Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90516
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor溫進德zh_TW
dc.contributor.advisorJin-Der Wenen
dc.contributor.author顏嫚妤zh_TW
dc.contributor.authorMan-Yu Yanen
dc.date.accessioned2023-10-03T16:26:34Z-
dc.date.available2023-11-09-
dc.date.copyright2023-10-03-
dc.date.issued2023-
dc.date.submitted2023-08-02-
dc.identifier.citationAggarwal, V. and T. Ha (2014). "Single‐molecule pull‐down (SiMPull) for new‐age biochemistry: Methodology and biochemical applications of single‐molecule pull‐down (SiMPull) for probing biomolecular interactions in crude cell extracts." BioEssays 36(11): 1109-1119.
Aitken, C. E., et al. (2008). "An oxygen scavenging system for improvement of dye stability in single-molecule fluorescence experiments." Biophysical journal 94(5): 1826-1835.
Boni, I. V., et al. (2001). "Non-canonical mechanism for translational control in bacteria: synthesis of ribosomal protein S1." The EMBO journal 20(15): 4222-4232.
Byrgazov, K., et al. (2012). "Direct interaction of the N-terminal domain of ribosomal protein S1 with protein S2 in Escherichia coli." PLoS One 7(3): e32702.
Cifuentes-Goches, J. C., et al. (2019). "Domains two and three of Escherichia coli ribosomal S1 protein confers 30S subunits a high affinity for downstream A/U-rich mRNAs." The Journal of Biochemistry 166(1): 29-40.
Deafer, D. E. and P. H. von Hippel (1978). "Nucleic acid binding properties of Escherichia coli ribosomal protein S1: II. Co-operativity and specificity of binding site II." Journal of molecular biology 122(3): 339-359.
Duval, M., et al. (2013). "Escherichia coli ribosomal protein S1 unfolds structured mRNAs onto the ribosome for active translation initiation." PLoS biology 11(12): e1001731.
Hirel, P.-H., et al. (1989). "Extent of N-terminal methionine excision from Escherichia coli proteins is governed by the side-chain length of the penultimate amino acid." Proceedings of the National Academy of Sciences 86(21): 8247-8251.
Loveland, A. B. and A. A. Korostelev (2018). "Structural dynamics of protein S1 on the 70S ribosome visualized by ensemble cryo-EM." Methods 137: 55-66.
Marzi, S., et al. (2007). "Structured mRNAs regulate translation initiation by binding to the platform of the ribosome." Cell 130(6): 1019-1031.
Mateju, D., et al. (2020). "Single-molecule imaging reveals translation of mRNAs localized to stress granules." Cell 183(7): 1801-1812. e1813.
Mikhaylina, A., et al. (2021). "Regulation of Ribosomal Protein Synthesis in Prokaryotes." Molecular Biology 55: 16-36.
Philippe, C., et al. (1994). "Structural elements of rpsO mRNA involved in the modulation of translational initiation and regulation of E. coli ribosomal protein S15." Nucleic acids research 22(13): 2538-2546.
Philippe, C., et al. (1990). "Target site of Escherichia coli ribosomal protein S15 on its messenger RNA: conformation and interaction with the protein." Journal of molecular biology 211(2): 415-426.
Qureshi, N. S., et al. (2018). "Conformational switch in the ribosomal protein S1 guides unfolding of structured RNAs for translation initiation." Nucleic acids research 46(20): 10917-10929.
Qureshi, N. S., et al. (2021). "NMR structure of the Vibrio vulnificus ribosomal protein S1 domains D3 and D4 provides insights into molecular recognition of single-stranded RNAs." Nucleic acids research 49(13): 7753-7764.
Sørensen, M. A., et al. (1998). "Ribosomal protein S1 is required for translation of most, if not all, natural mRNAs in Escherichia coli in vivo." Journal of molecular biology 280(4): 561-569.
Sengupta, J., et al. (2001). "Visualization of protein S1 within the 30S ribosomal subunit and its interaction with messenger RNA." Proceedings of the National Academy of Sciences 98(21): 11991-11996.
Shine, J. and L. Dalgarno (1975). "Determinant of cistron specificity in bacterial ribosomes." Nature 254(5495): 34-38.
Skorski, P., et al. (2006). "The highly efficient translation initiation region from the Escherichia coli rpsA gene lacks a Shine-Dalgarno element." Journal of bacteriology 188(17): 6277-6285.
Subramanian, A.-R. (1983). "Structure qnd Functions of Ribosomal Protein S1." Progress in nucleic acid research and molecular biology 28: 101-142.
Yin, J., et al. (2006). "Site-specific protein labeling by Sfp phosphopantetheinyl transferase." Nature protocols 1(1): 280-285.
張舒雅,2015,國立臺灣大學分子與細胞生物學研究所碩士論文,利用單分子螢光共振能量轉移技術探討核醣體在rpsO基因轉錄本上對轉譯起始的影響
楊宜芳,2020,國立臺灣大學分子與細胞生物學研究所碩士論文,以單分子螢光共振能量轉移技術觀測S1如何結合mRNA
盧韋霖,2021,國立臺灣大學分子與細胞生物學研究所碩士論文,核醣體bS1蛋白在轉譯起始階段之功能性研究
張廷莉,2022,國立臺灣大學分子與細胞生物學研究所碩士論文,以單分子螢光共振能量轉移技術探討和醣體蛋白bS1與rpsA 5’UTR之間交互作用
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90516-
dc.description.abstract原核生物的轉譯作用於核醣體進行,然而多數mRNA 的5’端未轉譯區域(5’UTR)容易形成二級結構,可能使核醣體次單元30S無法順利辨認mRNA的轉譯起始序列並正確的結合至mRNA,因而造成轉譯效率下降。核醣體蛋白bS1做為連接30S與mRNA的橋樑,其N端能與30S接合,C端則結合至mRNA,在結構上具有高度靈活性。另外在先前研究中發現bS1具有解旋酶活性,其能夠協助30S解開mRNA的二級結構,促進轉譯起始進行。然而目前對於bS1結合至mRNA的過程及bS1自身構形變化尚未有深入探討。在本研究中,我們製備螢光標定的bS1 (Cy3-S1)與已知5’UTR會形成二級結構的mRNA,以單分子螢光共振能量轉移技術觀測bS1結合至mRNA時彼此間的交互作用。
在研究結果中,我們發現單一個bS1結合到mRNA的方向性為N端朝向mRNA下游,且也有觀察到兩個bS1結合至mRNA的情形,其中bS1結合至mRNA的順序可能為兩個bS1同時結合亦或是一前一後,在此情況下,第二個bS1的結合至mRNA速率會提高許多,可能是因為bS1彼此之間具有協同性。另外,在只有單一個bS1存在的情況下,bS1仍可以穩定結合至mRNA,並解開mRNA的二級結構。綜合以上實驗結果,我們對於bS1與mRNA之間交互作用的分子機制有了更進一步的了解,有助於進一步探究bS1在轉譯起始的生物功能。
zh_TW
dc.description.abstractThe process of translation in prokaryotes is catalyzed by the ribosome. However, most mRNA 5’ untranslated regions (5’UTRs) tend to form secondary structures, which prevent the 30S ribosomal subunit from properly recognizing the translation initiation site and binding to the mRNA, leading to decreased translation efficiency. The ribosomal protein bS1 acts as a bridge between the 30S subunit and mRNA, with its N-terminus binding to the 30S subunit and its C-terminus binding to mRNA, and it has a high degree of structural flexibility. In previous studies, bS1 has been found to possess helicase activity, which can help the 30S subunit unwind secondary structures of mRNA and facilitate the initiation of translation. However, the process of bS1 binding to mRNA and the corresponding conformational changes of bS1 itself has not been thoroughly investigated. In this study, we prepared fluorescence-labeled bS1 (Cy3-S1) and mRNA from known 5’UTR secondary structures and used single-molecule fluorescence resonance energy transfer (smFRET) technology to observe the interactions between bS1 and mRNA. We found that the orientation of bS1 binding to mRNA is with the N-terminus facing the downstream of mRNA. In addition, two bS1 molecules are also observed to bind to one mRNA, in a simultaneous or sequential manner. In the sequential case, the binding rate of the second bS1 is significantly increased, possibly due to the binding cooperativity between bS1 molecules. Additionally, even with only a single bS1, it can still stably bind to mRNA and unwind the secondary structures. Based on the above experimental results, we have gained a deeper understanding of the interaction mechanism between bS1 and mRNA 5’UTR, which will shed light on the biological function of bS1 in translational initiation.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:26:34Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-10-03T16:26:34Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
摘要 iv
Abstract v
目錄 vi
圖目錄 ix
表目錄 xi
第一章 導論 1
1.1 轉譯起始 1
1.2 核醣體蛋白bS1 1
1.3 mRNA 5’UTR 2
1.4 單分子技術 3
1.5 螢光共振能轉移 3
1.6 研究動機 4
第二章 材料與方法 5
2.1材料 5
2.1.1 勝任細胞品系 5
2.1.2 質體 5
2.1.3 藥品 6
2.1.4 酵素 8
2.1.5 試劑組 9
2.1.6 溶液 9
2.1.7 DNA oligomers 11
2.1.8 For protein purification 13
2.1.9 RNA 13
2.2方法 14
2.2.1 質體建構 14
2.2.2 細胞外轉錄 17
2.2.3 核醣體蛋白bS1突變體的純化 17
2.2.4 螢光標定核醣體蛋白bS1 19
2.2.5 單分子螢光共振能量轉移實驗 (single-molecule FRET) 20
第三章 結果 23
3.1 核醣體蛋白bS1純化 23
3.2 核醣體蛋白bS1螢光標定 23
3.3 RNA樣本製備 24
3.3.1 胞外轉錄 (in vitro transcription) 24
3.3.2 DNA handle與RNA黏合反應 24
3.4不同核醣體蛋白bS1突變種與RNA的交互作用 25
3.4.1 mS1L 25
3.4.2 rpsA 28
3.5 Cy3螢光標定核醣體蛋白bS1結合至RNA之特性 29
3.5.1 比較螢光標定核醣體蛋白Cy3-S1YF、S1-Cy3與Cy3-S1 29
3.5.2 Cy3-S1結合至RNA的方向性為N端朝向RNA下游 29
3.5.3 Cy3螢光在蛋白與在RNA上貢獻的光強度值差距 31
3.5.4 兩個以上的Cy3-S1結合至同一RNA 32
3.5.5 兩個Cy3-S1結合至RNA的比例正比於Cy3-S1濃度 34
3.6 固定單一個bS1與RNA的交互作用 35
3.6.1 mS1L 35
3.6.2 RPSOutr 36
3.7 不同螢光標定核醣體蛋白在30S上的構形變化 36
3.8 His-Cy3-S1-Cy5自身構形變化 37
第四章 討論 38
參考文獻 41
-
dc.language.isozh_TW-
dc.subject核醣體蛋白bS1zh_TW
dc.subject單分子螢光共振能量轉移zh_TW
dc.subjectrpsAzh_TW
dc.subjectrpsOzh_TW
dc.subjectrpsOen
dc.subjectrpsAen
dc.subjectsingle moleculeen
dc.subjectribosomal protein bS1en
dc.subjectFRETen
dc.title以單分子螢光共振能量轉移技術探討螢光標定核醣體蛋白bS1如何結合至mRNA 5’端未轉譯區域zh_TW
dc.titleExploring How Fluorescence-labeled Ribosomal Protein bS1 Binds the 5’ Untranslated Region of mRNA Using Single-Molecule FRETen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李弘文;李以仁zh_TW
dc.contributor.oralexamcommitteeHung-Wen Li;I-Ren Leeen
dc.subject.keyword核醣體蛋白bS1,rpsO,rpsA,單分子螢光共振能量轉移,zh_TW
dc.subject.keywordribosomal protein bS1,rpsO,rpsA,single molecule,FRET,en
dc.relation.page88-
dc.identifier.doi10.6342/NTU202302145-
dc.rights.note未授權-
dc.date.accepted2023-08-07-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept分子與細胞生物學研究所-
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
5.54 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved