zh_TW
dc.contributor.advisorWei-Chang Lien
dc.contributor.author謝宜潔zh_TW
dc.contributor.authorI-Chieh Hsiehen
dc.date.accessioned2023-10-03T16:33:38Z-
dc.date.available2023-11-09-
dc.date.copyright2023-10-03-
dc.date.issued2023-
dc.date.submitted2023-08-08-
dc.identifier.citation[1] "What is IoT?," Oracle, [Online]. Available: https://www.oracle.com/internet-of-things/what-is-iot/.
[2] P. Wegner, "Global IoT market size to grow 19% in 2023—IoT shows resilience despite economic downturn," 2023. [Online]. Available: https://iot-analytics.com/iot-market-size/.
[3] J. Holbrook, “MEMS Oscillators Enable Resilient Outdoor Small Cells,” MICROWAVE JOURNAL, vol. 60, no. 4, 2017.
[4] SiTime, "SiT9365, Standard Frequency Ultra-low Jitter Differential Oscillator".
[5] L. Fred S, J. Salvia, L. Cathy, S. Mukherjee, R. Melamud, N. Arumugam, S. Pamarti, C. Arft, P. Gupta and S. Tabatabaei, "A programmable MEMS-based clock generator with sub-ps jitter performance," in 2011 Symposium on VLSI Circuits-Digest of Technical Papers, 2011.
[6] S. James C, M. Renata, C. Saurabh A, L. Scott F and K. Thomas W, "Real-time temperature compensation of MEMS oscillators using an integrated micro-oven and a phase-locked loop," Journal of Microelectromechanical Systems, vol. 19, no. 1, pp. 192-201, 2009.
[7] L. Ming-Huang, C. Chao-Yu, L. Cheng-Syun, C. Chi-Hang and L. Sheng-Shian, "A monolithic CMOS-MEMS oscillator based on an ultra-low-power ovenized micromechanical resonator," Journal of Microelectromechanical Systems, vol. 24, no. 2, pp. 360-372, 2014.
[8] M. Renata, K. Bongsang, C. Saurabh A., H. Matthew A,, A. Manu, J. Chandra M. and K. Thomas W., "Temperature-compensated high-stability silicon resonators," Appl. Phys. Lett., 11 June 2007.
[9] Y. H., P. W., Z. H. and K. E. S., "Ultra Temperature-Stable Bulk-Acoustic-Wave Resonators with SiO2 Compensation Layer," in IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 54, pp. 2102-2109, October 2007.
[10] L. Chih-Ming, Y. Ting-Ta, L. Yun-Ju, F. Valery V., H. Matthew A., K. Jan H. and P. Albert P., "Temperature-compensated aluminum nitride lamb wave resonators," in IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 57, pp. 524-532, March 2010.
[11] A. K. Samarao and F. Ayazi, "Temperature compensation of silicon resonators via degenerate doping," IEEE Transactions on Electron Devices, vol. 59, no. 1, pp. 87-93, 2011.
[12] L. Yu-Chia, T. Ming-Han, C. Wen-Chien, L. Ming-Huang, L. Sheng-Shian and F. Weileun, "Temperature-compensated CMOS-MEMS oxide resonators," Journal of microelectromechanical systems, vol. 22, no. 5, pp. 1054-1065, 2013.
[13] W.-T. Hsu and C. -C. Nguyen, "Stiffness-compensated temperature-insensitive micromechanical resonators," in Technical Digest. MEMS 2002 IEEE International Conference. Fifteenth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No. 02CH37266), 2002.
[14] L. Jia-Ren and L. Wei-Chang, "Temperature-compensated CMOS-MEMS resonators via electrical stiffness frequency pulling," Journal of Micromechanics and Microengineering, vol. 30, no. 1, p. 014002, 2019.
[15] C.-Y. Chen, L. Ming-Huang and L. Sheng-Shian, "CMOS-MEMS resonators and oscillators: A review," Sens. Mater, vol. 30, pp. 733-756, 2018.
[16] K. Wang, W. Ark-Chew and C. -C. Nguyen, "VHF free-free beam high-Q micromechanical resonators," Journal of microelectromechanical systems, vol. 9, no. 3, pp. 347-360, 2000.
[17] S. R. Singiresu, Mechanical vibrations, Addison Wesley Boston, MA, 1995.
[18] W. Miller Jr, "Symmetry and separation of variables," 1977.
[19] S. Puneet, G. Ashish, J. A Kumar and R. Vikas, "Dynamic modelling and validation of continuous beam with free-free boundary conditions," IARJSET, vol. 4, no. 3, pp. 47-53, 2017.
