請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90522
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳俊杉 | zh_TW |
dc.contributor.advisor | Chuin-Shan Chen | en |
dc.contributor.author | 江郁瑄 | zh_TW |
dc.contributor.author | Yu-Hsuan Chaing | en |
dc.date.accessioned | 2023-10-03T16:28:09Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-10-03 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-12 | - |
dc.identifier.citation | [1] Ulrike GK Wegst, Hao Bai, Eduardo Saiz, Antoni P Tomsia, and Robert O Ritchie. Bioinspired structural materials. Nature materials, 14(1):23–36, 2015.
[2] Steven E Naleway, Michael M Porter, Joanna McKittrick, and Marc A Meyers. Structural design elements in biological materials: application to bioinspiration. Advanced materials, 27(37):5455–5476, 2015. [3] Sung-Lin Tsai. Machine learning enabled strength and toughness optimization for nacre-inspired microstructural design. Master’s thesis, National Taiwan University, 7 2020. [4] JyunPingWang.Designbio-inspired microstructures via deep neural network.Mas- ter’s thesis, National Taiwan University, 8 2021. [5] Sabrina Chin-yun Shen and Markus J Buehler. Nature-inspired architected materials using unsupervised deep learning. Communications Engineering, 1(1):37, 2022. [6] Roberto Martini, Yanis Balit, and Francois Barthelat. A comparative study of bio-inspired protective scales using 3d printing and mechanical testing. Acta biomaterialia, 55:360–372, 2017. [7] Eduard Arzt. Biological and artificial attachment devices: Lessons for materials scientists from flies and geckos. Materials Science and Engineering: C, 26(8):1245– 1250, 2006. [8] MarcAMeyers, Po-YuChen, MariaILopez, YasuakiSeki,andAlbertYMLin.Bio-logical materials: A materials science approach. Journal of the mechanical behavior of biomedical materials, 4(5):626–657, 2011. [9] Horacio D Espinosa, Jee E Rim, Francois Barthelat, and Markus J Buehler. Merger of structure and material in nacre and bone–perspectives on de novo biomimetic materials. Progress in Materials Science, 54(8):1059–1100, 2009. [10] Yu-Chuan Hsu, Chi-Hua Yu, and Markus J Buehler. Using deep learning to predict fracture patterns in crystalline solids. Matter, 3(1):197–211, 2020. [11] Yu-Chuan Hsu, Chi-Hua Yu, and Markus J Buehler. Tuning mechanical properties in polycrystalline solids using a deep generative framework. Advanced Engineering Materials, 23(4):2001339, 2021. [12] Zhao Qin, Lingfei Wu, Hui Sun, Siyu Huo, Tengfei Ma, Eugene Lim, Pin-Yu Chen, Benedetto Marelli, and Markus J Buehler. Artificial intelligence method to design and fold alpha-helical structural proteins from the primary amino acid sequence. Extreme Mechanics Letters, 36:100652, 2020. [13] Chi-Hua Yu, Bor-Yann Tseng, Zhenze Yang, Cheng-Che Tung, Elena Zhao, Zhi- Fan Ren, Sheng-Sheng Yu, Po-Yu Chen, Chuin-Shan Chen, and Markus J Buehler. Hierarchical multiresolution design of bioinspired structural composites using progressive reinforcement learning. Advanced Theory and Simulations, 5(11):2200459, 2022. [14] Chi-Hua Yu, Zhao Qin, and Markus J Buehler. Artificial intelligence design al- gorithm for nanocomposites optimized for shear crack resistance. Nano Futures, 3(3):035001, 2019. [15] Ansheed A Raheem, Pearlin Hameed, Ruban Whenish, Renold S Elsen, Amit Ku- mar Jaiswal, Konda Gokuldoss Prashanth, and Geetha Manivasagam. A review on development of bio-inspired implants using 3d printing. Biomimetics, 6(4):65, 2021. [16] IanMaskery,NesmaTAboulkhair,AOAremu,CJTuck,andIAAshcroft.Compres- sive failure modes and energy absorption in additively manufactured double gyroid lattices. Additive Manufacturing, 16:24–29, 2017. [17] Cheng-Che Tung, Hsin-Jui Wang, and Po-Yu Chen. Lightweight, compression- resistant cellular structures inspired from the infructescence of liquidambar for- mosana. Journal of the Mechanical Behavior of Biomedical Materials, 110:103961, 2020. [18] Sohaib Z Khan, SH Masood, Essam Ibrahim, and Zaini Ahmad. Compressive be- haviour of neovius triply periodic minimal surface cellular structure manufactured by fused deposition modelling. Virtual and Physical Prototyping, 14(4):360–370, 2019. [19] Sheng Wang, Jun Wang, Yingjie Xu, Weihong Zhang, and Jihong Zhu. Compres- sive behavior and energy absorption of polymeric lattice structures made by additive manufacturing. Frontiers of Mechanical Engineering, 15:319–327, 2020. [20] ShixiangYu,JinxingSun,andJiamingBai. Investigation of functionally graded tpms structures fabricated by additive manufacturing. Materials & Design, 182:108021, 2019. [21] Diab W Abueidda, Mohamed Elhebeary, Cheng-Shen Andrew Shiang, Siyuan Pang, Rashid K Abu Al-Rub, and Iwona M Jasiuk. Mechanical properties of 3d printed polymeric gyroid cellular structures: Experimental and finite element study. Materials & Design, 165:107597, 2019. [22] Dong-Wook Lee, Kamran A Khan, and Rashid K Abu Al-Rub. Stiffness and yield strength of architectured foams based on the schwarz primitive triply periodic mini-mal surface. International Journal of Plasticity, 95:1–20, 2017. [23] Colin Bonatti and Dirk Mohr. Mechanical performance of additively-manufactured anisotropic and isotropic smooth shell-lattice materials: Simulations & experiments. Journal of the Mechanics and Physics of Solids, 122:1–26, 2019. [24] Oraib Al-Ketan and Rashid K Abu Al-Rub. Multifunctional mechanical metamaterials based on triply periodic minimal surface lattices. Advanced Engineering Materials, 21(10):1900524, 2019. [25] Seung Chul Han and Kiju Kang. Another stretching-dominated micro-architectured material, shellular. Materials Today, 31:31–38, 2019. [26] Alan H Schoen. Infinite periodic minimal surfaces without self-intersections. Technical report, 1970. [27] Hermann Karcher. The triply periodic minimal surfaces of alan schoen and their constant mean curvature companions. Manuscripta mathematica, 64(3):291–357, 1989. [28] Jeff T Gostick, Zohaib A Khan, Thomas G Tranter, Matthew DR Kok, Mehrez Ag- naou, Mohammadamin Sadeghi, and Rhodri Jervis. Porespy: A python toolkit for quantitative analysis of porous media images. Journal of Open Source Software, 4(37):1296, 2019. [29] Jeff T Gostick, Niloofar Misaghian, Jianhui Yang, and Edo S Boek. Simulating volume-controlled invasion of a non-wetting fluid in volumetric images using basic image processing tools. Computers & Geosciences, 158:104978, 2022. [30] Claude Elwood Shannon. A mathematical theory of communication. ACM SIGMOBILE mobile computing and communications review, 5(1):3–55, 2001. [31] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Comput- ing in Python. Nature Methods, 17:261–272, 2020. [32] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013. [33] Carl Doersch. Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908, 2016. [34] Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfellow, and Brendan Frey. Adversarial autoencoders. arXiv preprint arXiv:1511.05644, 2015. [35] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial net- works. Communications of the ACM, 63(11):139–144, 2020. [36] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784, 2014. [37] AshishVaswani, NoamShazeer, NikiParmar, JakobUszkoreit, LlionJones, AidanN Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30, 2017. [38] Jesse Vig. A multiscale visualization of attention in the transformer model. arXiv preprint arXiv:1906.05714, 2019. [39] Łukasz Maziarka, Tomasz Danel, Sławomir Mucha, Krzysztof Rataj, Jacek Ta- bor, and Stanisław Jastrzębski. Molecule attention transformer. arXiv preprint arXiv:2002.08264, 2020. [40] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000. [41] Oğulcan Eren, Hüseyin Kürşad Sezer, and Necati Yalçın. Effect of lattice design on mechanical response of polyjet additively manufactured cellular structures. Journal of Manufacturing Processes, 75:1175–1188, 2022. [42] Camil Lancea, Ian Campbell, Lucia-Antoneta Chicos, and Sebastian-Marian Za- haria. Compressive behaviour of lattice structures manufactured by polyjet tech- nologies. Polymers, 12(12):2767, 2020. [43] WenfengLiu,HongweiSong,and ChenguangHuang.Maximizing mechanical properties and minimizing support material of polyjet fabricated 3d lattice structures. Additive Manufacturing, 35:101257, 2020. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90522 | - |
dc.description.abstract | 生物材料因其複雜的材料微結構而具有獨特的特性,這些特性造就其特別適用於創造具有多樣化功能的高性能材料。本研究聚焦於透過具有自注意機制的深度生成網絡,即AE-transformer GAN,生成具有預定特性的仿生微結構。模型的初始訓練是基於兩種數據類型,分別為等向性多孔狀微結構和異向性生物微觀結構。並通過基於圖像的分析和利用3D列印試體的物理實驗驗證並且評估了模型的有效性。下一步,我們將模型拓展至有條件式的生成模型,以便更精確地控制生成過程。此外,透過將局部熵作為結構指標加入條件式模型的生成過程,建立具有訂製特性的混合微結構之生成策略。本研究提出了一種高效的生成方式,用於學習與生成仿生微結構,並利用條件式生成模型,奠定新的生成方式能夠探索從未見過並具有目標特性的混種微結構。 | zh_TW |
dc.description.abstract | Biomaterials are distinguished by their unique attributes, which are largely attributable to their intricate microstructures. These properties make them particularly attractive for the creation of high-performance materials with diverse functionalities. This research focuses on the generation of bioinspired microstructures with predetermined characteristics. This is achieved through a deep generative network equipped with a self-attention mechanism, specifically the AE-transformer GAN. The initial training of the model was based on two types of data: isotropic porous structures and anisotropic biological microstructures. The efficacy of the model was then evaluated using image-based analysis and physical examination of 3D-printed specimens. Subsequently, the model was augmented to become a conditional generative model, providing more precise control over the generation process.
Moreover, the incorporation of local entropy as a structural index facilitated the strategic generation of hybrid microstructures with bespoke properties. In summary, this thesis introduces a highly efficient generative methodology for learning and generating bioinspired microstructures. Notably, it paves the way for the design of previously unexplored hybrid microstructures with targeted properties, thanks to the conditional generative models. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:28:09Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-10-03T16:28:09Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | Verification Letter from the Oral Examination Committee i
Acknowledgements iii 摘要 v Abstract vii Contents ix List of Figures xiii List of Tables xix Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Literature Review 3 1.3 Objectives of the Thesis 6 1.4 Organization of the Thesis 6 Chapter 2 Materials and Method 9 2.1 Biological Data 9 2.1.1 Triply Periodic Minimal Surfaces 9 2.1.2 Biological Microstructures from Computed Tomography Scan 10 2.2 Microstructural Characterization 13 2.2.1 Pore Size Distribution 13 2.2.2 Image-based Invasion Percolation 13 2.2.3 Local Entropy 14 2.3 Deep Learning Approach 15 2.3.1 Auto Encoder 15 2.3.2 Generative Adversarial Network 16 2.3.3 Transformer Layer 18 2.4 AE-transformer GAN 19 2.4.1 Structure of Model 19 2.4.2 Generating and Reconstruction of Microstructures 21 2.5 cAE-transformer GAN 21 2.5.1 Structure of Model 22 2.5.2 Generating and Control of Microstructures 23 2.5.3 Entropy Selection and Generation 26 Chapter 3 Results and Discussion 29 3.1 Results of AE-transformer GAN 29 3.1.1 Morphology of Generation 29 3.1.2 Pore Size Distribution 30 3.1.3 Image-based Invasion Percolation 32 3.1.4 Physical Simulation and Experiment Validation 35 3.2 Results of cAE-transformer GAN 37 3.2.1 Experimental Results of Dataset 37 3.2.2 Morphology of Gradient Generation 41 3.2.3 Morphology of Mixed Generation 45 3.2.4 Experiment of Mixed Microstructures 45 3.2.5 Results of Entropy Select and Generation 50 Chapter 4 Conclusions and Future Work 59 4.1 Conclusions 59 4.2 Future Work 60 References 63 | - |
dc.language.iso | en | - |
dc.title | 以基於Transformer的對抗生成網路生成三維仿生微結構 | zh_TW |
dc.title | Generating Three-Dimensional Bio-inspired Microstructures Using Transformer-Based Generative Adversarial Network | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 陳柏宇;游濟華 | zh_TW |
dc.contributor.oralexamcommittee | Po-Yu Chen;Chi-Hua Yu | en |
dc.subject.keyword | 仿生微結構,深度學習,對抗生成式網路,Transformer模型, | zh_TW |
dc.subject.keyword | Bio-inspired Microstructure,Deep Learning,Generative Adversarial Network,Transformer, | en |
dc.relation.page | 69 | - |
dc.identifier.doi | 10.6342/NTU202303426 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2023-08-13 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 土木工程學系 | - |
dc.date.embargo-lift | 2027-08-08 | - |
顯示於系所單位: | 土木工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 目前未授權公開取用 | 16.85 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。