請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90538完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林逸彬 | zh_TW |
| dc.contributor.advisor | Yi-Pin Lin | en |
| dc.contributor.author | 紀煜騰 | zh_TW |
| dc.contributor.author | Yu-Teng Ji | en |
| dc.date.accessioned | 2023-10-03T16:32:20Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-10-03 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-02 | - |
| dc.identifier.citation | 臺灣自來水公司 (2023). 台灣自來水公司管線種類統計表.
Bäuerlein, P.S., Hofman-Caris, R.C.H.M., Pieke, E.N. and ter Laak, T.L. (2022). Fate of Microplastics in the Drinking Water Production. Water Research 221, 118790. Brennecke, D., Duarte, B., Paiva, F., Caçador, I. and Canning-Clode, J. (2016). Microplastics as Vector for Heavy Metal Contamination from the Marine Environment. Estuarine, Coastal and Shelf Science 178, 189-195. Celik, M., Nakano, H., Uchida, K., Isobe, A. and Arakawa, H. (2023). Comparative Evaluation of the Carbonyl Index of Microplastics around the Japan Coast. Marine Pollution Bulletin 190, 114818. Diaz-Basantes, M.F., Conesa, J.A. and Fullana, A. (2020). Microplastics in Honey, Beer, Milk and Refreshments in Ecuador as Emerging Contaminants. Sustainability 12(14), 5514. Erni-Cassola, G., Gibson, M.I., Thompson, R.C. and Christie-Oleza, J.A. (2017). Lost, but Found with Nile Red: A Novel Method for Detecting and Quantifying Small Microplastics (1 mm to 20 µm) in Environmental Samples. Environmental Science & Technology 51(23), 13641-13648. Geyer, R., Jambeck, J.R. and Law, K.L. (2017). Production, Use, and Fate of All Plastics Ever Made. Science Advances 3(7), e1700782. Jakubowicz, I. and Möller, K. (1992). An FTIR, Impact Strength and Thermal Analysis Investigation of a PVC Window Frame Naturally Aged for 20 Years. Polymer degradation and stability 36(2), 111-120. Johnson, A.C., Ball, H., Cross, R., Horton, A.A., Jurgens, M.D., Read, D.S., Vollertsen, J. and Svendsen, C. (2020). Identification and Quantification of Microplastics in Potable Water and Their Sources within Water Treatment Works in England and Wales. Environmental Science & Technology 54(19), 12326-12334. Kelkar, V.P., Rolsky, C.B., Pant, A., Green, M.D., Tongay, S. and Halden, R.U. (2019). Chemical and Physical Changes of Microplastics During Sterilization by Chlorination. Water Research 163, 114871. Konde, S., Ornik, J., Prume, J.A., Taiber, J. and Koch, M. (2020). Exploring the Potential of Photoluminescence Spectroscopy in Combination with Nile Red Staining for Microplastic Detection. Marine Pollution Bulletin 159. Lei, L., Wu, S., Lu, S., Liu, M., Song, Y., Fu, Z., Shi, H., Raley-Susman, K.M. and He, D. (2018). Microplastic Particles Cause Intestinal Damage and Other Adverse Effects in Zebrafish Danio Rerio and Nematode Caenorhabditis Elegans. Science of The Total Environment 619-620, 1-8. Li, J., Liu, H. and Chen, J.P. (2018). Microplastics in Freshwater Systems: A Review on Occurrence, Environmental Effects, and Methods for Microplastics Detection. Water Research 137, 362-374. Liu, F., Olesen, K.B., Borregaard, A.R., Borregaard, A.R. and Vollertsen, J. (2019). Microplastics in Urban and Highway Stormwater Retention Ponds. Science of The Total Environment 671, 992-1000. Ma, F., Wang, Y., Fu, Z., Tang, Y., Dai, J., Li, C. and Dong, W. (2022). Thermal Ageing Mechanism of a Natural Rock-Modified Asphalt Binder Using Fourier Transform Infrared Spectroscopy Analysis. Construction and Building Materials 335, 127494. Marsden, P., Koelmans, A., Bourdon-Lacombe, J., Gouin, T., D'Anglada, L., Cunliffe, D., Jarvis, P., Fawell, J. and De France, J. (2019). Microplastics in Drinking Water, World Health Organization. Mintenig, S.M., Loder, M.G.J., Primpke, S. and Gerdts, G. (2019). Low Numbers of Microplastics Detected in Drinking Water from Ground Water Sources. Science of The Total Environment 648, 631-635. Ober, C.K. and Müllen, K. (2012). Polymer Science: A Comprehensive Reference. Matyjaszewski, K. and Möller, M. (eds), pp. 1-8, Elsevier, Amsterdam. Ouyang, Z., Zhang, Z., Jing, Y., Bai, L., Zhao, M., Hao, X., Li, X. and Guo, X. (2022). The Photo-Aging of Polyvinyl Chloride