[20] A. Uranga, J. Verd and N. Barniol, "CMOS–MEMS resonators: From devices to applications," Microelectronic Engineering, vol. 132, pp. 58-73, 2015.
[21] A. D’Alessandro, S. Scudero and G. Vitale, "A review of the capacitive MEMS for seismology," Sensors, vol. 19, no. 14, p. 3093, 2019.
[22] G. Pillai and L. Sheng-Shian, "Piezoelectric MEMS resonators: A review," IEEE Sensors Journal, vol. 21, no. 11, pp. 12589-12605, 2020.
[23] R. Hajare, V. Reddy and R. Srikanth, "MEMS based sensors–a comprehensive review of commonly used fabrication techniques," Materials Today: Proceedings, vol. 49, pp. 720-730, 2022.
[24] M. Akgul, L. Wu, Z. Ren and C. T. -C. Nguyen, "A negative-capacitance equivalent circuit model for parallel-plate capacitive-gap-transduced micromechanical resonators," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 31, no. 5, pp. 849-869, 2014.
[25] C.-C. Nguyen, "Micromechanical resonators for oscillators and filters," in 1995 IEEE Ultrasonics Symposium. Proceedings. An International Symposium, 1995.
[26] S. Richard and L. Dixi, "Buckling Electrothermal NEMS Actuators: Analytic Design for Very Slender Beams," in Micro, 2022.
[27] J. Qiu, L. Jeffrey H and S. Alexander H, "A curved-beam bistable mechanism," Journal of microelectromechanical systems, vol. 13, no. 2, pp. 137-146, 2004.
[28] P. Chen, P. Raghavan, K. Yazzie and H. Fei, "On the effective coefficient of thermal expansion (CTE) of bilayer/trilayer in semiconductor package substrates," in 2015 IEEE 65th Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 2015.
[29] C. Chao-Lin, T. Ming-Han and F. Weileun, "Determining the thermal expansion coefficient of thin films for a CMOS MEMS process using test cantilevers," Journal of Micromechanics and Microengineering, vol. 25, no. 2, p. 025014, 2015.
[30] J. M. Bustillo, R. T. Howe and R. S. Muller, "Surface micromachining for microelectromechanical systems," Proceedings of the IEEE, vol. 86, no. 8, pp. 1552-1574, 1998.
[31] H. Qu, "CMOS MEMS fabrication technologies and devices," Micromachines, vol. 7, no. 1, p. 14, 2016.
[32] S.-H. Tseng, "CMOS MEMS Design and Fabrication Platform," Frontiers in Mechanical Engineering, vol. 8, p. 894484, 2022.
[33] S.-S. Li, "CMOS-MEMS Resonators," in Encyclopedia of Nanotechnology, Springer Netherlands, 2016, pp. 557-574.
[34] C. Hsueh, "Thermal stresses in elastic multilayer systems," Thin Solid Films, vol. 418, no. 2, pp. 182-188, 2002.
[35] R. Perello-Roig, S. Barcelo, J. Verd, S. Bota and J. Segura, "Temperature compensation in CMOS-MEMS oscillators via folded-anchor resonator geometrical tuning," in 2023 23st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers), Kyoto, Japan, 2023.
[36] C. Chao-Yu, L. Ming-Huang, L. Cheng-Syun and L. Sheng-Shian, "A CMOS-Integrated MEMS Platform for Frequency Stable Resonators—Part II: Design and Analysis," Journal of Microelectromechanical Systems, vol. 28, pp. 755-765, Oct. 2019.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90543-
dc.description.abstract本論文研究在0.35-μm CMOS-MEMS製程平台上開發一作為溫度補償之共振器,由於MEMS計時裝置技術開始漸漸取代石英振盪器,應用在對於那些品質與可靠度要求較高或嚴苛環境下運轉的系統,因此本研究目的為在CMOS平台上建立具有溫度補償性能的元件,以減低環境溫度變化下造成的頻率變化導致計時器產生誤差,而此溫度補償元件利用彎曲電極被動式電剛性頻率補償技術,其優點是不需要過於複雜的後製程處理,特別的是,占晶片面積比小的優點使此彎曲電極可適用於CMOS-MEMS技術中幾乎所有類型的共振器,其是基於間隙變窄的彎曲梁和共振器之間產生與溫度相依的傳感間隙,進而抵銷溫度變化下,隨溫度變化的機械剛性。
本研究成功使其共振器之頻率溫度係數(Temperature Coefficient of Frequency, TCF)由原本未經補償約-88.56 ppm/°C下降為+10.75 ppm/°C、在0-90°C範圍整體頻率飄移由8236.07 ppm下降為1984.87 ppm,對於整體頻率飄移有近4.14倍的改善。
為了本研究亦提出預測頻率偏差的理論模型,考慮熱應力造成結構退縮程度,預測傳感間隙隨溫度變化的影響,並且與實驗結果互相驗證,並提出不同CMOS-MEMS共振器形式補償結果例如:兩端自由梁、兩端固定梁。最後,在修正過後的理論模型中提出最佳化補償結構與補償電壓設計,達到最小頻率偏移結果。
zh_TW
dc.description.abstractThis thesis studies the development of a resonator as a temperature compensation on the 0.35-μm CMOS-MEMS manufacturing platform. The objective is to incorporate temperature compensation characteristics in the component to mitigate frequency variations caused by changes in ambient temperature. The temperature compensation component employs arc-beam electrodes, leveraging the advantages of passive electrical stiffness frequency compensation technique, which simplifies post-processing requirements. Notably, the small chip area ratio of the arc-beam electrode makes it compatible with nearly all types or resonators in CMOS-MEMS technology.
The proposed approach is based on the temperature-dependent gap spacing between the narrowed arc-beam and the main resonator. By counteracting temperature changes and adapting to mechanical stiffness variations with temperature, the temperature coefficient of frequency (TCF) of the resonator is effectively reduced from approximately -88.56 ppm/°C (without compensation) to +10.75 ppm/°C. Consequently, the overall frequency drift within the temperature range of 0°C - 90°C experiences a significant improvement, decreasing from 8236.07 ppm to 1984.87 ppm, representing an enhancement of nearly 4.14 times.
Furthermore, this thesis introduces a theoretical model for predicting frequency deviations resulting from changes in the gap spacing due to temperature variations. The predictions are validated through experimental results, and a variety of compensation techniques for different CMOS-MEMS resonators are proposed, including free-free beam, double-clamped beam resonators.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:33:38Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-10-03T16:33:38Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
摘要 ii
ABSTRACT iii
致謝 iv
目錄 v
圖目錄 vii
表目錄 x
第一章 緒論 1
1-1 研究背景 1
1-2 文獻回顧 4
1-2-1 主動溫度補償元件 5
1-2-2 被動溫度補償元件 6
1-3 論文架構 8
第二章 電容式共振器之運作原理及模型 9
2-1 微機電共振器運作原理 9
2-2 電容式共振器模型理論分析 10
2-2-1 等效單質點質量-彈簧-阻尼系統 10
2-2-2 電容式共振器電剛性分析 15
2-2-3 共振器小訊號等效電路 24
第三章、彎曲梁傳感間隙模型設計 26
3-1 結構設計與頻率補償原理 26
3-2 與溫度相依補償傳感間隙設計 27
第四章、元件製程步驟 34
4-1 CMOS-MEMS 0.35-μm製程 34
4-2 後製程蝕刻步驟 35
第五章、實驗結果與討論 37
5-1 量測架設 37
5-2 頻率響應量測 39
5-3 被動式頻率補償實驗結果討論 40
5-4 兩端固定梁頻率補償結果 45
5-5 最佳化彎曲樑設計 47
第六章、結論與未來展望 49
6-1 結論 49
6-2 未來展望 50
參考文獻 52
-
dc.language.isozh_TW-
dc.subjectCMOS-MEMSzh_TW
dc.subject電剛性zh_TW
dc.subject被動式溫度補償zh_TW
dc.subject兩端自由梁共振器zh_TW
dc.subject兩端固定梁共振器zh_TW
dc.subjectpassively frequency compensationen
dc.subjectelectrical stiffnessen
dc.subjectfree-free beam resonatoren
dc.subjectCMOS-MEMSen
dc.subjectdouble-clamped beam resonatoren
dc.title基於彎曲梁結構之CMOS-MEMS共振器頻率溫度補償技術zh_TW
dc.titleFrequency Temperature Compensation Technique for CMOS-MEMS Resonators using Arc Beam Structuresen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張培仁;李銘晃zh_TW
dc.contributor.oralexamcommitteePei-Zen Chang;Ming-Huang Lien
dc.subject.keywordCMOS-MEMS,被動式溫度補償,電剛性,兩端自由梁共振器,兩端固定梁共振器,zh_TW
dc.subject.keywordCMOS-MEMS,passively frequency compensation,electrical stiffness,free-free beam resonator,double-clamped beam resonator,en
dc.relation.page55-
dc.identifier.doi10.6342/NTU202303598-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-08-10-
dc.contributor.author-college工學院-
dc.contributor.author-dept應用力學研究所-
dc.date.embargo-lift2028-08-08-
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  此日期後於網路公開 2028-08-08
4.81 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved