Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90530
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor施博仁zh_TW
dc.contributor.advisorPo-Jen Shihen
dc.contributor.author林彥辰zh_TW
dc.contributor.authorYen-Chen Linen
dc.date.accessioned2023-10-03T16:30:16Z-
dc.date.available2023-11-09-
dc.date.copyright2023-10-03-
dc.date.issued2023-
dc.date.submitted2023-07-28-
dc.identifier.citationPascolini, D. and S.P. Mariotti, Global estimates of visual impairment: 2010. British Journal of Ophthalmology, 2012. 96(5): p. 614-618.
Mathews, P.M., et al., Etiology of global corneal blindness and current practices of corneal transplantation: a focused review. Cornea, 2018. 37(9): p. 1198-1203.
Singh, R., et al., Corneal transplantation in the modern era. The Indian journal of medical research, 2019. 150(1): p. 7.
Gain, P., et al., Global survey of corneal transplantation and eye banking. JAMA ophthalmology, 2016. 134(2): p. 167-173.
Sridhar, M.S., Anatomy of cornea and ocular surface. Indian journal of ophthalmology, 2018. 66(2): p. 190.
Wollensak, G., E. Spoerl, and T. Seiler, Stress-strain measurements of human and porcine corneas after riboflavin–ultraviolet-A-induced cross-linking. Journal of Cataract & Refractive Surgery, 2003. 29(9): p. 1780-1785.
DelMonte, D.W. and T. Kim, Anatomy and physiology of the cornea. Journal of Cataract & Refractive Surgery, 2011. 37(3): p. 588-598.
Liu, J. and C.J. Roberts, Influence of corneal biomechanical properties on intraocular pressure measurement: quantitative analysis. Journal of Cataract & Refractive Surgery, 2005. 31(1): p. 146-155.
Willoughby, C.E., et al., Anatomy and physiology of the human eye: effects of mucopolysaccharidoses disease on structure and function–a review. Clinical & Experimental Ophthalmology, 2010. 38: p. 2-11.
Wilson, S.F. and A.R. Last, Management of corneal abrasions. American family physician, 2004. 70(1): p. 123-128.
Reinstein, D.Z., T.J. Archer, and D.J. Coleman, Epithelial thickness in the normal cornea: three-dimensional display with Artemis very high-frequency digital ultrasound. Journal of refractive surgery, 2008. 24(6): p. 571.
Lagali, N., J. Germundsson, and P. Fagerholm, The role of Bowman’s layer in corneal regeneration after phototherapeutic keratectomy: a prospective study using in vivo confocal microscopy. Investigative ophthalmology & visual science, 2009. 50(9): p. 4192-4198.
Chen, Z., et al., Biomaterials for corneal bioengineering. Biomedical Materials, 2018. 13(3): p. 032002.
Mackool, R.J. and S.J. Holtz, Descemet membrane detachment. Archives of Ophthalmology, 1977. 95(3): p. 459-463.
Joyce, N.C., Proliferative capacity of the corneal endothelium. Progress in retinal and eye research, 2003. 22(3): p. 359-389.
Sheetz, M.P. What is the cytoskeleton? ; Available from: https://www.mechanobio.info/cytoskeleton-dynamics/what-is-the-cytoskeleton/.
de Pablo, P.J., et al., Deformation and collapse of microtubules on the nanometer scale. Physical review letters, 2003. 91(9): p. 098101.
Meurer-Grob, P., J. Kasparian, and R.H. Wade, Microtubule structure at improved resolution. Biochemistry, 2001. 40(27): p. 8000-8008.
Odde, D.J., et al., Microtubule bending and breaking in living fibroblast cells. Journal of cell science, 1999. 112(19): p. 3283-3288.
Pampaloni, F. and E.-L. Florin, Microtubule architecture: inspiration for novel carbon nanotube-based biomimetic materials. Trends in biotechnology, 2008. 26(6): p. 302-310.
Kron, S.J. and J.A. Spudich, Fluorescent actin filaments move on myosin fixed to a glass surface. Proceedings of the National Academy of Sciences, 1986. 83(17): p. 6272-6276.
Spudich, J.A., S.J. Kron, and M.P. Sheetz, Movement of myosin-coated beads on oriented filaments reconstituted from purified actin. Nature, 1985. 315(6020): p. 584-586.
Goldman, R.D., et al., Inroads into the structure and function of intermediate filament networks. Journal of structural biology, 2012. 177(1): p. 14-23.
Houk, A.R., et al., Membrane tension maintains cell polarity by confining signals to the leading edge during neutrophil migration. Cell, 2012. 148(1-2): p. 175-188.
Joo, E.E. and K.M. Yamada, Cell Adhesion and movement, in Stem Cell Biology and Tissue Engineering in Dental Sciences. 2015, Elsevier. p. 61-72.
Ridley, A.J., Life at the leading edge. Cell, 2011. 145(7): p. 1012-1022.
Stossel, T.P., On the crawling of animal cells. Science, 1993. 260(5111): p. 1086-1094.
Nürnberg, A., T. Kitzing, and R. Grosse, Nucleating actin for invasion. Nature Reviews Cancer, 2011. 11(3): p. 177-187.
Prahl, L.S. and D.J. Odde, Modeling cell migration mechanics. Biomechanics in Oncology, 2018: p. 159-187.
Zaidel-Bar, R., et al., Hierarchical assembly of cell–matrix adhesion complexes. Biochemical Society Transactions, 2004. 32(3): p. 416-420.
Tsuda, Y., et al., Torsional rigidity of single actin filaments and actin–actin bond breaking force under torsion measured directly by in vitro micromanipulation. Proceedings of the National Academy of Sciences, 1996. 93(23): p. 12937-12942.
Lauffenburger, D.A. and A.F. Horwitz, Cell migration: a physically integrated molecular process. cell, 1996. 84(3): p. 359-369.
Kadir, S., et al., Microtubule remodelling is required for the front–rear polarity switch during contact inhibition of locomotion. Journal of cell science, 2011. 124(15): p. 2642-2653.
Roycroft, A. and R. Mayor, Forcing contact inhibition of locomotion. Trends in cell biology, 2015. 25(7): p. 373-375.
Mayor, R. and C. Carmona-Fontaine, Keeping in touch with contact inhibition of locomotion. Trends in cell biology, 2010. 20(6): p. 319-328.
Agha, R., et al., A review of the role of mechanical forces in cutaneous wound healing. Journal of Surgical Research, 2011. 171(2): p. 700-708.
Brown, T.D., Techniques for mechanical stimulation of cells in vitro: a review. Journal of biomechanics, 2000. 33(1): p. 3-14.
Nagatomi, J., et al., Frequency-and duration-dependent effects of cyclic pressure on select bone cell functions. Tissue engineering, 2001. 7(6): p. 717-728.
Shimizu, K., et al., Development of a biochip with serially connected pneumatic balloons for cell-stretching culture. Sensors and Actuators B: Chemical, 2011. 156(1): p. 486-493.
Heo, Y.J., et al., Stretchable cell culture platforms using micropneumatic actuators. Micro & Nano Letters, 2013. 8(12): p. 865-868.
Huang, Y. and N.-T. Nguyen, A polymeric cell stretching device for real-time imaging with optical microscopy. Biomedical microdevices, 2013. 15: p. 1043-1054.
Kreutzer, J., et al., Pneumatic cell stretching system for cardiac differentiation and culture. Medical engineering & physics, 2014. 36(4): p. 496-501.
Kamble, H., et al., Cell stretching devices as research tools: engineering and biological considerations. Lab on a Chip, 2016. 16(17): p. 3193-3203.
Kamotani, Y., et al., Individually programmable cell stretching microwell arrays actuated by a Braille display. Biomaterials, 2008. 29(17): p. 2646-2655.
Sato, K., S. Kamada, and K. Minami, Development of microstretching device to evaluate cell membrane strain field around sensing point of mechanical stimuli. International Journal of Mechanical Sciences, 2010. 52(2): p. 251-256.
Huang, L., P.S. Mathieu, and B.P. Helmke, A stretching device for high-resolution live-cell imaging. Annals of biomedical engineering, 2010. 38: p. 1728-1740.
Chang, Y.-J., et al., Micropatterned stretching system for the investigation of mechanical tension on neural stem cells behavior. Nanomedicine: Nanotechnology, Biology and Medicine, 2013. 9(3): p. 345-355.
Dai, Z.-X., et al., Functional assistance for stress distribution in cell culture membrane under periodically stretching. Journal of Biomechanics, 2021. 125: p. 110564.
Dai, Z.-X., et al., Effect of static and dynamic stretching on corneal fibroblast cell. Processes, 2022. 10(3): p. 605.
Hjortdal, J.Ø. and P.K. Jensen, In vitro measurement of corneal strain, thickness, and curvature using digital image processing. Acta Ophthalmologica Scandinavica, 1995. 73(1): p. 5-11.
Twa, M.D., et al., Evaluation of a contact lens-embedded sensor for intraocular pressure measurement. Journal of glaucoma, 2010. 19(6): p. 382.
Ingber, D.E., Tensegrity I. Cell structure and hierarchical systems biology. Journal of cell science, 2003. 116(7): p. 1157-1173.
Stamenović, D. and D.E. Ingber, Tensegrity-guided self assembly: from molecules to living cells. Soft Matter, 2009. 5(6): p. 1137-1145.
Xu, G.-K., et al., A tensegrity model of cell reorientation on cyclically stretched substrates. Biophysical journal, 2016. 111(7): p. 1478-1486.
Rodriguez, L.G., X. Wu, and J.-L. Guan, Wound-healing assay. Cell Migration: Developmental Methods and Protocols, 2005: p. 23-29.
Zordan, M.D., et al., A high throughput, interactive imaging, bright‐field wound healing assay. Cytometry Part A, 2011. 79(3): p. 227-232.
Gould, K. Wound healing assays: discussing subtypes of cell removal assays. Available from: https://cytosmart.com/resources/resources/wound-healing-assays-discussing-subtypes-cell-removal-assays.
Grada, A., et al., Research techniques made simple: analysis of collective cell migration using the wound healing assay. Journal of Investigative Dermatology, 2017. 137(2): p. e11-e16.
Imanishi, J., et al., Growth factors: importance in wound healing and maintenance of transparency of the cornea. Progress in retinal and eye research, 2000. 19(1): p. 113-129.
Wilson, S.E., Corneal myofibroblast biology and pathobiology: generation, persistence, and transparency. Experimental eye research, 2012. 99: p. 78-88.
Myrna, K.E., S.A. Pot, and C.J. Murphy, Meet the corneal myofibroblast: the role of myofibroblast transformation in corneal wound healing and pathology. Veterinary ophthalmology, 2009. 12: p. 25-27.
Chang, C.Y., Z.X. Dai, and P.J. Shih, Modeling and simulation of cell migration on the basis of force equilibrium. International Journal for Numerical Methods in Biomedical Engineering, 2022. 38(2): p. e3550.
Keren, K., et al., Mechanism of shape determination in motile cells. Nature, 2008. 453(7194): p. 475-480.
Gillespie, D.T., Exact stochastic simulation of coupled chemical reactions. The journal of physical chemistry, 1977. 81(25): p. 2340-2361.
Boudou, T., et al., An extended relationship for the characterization of Young's modulus and Poisson's ratio of tunable polyacrylamide gels. Biorheology, 2006. 43(6): p. 721-728.
Last, J.A., et al., Compliance profile of the human cornea as measured by atomic force microscopy. Micron, 2012. 43(12): p. 1293-1298.
Lo, C.-M., et al., Cell movement is guided by the rigidity of the substrate. Biophysical journal, 2000. 79(1): p. 144-152.
Jonkman, J.E., et al., An introduction to the wound healing assay using live-cell microscopy. Cell adhesion & migration, 2014. 8(5): p. 440-451.
Bala, R., R. Eschbach, and N. York, Spatial color-to-grayscale transform preserving chrominance edge information. signal, 2004. 100: p. 4.
Wei, Z., et al., Analysis and interpretation of stress fiber organization in cells subject to cyclic stretch. 2008.
Chan, C.E. and D.J. Odde, Traction dynamics of filopodia on compliant substrates. Science, 2008. 322(5908): p. 1687-1691.
Han, S.J. and N.J. Sniadecki, Simulations of the contractile cycle in cell migration using a bio-chemical–mechanical model. Computer Methods in Biomechanics and Biomedical Engineering, 2011. 14(05): p. 459-468.
Charrier, E.E., et al., A novel method to make viscoelastic polyacrylamide gels for cell culture and traction force microscopy. APL bioengineering, 2020. 4(3).
Mills, I., et al., Strain activation of bovine aortic smooth muscle cell proliferation and alignment: study of strain dependency and the role of protein kinase A and C signaling pathways. Journal of cellular physiology, 1997. 170(3): p. 228-234.
Davidovich, N., et al., Cyclic stretch–induced oxidative stress increases pulmonary alveolar epithelial permeability. American journal of respiratory cell and molecular biology, 2013. 49(1): p. 156-164.
Nam, H.Y., et al., Uniaxial cyclic tensile stretching at 8% strain exclusively promotes tenogenic differentiation of human bone marrow-derived mesenchymal stromal cells. Stem cells international, 2019. 2019.
Ljubimov, A.V. and M. Saghizadeh, Progress in corneal wound healing. Progress in retinal and eye research, 2015. 49: p. 17-45.
Ruiz-Ederra, J. and A. Verkman, Aquaporin-1-facilitated keratocyte migration in cell culture and in vivo corneal wound healing models. Experimental eye research, 2009. 89(2): p. 159-165.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90530-
dc.description.abstract全球視障主因之一為角膜受損,在損傷癒合後細胞排列雜亂導致折射率改變而影響視覺。鑒於捐贈數量不足無法手術,且人工角膜和體外細胞培養尚存不確定性,我們針對角膜基質細胞進行力學行為研究,期望對角膜細胞之生長更加了解。首先為細胞遷移模擬,我們改良Odde學者之遷移數學模型,並加入Gillespie隨機模擬演算法和Keren學者之膜力理論,建構新細胞遷移模型以剖析勻向機械力對其刺激與影響。模擬結果表示應變參數極其關鍵,同時機械力作用亦具細胞遷移導向能力。而機械應力為細胞型態與生理學中不容忽視之環境條件,常見除壓、張和剪切力外,週期性拉伸更是細胞研究廣泛使用之機械要素。為求體外擬真,本研究參考實際眼壓變化量及角膜硬度,提出一種氣動純張力拉伸系統,透過馬達精準調控應變及頻率,且適用表面處理之聚丙烯醯胺水膠作為細胞培養基材。實驗結果顯示動態與靜態角膜基質細胞培養相比,週期拉伸應變對其分化增殖具正向作用。更進一步我們分析角膜損傷癒合後混濁議題,利用聚焦型雷射燒熔,使單層人眼角膜基質細胞產生小面積之平行及垂直方形傷口。配合拉伸系統提供勻向應變動態環境,並置於相同位置透過活細胞相位差顯微平台進行即時紀錄。實驗結果顯示角膜基質細胞傷口癒合至二十小時後形狀逐漸轉化為橢圓環狀,超過四十小時接近完全癒合。整體而言,過程中機械刺激細胞易影響隨機之排列方式,而結果趨勢顯示垂直傷口較適合於靜態環境培養癒合,平行傷口則於動態拉伸條件下培養癒合效益較高。本論文之貢獻在於提出一種模擬人眼角膜機械環境之系統,並核實角膜基質細胞於動態刺激培養之適宜性。zh_TW
dc.description.abstractOne of the leading causes of global visual impairment is corneal damage. After healing of corneal injuries, disorganized cell arrangements may lead to changes of the refractive index. However, the quantity of corneal donations for the surgeries is insufficient, and there are still uncertainties surrounding artificial corneas and in vitro cell cultivation. Therefore, our research focuses on the mechanical behavior of corneal keratocytes and hopes to deeply understand the growth of corneal cells. Firstly, we analyzed the cell migration using a cell migration model, which is based on the migration mathematical model by Odde, and incorporated with the Gillespie stochastic algorithm and Keren's membrane force theory. Simulation results demonstrated that strain parameter played a critical role, and mechanical force transmission also possessed cell migration-guiding capabilities. To achieve in vitro authenticity, we developed a pneumatically controlled pure tension stretching system, which the strain and frequency were regulated, and the surface-treated polyacrylamide hydrogel was used as the cell culture substrate. The results exhibited that compared to the static cultivation, periodic stretching strain had a positive effect on the differentiation and proliferation of corneal keratocytes. Moreover, we examined the opacification of the cornea after wound healing. We created tiny wounds of human keratocytes and subjected to a dynamic environment with uniform strain, then recorded the healing process in real-time at the same location. Our results observed that the shapes of the keratocytes wounds gradually transformed into an elliptical ring after twenty hours, then approached complete healing and arranged regularly by stresses after about forty hours. Furthermore, the results indicated that vertical wounds were more suitable for healing under static conditions, while parallel wound healing benefited from cultivation that with dynamic stretching conditions. To conclude, this study proposes a system to simulate the mechanical environment of human corneal, and our results support that suitability of cultivating human keratocytes under dynamic stimulation.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:30:16Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-10-03T16:30:16Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents謝誌 i
中文摘要 ii
ABSTRACT iii
目錄 v
圖目錄 viii
表目錄 xii
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
第二章 文獻回顧 4
2.1 眼角膜結構與功能 4
2.2 細胞骨架 6
2.3 細胞遷移 8
2.4 機械傳導 13
2.5 細胞生物力學模型 20
2.5.1 張拉共構模型 20
2.5.2 細胞遷移模型 23
2.6 細胞傷口癒合試驗 23
第三章 細胞遷移模擬之材料與方法 27
3.1 模擬方法 27
3.1.1 細胞結構與運動 27
3.1.2 力學應用 30
3.2 模擬參數與設定 31
3.3 模擬結果 33
第四章 細胞拉伸實驗之材料與方法 39
4.1 實驗規劃及材料 39
4.1.1 實驗流程規劃 39
4.1.2 實驗儀器與材料 39
4.2 細胞樣品製備 40
4.2.1 細胞培養 40
4.2.2 繼代與計數 41
4.3 聚丙烯醯胺水膠 43
4.3.1 製備 43
4.3.2 細胞牽引力 46
4.4 實驗架設 47
4.4.1 拉伸裝置 47
4.4.2 活細胞觀察系統 51
4.4.3 顯微鏡 53
4.5 細胞傷口形成與癒合 55
4.6 影像分析 58
4.6.1 影像處理 58
4.6.2 統計分析 61
第五章 實驗結果與討論 63
5.1 角膜細胞培養結果 63
5.1.1 靜態培養分析 63
5.1.2 動態培養分析 65
5.2 角膜細胞傷口癒合結果 67
5.2.1 靜態傷口癒合分析 67
5.2.2 動態傷口癒合分析 69
5.3 討論 73
5.3.1 數值模擬模型 73
5.3.2 拉伸試驗成果 73
第六章 結論與未來展望 76
6.1 結論 76
6.2 未來展望 77
參考文獻 79
-
dc.language.isozh_TW-
dc.title機械應力刺激人眼角膜角質細胞之遷移模擬與傷口癒合研究zh_TW
dc.titleMigration Simulation and Wound Healing of Human Corneal Keratocytes by Mechanical Stressesen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林育君;戴芝軒zh_TW
dc.contributor.oralexamcommitteeYu-Chun Lin;Zhi-Xuan Daien
dc.subject.keyword角膜基質細胞,細胞遷移模型,純張力拉伸系統,聚丙烯醯胺水膠,傷口癒合,活細胞顯微平台,zh_TW
dc.subject.keywordcorneal keratocytes,cell migration model,pure tension stretching system,polyacrylamide hydrogel,wound healing,live cell observation,en
dc.relation.page83-
dc.identifier.doi10.6342/NTU202301626-
dc.rights.note未授權-
dc.date.accepted2023-07-31-
dc.contributor.author-college工學院-
dc.contributor.author-dept醫學工程學系-
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  目前未授權公開取用
4.55 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved