請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90514完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳俊杉 | zh_TW |
| dc.contributor.advisor | Chuin-Shan Chen | en |
| dc.contributor.author | 黃琮煒 | zh_TW |
| dc.contributor.author | Tsung-Wei Huang | en |
| dc.date.accessioned | 2023-10-03T16:25:53Z | - |
| dc.date.available | 2023-11-10 | - |
| dc.date.copyright | 2023-10-03 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-04 | - |
| dc.identifier.citation | W. Abdulla. Mask r-cnn for object detection and instance segmentation on keras and tensorflow. https://github.com/matterport/Mask_RCNN, 2017. Last accessed 24 July 2023.
E. H. Adelson, C. H. Anderson, J. R. Bergen, P. J. Burt, and J. M. Ogden. Pyramid methods in image processing. RCA engineer, 29(6):33–41, 1984. Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient descent is difficult. IEEE transactions on neural networks, 5(2):157–166, 1994. K. M. Borgwardt, A. Gretton, M. J. Rasch, H.-P. Kriegel, B. Schölkopf, and A. J. Smola. Integrating structured biological data by kernel maximum mean discrepancy. Bioinformatics, 22(14):e49–e57, 2006. G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000. K. Chen, J. Wang, J. Pang, Y. Cao, Y. Xiong, X. Li, S. Sun, W. Feng, Z. Liu, J. Xu, Z. Zhang, D. Cheng, C. Zhu, T. Cheng, Q. Zhao, B. Li, X. Lu, R. Zhu, Y. Wu, J. Dai, J. Wang, J. Shi, W. Ouyang, C. C. Loy, and D. Lin. MMDetection: Open mmlab detection toolbox and benchmark. arXiv preprint arXiv:1906.07155, 2019. Y. Chen, C. Han, Y. Li, Z. Huang, Y. Jiang, N. Wang, and Z. Zhang. Simpledet: A simple and versatile distributed framework for object detection and instance recognition. Journal of Machine Learning Research, 20(156):1–8, 2019. M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth, and B. Schiele. The cityscapes dataset for semantic urban scene understanding. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 3213–3223, 2016. J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A largescale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition, pages 248–255. Ieee, 2009. O. Elharrouss, Y. Akbari, N. Almaadeed, and S. Al-Maadeed. Backbones-review: Feature extraction networks for deep learning and deep reinforcement learning approaches. arXiv preprint arXiv:2206.08016, 2022. M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman. The pascal visual object classes (voc) challenge. International journal of computer vision, 88:303–338, 2010. Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marchand, and V. Lempitsky. Domain-adversarial training of neural networks. The journal of machine learning research, 17(1):2096–2030, 2016. Y. Gao and K. M. Mosalam. Peer hub imagenet: A large-scale multiattribute benchmark data set of structural images. Journal of Structural Engineering, 146(10):04020198, 2020. R. Girshick. Fast r-cnn. In Proceedings of the IEEE international conference on computer vision, pages 1440–1448, 2015. R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 580–587, 2014. R. Girshick, I. Radosavovic, G. Gkioxari, P. Dollár, and K. He. Detectron. https://github.com/facebookresearch/detectron, 2018. Last accessed 24 July 2023. X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the thirteenth international conference on artificial intelligence and statistics, pages 249–256. JMLR Workshop and Conference Proceedings, 2010. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. Advances in neural information processing systems, 27, 2014. P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola, A. Tulloch, Y. Jia, and K. He. Accurate, large minibatch sgd: Training imagenet in 1 hour. arXiv preprint arXiv:1706.02677, 2017. A. Handa, V. Patraucean, V. Badrinarayanan, S. Stent, and R. Cipolla. Understanding real world indoor scenes with synthetic data. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 4077–4085, 2016. K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn. In Proceedings of the IEEE international conference on computer vision, pages 2961–2969, 2017. K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE international conference on computer vision, pages 1026–1034, 2015 K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016. Y. Hong, S. Park, H. Kim, and H. Kim. Synthetic data generation using building information models. Automation in Construction, 130:103871, 2021. S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In International conference on machine learning, pages 448–456. pmlr, 2015. H. Kim and H. Kim. 3d reconstruction of a concrete mixer truck for training object detectors. Automation in Construction, 88:23–30, 2018. M.-K. Kim, J. P. P. Thedja, H.-L. Chi, and D.-E. Lee. Automated rebar diameter classification using point cloud data based machine learning. Automation in Construction, 122:103476, 2021. Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. nature, 521(7553):436–444, 2015. Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel. Backpropagation applied to handwritten zip code recognition. Neural computation, 1(4):541–551, 1989. Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller. Efficient backprop. In Neural networks: Tricks of the trade, pages 9–50. Springer, 2002. T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie. Feature pyramid networks for object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 2117–2125, 2017. T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick. Microsoft coco: Common objects in context. In Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13, pages 740–755. Springer, 2014. W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg. Ssd: Single shot multibox detector. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I 14, pages 21–37. Springer, 2016. F. Massa and R. Girshick. maskrcnn-benchmark: Fast, modular reference implementation of Instance Segmentation and Object Detection algorithms in PyTorch. https://github.com/facebookresearch/maskrcnn-benchmark, 2018. Last accessed 24 July 2023. G. Pasqualino, A. Furnari, G. Signorello, and G. M. Farinella. An unsupervised domain adaptation scheme for single-stage artwork recognition in cultural sites. Image and Vision Computing, page 104098, 2021. W. Qiu, F. Zhong, Y. Zhang, S. Qiao, Z. Xiao, T. S. Kim, and Y. Wang. Unrealcv: Virtual worlds for computer vision. In Proceedings of the 25th ACM international conference on Multimedia, pages 1221–1224, 2017. S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time object detection with region proposal networks. Advances in neural information processing systems, 28, 2015. G. Ros, L. Sellart, J. Materzynska, D. Vazquez, and A. M. Lopez. The synthia dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 3234–3243, 2016. C. Sakaridis, D. Dai, and L. Van Gool. Semantic foggy scene understanding with synthetic data. International Journal of Computer Vision, 126:973–992, 2018. A. M. Saxe, J. L. McClelland, and S. Ganguli. Exact solutions to the nonlinear dynamics of learning in deep linear neural networks. arXiv preprint arXiv:1312.6120, 2013. A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang, and R. Webb. Learning from simulated and unsupervised images through adversarial training. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 2107–2116, 2017. S. Suzuki et al. Topological structural analysis of digitized binary images by border following. Computer vision, graphics, and image processing, 30(1):32–46, 1985. T. To, J. Tremblay, D. McKay, Y. Yamaguchi, K. Leung, A. Balanon, J. Cheng, W. Hodge, and S. Birchfield. NDDS: NVIDIA deep learning dataset synthesizer. https://github.com/NVIDIA/Dataset_Synthesizer, 2018. Last accessed 24 July 2023. J. Tremblay, T. To, B. Sundaralingam, Y. Xiang, D. Fox, and S. Birchfield. Deep object pose estimation for semantic robotic grasping of household objects. arXiv preprint arXiv:1809.10790, 2018 A. Tsirikoglou, J. Kronander, M. Wrenninge, and J. Unger. Procedural modeling and physically based rendering for synthetic data generation in automotive applications. arXiv preprint arXiv:1710.06270, 2017. E. Tzeng, J. Hoffman, N. Zhang, K. Saenko, and T. Darrell. Deep domain confusion: Maximizing for domain invariance. arXiv preprint arXiv:1412.3474, 2014. J. R. Uijlings, K. E. Van De Sande, T. Gevers, and A. W. Smeulders. Selective search for object recognition. International journal of computer vision, 104:154–171, 2013. L. Van der Maaten and G. Hinton. Visualizing data using t-sne. Journal of machine learning research, 9(11), 2008. K. Wada. labelme: Image Polygonal Annotation with Python. https://github.com/wkentaro/labelme, 2016. Last accessed 24 July 2023. Y. Wu et al. Tensorpack. https://github.com/tensorpack/, 2016. Last accessed 24 July 2023. Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, and R. Girshick. Detectron2. https://github.com/facebookresearch/detectron2, 2019. Last accessed 24 July 2023. B. Xiao and S.-C. Kang. Development of an image data set of construction machines for deep learning object detection. Journal of Computing in Civil Engineering, 35(2):05020005, 2021. J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba. Sun database: Large-scale scene recognition from abbey to zoo. In 2010 IEEE computer society conference on computer vision and pattern recognition, pages 3485–3492. IEEE, 2010. M. Zaid, P. Gaydecki, S. Quek, G. Miller, and B. Fernandes. Extracting dimensional information from steel reinforcing bars in concrete using neural networks trained on data from an inductive sensor. NDT & E International, 37(7):551–558, 2004. X. Zhang, J. Zhang, M. Ma, Z. Chen, S. Yue, T. He, and X. Xu. A high precision quality inspection system for steel bars based on machine vision. Sensors, 18(8):2732, 2018. 林克強. 2018 年 cns 560 鋼筋標準修訂. 結構工程, 34(2):23–41, 2019. 莊仕杰. 以實例分割與主動學習探討鋼筋間距辨識. Master’s thesis, 國立臺灣大學, 2021. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90514 | - |
| dc.description.abstract | 鋼筋混凝土一直是被廣泛使用的建築結構,為保證其結構強度往往需要耗費大量時間與人力進行檢核,近年來有些研究提出使用深度學習與電腦視覺的方法企圖提升鋼筋檢核的效率,然而這些方法大多僅示範在實驗室中搭建的鋼筋籠,亦或是因為不足的鋼筋資料導致模型只能在相似場域上有好表現,本研究提出一套使用合成資料與領域自適應的方法,解決資料不足以及模型表現不理想的情況。
首先透過BIM模型以及自動化腳本,將建構BIM模型與生成合成資料的流程自動化,取得大量與多樣具有實例等級標註的鋼筋合成資料。接著透過Mask R-CNN學習鋼筋的特徵,進行鋼筋影像的辨識,模型學習過程中會使用領域自適應技術消弭合成資料與真實資料間的差距,提升模型的辨識能力。另外因為過去研究並沒有公開的資料集與模型,因此本研究整理與標註現地鋼筋資料,做為本研究數值比較的對象。 本研究最終得到25287張標註的鋼筋合成資料,解決資料不足的問題。在現地鋼筋的測試資料集上,本研究基於合成資料與領域自適應得到的模型比使用現地鋼筋資料做為訓練的模型,在AP50指標上提升超過三倍。此外本研究亦從收集各樣現地鋼筋資料影像供模型預測,本研究提出的模型也都有較好的預測結果,故本研究提出的模型確實有提升現地鋼筋影像辨識能力。 | zh_TW |
| dc.description.abstract | Reinforced concrete has been widely used as a structural material in buildings. To make sure that the structure have enough structural strength, rebar inspection is in need. However traditional rebar inspection takes huge amount of time and involves significant labor. Recently some studies have proposed the use of deep learning and computer vision techniques to enhance the efficiency of rebar inspection. However, most of these methods have only demonstrated their effectiveness on steel cages built in laboratory settings or have been limited by insufficient steel reinforcement data, resulting in models that perform well only in similar scenarios. In this study, we address the challenges of limited data and suboptimal model performance by proposing a method with synthetic data generation and domain adaptation.
Large amount and variety of synthetic data has been generated by utilizing BIM and automated scripting. The synthetic data include instance-level annotations. Mask R-CNN model can learn those feature and recognize rebars. We bring domain adaptation into training process to eliminate the domain shift between two different data set, boosting the performance of the model. Since recent related research have not publicize their data set or model, we prepare the on-site rebar data set with annotation ourselves and serve them as a baseline in this research. Finally we developed the rebar synthetic data set with 25287 images, solving the issue of insufficient data. Our model, which have take the advantage of hug synthetic data set and effect of domain adaptation, has achieved triple improvement on AP50 metrics compared to the baseline model when evaluating on on-site testing data set. The model also show greater predictions on the data set we collect from the internet, which is really diverse. Hence, the proposed model indeed enhances the capability of on-site rebar recognition. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:25:53Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-10-03T16:25:53Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
致謝 iii 摘要 v Abstract vii 目錄 ix 圖目錄 xiii 表目錄 xvii 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 2 1.3 論文架構 3 第二章 文獻回顧 5 2.1 鋼筋檢核自動化 5 2.2 深度學習模型 7 2.2.1 Residual Networks 7 2.2.2 Feature Pyramid Networks 10 2.2.3 Mask Region-based Convolutional Neural Networks 11 2.3 合成資料 (Synthetic Data) 16 2.4 領域自適應 (Domain Adaptation) 18 2.5 小結 20 第三章 研究方法 23 3.1 傳統資料收集與標註方法 23 3.2 合成資料生成方法 25 3.2.1 建立結構元件 26 3.2.2 設計與建立鋼筋 27 3.2.3 標註資料之建立 32 3.3 深度學習模型訓練 36 3.3.1 模型訓練設置 36 3.3.2 評估指標 38 3.3.3 DA Mask R-CNN 42 3.4 實驗設計 44 第四章 實驗結果與討論 47 4.1 模型訓練 47 4.2 實驗結果 51 4.2.1 領域自適應效果 51 4.2.2 模型表現 52 4.3 實驗補充 59 4.3.1 合成資料數量對模型學習的影響 59 4.3.2 遷移學習 (Transfer learning) 60 第五章 結論與未來展望 63 5.1 結論 63 5.2 未來展望 64 參考文獻 65 附錄 A — 網路圖片 CC 授權 73 A.1 網路圖片 CC 授權內容 73 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | Mask R-CNN | zh_TW |
| dc.subject | 電腦視覺 | zh_TW |
| dc.subject | 建築資訊模型 | zh_TW |
| dc.subject | 合成資料 | zh_TW |
| dc.subject | 深度學習 | zh_TW |
| dc.subject | 現地鋼筋辨識 | zh_TW |
| dc.subject | 領域自適應 | zh_TW |
| dc.subject | Mask R-CNN | en |
| dc.subject | on-site rebar recognition | en |
| dc.subject | synthetic data | en |
| dc.subject | building information modeling | en |
| dc.subject | domain adaptation | en |
| dc.subject | deep learning | en |
| dc.subject | computer vision | en |
| dc.title | 基於BIM模型合成資料與領域自適應提升深度學習模型辨識現地鋼筋影像能力 | zh_TW |
| dc.title | Improving Deep Learning-based On-site Rebar Recognition Ability via Synthetic BIM-based Data and Domain Adaptation | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林之謙;周頌安;黃志民 | zh_TW |
| dc.contributor.oralexamcommittee | Je-Chian Lin;Song-An Chou;Chih-Min Huang | en |
| dc.subject.keyword | 現地鋼筋辨識,合成資料,建築資訊模型,領域自適應,深度學習,電腦視覺,Mask R-CNN, | zh_TW |
| dc.subject.keyword | on-site rebar recognition,synthetic data,building information modeling,domain adaptation,deep learning,computer vision,Mask R-CNN, | en |
| dc.relation.page | 80 | - |
| dc.identifier.doi | 10.6342/NTU202301886 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-08-07 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| dc.date.embargo-lift | 2028-08-01 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 此日期後於網路公開 2028-08-01 | 191.9 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