Microplastics under Different Uv Irradiations. Gondwana Research 108, 72-80. Pivokonsky, M., Cermakova, L., Novotna, K., Peer, P., Cajthaml, T. and Janda, V. (2018). Occurrence of Microplastics in Raw and Treated Drinking Water. Science of The Total Environment 643, 1644-1651. Rice, E.W., Baird, R.B., Eaton, A.D. and Clesceri, L.S. (eds) (2012). Standard Methods: For the Examination Water and Wastewater, 22nd Edn. American Public Health Association, American Water Works Association, Water Environmental Federation, AWWA. Socrates, G. (2004). Infrared and Raman Characteristic Group Frequencies: Tables and Charts, John Wiley & Sons. Staehelin, J. and Hoigne, J. (1985). Decomposition of Ozone in Water in the Presence of Organic Solutes Acting as Promoters and Inhibitors of Radical Chain Reactions. Environmental Science & Technology 19(12), 1206-1213. Tamminga, M., Hengstmann, E. and Fischer, E.K. (2018). Microplastic Analysis in the South Funen Archipelago, Baltic Sea, Implementing Manta Trawling and Bulk Sampling. Marine Pollution Bulletin 128, 601-608. ter Halle, A., Ladirat, L., Gendre, X., Goudouneche, D., Pusineri, C., Routaboul, C., Tenailleau, C., Duployer, B. and Perez, E. (2016). Understanding the Fragmentation Pattern of Marine Plastic Debris. Environmental Science & Technology 50(11), 5668-5675. ter Halle, A., Ladirat, L., Martignac, M., Mingotaud, A.F., Boyron, O. and Perez, E. (2017). To What Extent Are Microplastics from the Open Ocean Weathered? Environmental Pollution 227, 167-174. Tokai, T., Uchida, K., Kuroda, M. and Isobe, A. (2021). Mesh Selectivity of Neuston Nets for Microplastics. Marine Pollution Bulletin 165, 112111. Tong, H.Y., Jiang, Q.Y., Hu, X.S. and Zhong, X.C. (2020). Occurrence and Identification of Microplastics in Tap Water from China. Chemosphere 252. Vethaak, A.D. and Legler, J. (2021). Microplastics and Human Health. Science 371(6530), 672-674. Wang, Z.F., Lin, T. and Chen, W. (2020). Occurrence and Removal of Microplastics in an Advanced Drinking Water Treatment Plant (ADWTP). Science of The Total Environment 700. Watson, H.E. (1908). A Note on the Variation of the Rate of Disinfection with Change in the Concentration of the Disinfectant. Epidemiology & Infection 8(4), 536-542. Whelton, A.J. and Dietrich, A.M. (2009). Critical Considerations for the Accelerated Ageing of High-Density Polyethylene Potable Water Materials. Polymer Degradation and Stability 94(7), 1163-1175. Zhang, K., Hamidian, A.H., Tubić, A., Zhang, Y., Fang, J.K.H., Wu, C. and Lam, P.K.S. (2021). Understanding Plastic Degradation and Microplastic Formation in the Environment: A Review. Environmental Pollution 274, 116554. Zhang, X., Liu, C., Liu, J., Zhang, Z., Gong, Y. and Li, H. (2022a). Release of Microplastics from Typical Rainwater Facilities During Aging Process. Science of The Total Environment 813, 152674. Zhang, X.Y., Lin, T. and Wang, X.X. (2022b). Investigation of Microplastics Release Behavior from Ozone-Exposed Plastic Pipe Materials. Environmental Pollution 296. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90538 | - |
| dc.description.abstract | 塑膠微粒(microplastics)已被確認存在於大多數水體,包括海洋、河水以及自來水等等, 其中自來水與人類的生活最相關。淨水場內部之塑膠元件及配水系統中之塑膠管被認為是自來水中塑膠微粒的潛在來源,而在台灣塑膠管中又以聚氯乙烯(PVC)管為最大宗,幾乎可在所有建築物中見到。本研究透過以淨水程序中常出現的臭氧、氯消毒程序以及熱水進行PVC塑膠管的老化,並研究PVC管釋放塑膠微粒的潛在風險。實驗結果發現PVC管之塑膠微粒釋出量隨著臭氧、自由餘氯以及加熱暴露的條件提升而增加,各參數對應之最大釋出量可達1,058、1,256以及1,303 # L-1。在臭氧以及高溫暴露量提升下,雖說塑膠微粒釋出量提升,但並不影響所釋出塑膠微粒的尺寸組成比例,相對於自由餘氯的暴露,所釋出的塑膠微粒隨著自由餘氯曝露量提升而有變大的趨勢,代表著在餘氯暴露下,大尺寸的塑膠微粒較小尺寸的塑膠微粒更容易釋出。本研究同時也透過羰基指數(Carbonyl index, CI)估算羰基產物在PVC管表面上的生成量,配合掃描電子顯微鏡在微觀的尺度下觀察表面,發現到羰基指數在各條件下隨著臭氧、自由餘氯以及熱的暴露提升而變高,與此同時,也發現到孔洞大量生成在PVC管的表面,這些孔洞的生成可能與塑膠微粒的脫落有關。孔洞特性在不同條件老化亦有所不同。臭氧傾向於在表面生成孔洞後,持續攻擊孔洞內部使得孔洞尺徑比起較低濃度的臭氧老化更大;餘氯老化傾向於持續生成孔洞,孔洞數量隨著曝露量提升而提升,且表面有明顯受損;而PVC管在80°C高溫的老化下,表面粗糙度明顯提升,而且相較於臭氧、餘氯老化所生成的孔洞,高溫老化所生成的孔洞更小。儘管各機制對於孔洞生成條件不同,在CI隨著老化程度提升而提升的狀況下,可以推斷羰基產物(Carbonyl products)的生成可能與塑膠微粒的掉落有關。 | zh_TW |
| dc.description.abstract | Microplastics have been detected in most aquatic systems, including ocean, river and even drinking water. In the drinking water system, plastics pipes used in the water treatment facility and distribution system are potential sources of microplastics. In Taiwan, polyvinyl chloride (PVC) pipe is the most widely used plastic pipe. The potential hazard of microplastics release due to aging should be investigated. In this study, the effects of ozonation, chlorination and heating on the aging and release of microplastics from PVC pipes are investigated. The highest release of microplastics was found to be 1,058, 1,256 and 1,303 # L-1 after aging in 30 mg O3 L-1, 260 mg Cl2 L-1 and 80oC, respectively. The release of microplastics with a size in the range of 10-50 and >50 µm increased with increasing exposure of chlorine while those in size of 1-10 µm was not significantly changed. On the other hand, the size composition of released microplastics due to exposure of ozone and heat tended to maintain constant. The carbonyl index (CI) of PVC pipes generally increased with enhanced aging with ozone, chlorine and heating. Meanwhile, scanning electron microscope (SEM) images showed that hole structures developed on the surfaces of PVC pipes after aging. After the initial hole structures appeared, ozone tended to continuously attack the same sites resulting in bigger hole structures after enhanced ozone exposure. The exposure of chlorine tended to increase the hole structures in their abundance and damage the surface. For thermal aging, smaller hole structures and rougher surface were observed after aging at an elevated temperature. Although different surface morphologies were observed under different aging conditions, the formation of carbonyl functional groups on the surfaces may result in the surface roughness and ultimately lead to the detachments of microplastics from aged PVC pipes. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:32:20Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-10-03T16:32:20Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口委審定書 i
誌謝 ii 摘要 iii ABSTRACT iv CONTENTS vi LIST OF FIGURES viii Chapter 1 Introduction 1 1.1 Background 1 1.2 Research objectives 2 Chapter 2 Literature review 3 2.1 Introduction to Microplastics and their concerns 3 2.2 Detection of microplastics 4 2.3 Surface characterization of aged plastics 6 2.4 Effect of chlorination and ozonation on PVC 8 Chapter 3 Material and Methods 9 3.1 Research framework 9 3.2 Materials and chemicals 10 3.3 Stock solutions 11 3.4 Ageing of PVC pipes 12 3.5 Analytical methods 14 Chapter 4 Result and Discussion 20 4.1 Effect of pH on the release of microplastics 20 4.2 Effect of ozonation on the release of microplastics 21 4.3 Effect of chlorine on the release of microplastics 24 4.4 Effect of heat on the release of microplastics 26 4.5 Changes of carbonyl bonding and surface morphology on the surface of PVC pipes in the aging process 28 Chapter 5 Conclusions and Recommendations 32 5.1 Conclusions 32 5.2 Recommendations 33 Reference 35 | - |
| dc.language.iso | en | - |
| dc.subject | 臭氧 | zh_TW |
| dc.subject | 高溫 | zh_TW |
| dc.subject | 餘氯 | zh_TW |
| dc.subject | 塑膠微粒 | zh_TW |
| dc.subject | 聚氯乙烯管 | zh_TW |
| dc.subject | 老化 | zh_TW |
| dc.subject | heat | en |
| dc.subject | ozone | en |
| dc.subject | chlorine | en |
| dc.subject | PVC pipes | en |
| dc.subject | microplastics | en |
| dc.subject | accelerated aging | en |
| dc.title | 聚氯乙烯管釋出塑膠微粒潛勢之研究:以臭氧、自由餘氯以及熱進行加速試驗老化 | zh_TW |
| dc.title | Release of Microplastics from Poly (Vinyl Chloride) Pipes: An Accelerated Aging of Ozonation, Chlorination and Thermal Conditioning | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 王根樹;童心欣 | zh_TW |
| dc.contributor.oralexamcommittee | Gen-Shuh Wang;Hsin-Hsin Tung | en |
| dc.subject.keyword | 塑膠微粒,聚氯乙烯管,老化,臭氧,餘氯,高溫, | zh_TW |
| dc.subject.keyword | microplastics,PVC pipes,accelerated aging,ozone,chlorine,heat, | en |
| dc.relation.page | 40 | - |
| dc.identifier.doi | 10.6342/NTU202302738 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-08-07 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 環境工程學研究所 | - |
| dc.date.embargo-lift | 2024-12-25 | - |
| 顯示於系所單位: | 環境工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf | 4.94 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
