Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90513
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張世宗zh_TW
dc.contributor.advisorShih-Chung Changen
dc.contributor.author李佳蓉zh_TW
dc.contributor.authorChia-Jung Lien
dc.date.accessioned2023-10-03T16:25:36Z-
dc.date.available2023-11-09-
dc.date.copyright2023-10-03-
dc.date.issued2023-
dc.date.submitted2023-07-20-
dc.identifier.citation1 Pantaleo, G., Correia, B., Fenwick, C., Joo, V. S. & Perez, L. Antibodies to combat viral infections: development strategies and progress. Nat Rev Drug Discov 21, 676-696 (2022). https://doi.org:10.1038/s41573-022-00495-3
2 Köhler, G. & Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495-497 (1975). https://doi.org:10.1038/256495a0
3 Lu, L. L., Suscovich, T. J., Fortune, S. M. & Alter, G. Beyond binding: antibody effector functions in infectious diseases. Nat Rev Immunol 18, 46-61 (2018). https://doi.org:10.1038/nri.2017.106
4 Hjelholt, A., Christiansen, G., Sorensen, U. S. & Birkelund, S. IgG subclass profiles in normal human sera of antibodies specific to five kinds of microbial antigens. Pathog Dis 67, 206-213 (2013). https://doi.org:10.1111/2049-632X.12034
5 Bournazos, S., Corti, D., Virgin, H. W. & Ravetch, J. V. Fc-optimized antibodies elicit CD8 immunity to viral respiratory infection. Nature 588, 485-490 (2020). https://doi.org:10.1038/s41586-020-2838-z
6 Tso, F. Y. et al. Presence of antibody-dependent cellular cytotoxicity (ADCC) against SARS-CoV-2 in COVID-19 plasma. PLoS One 16, e0247640 (2021). https://doi.org:10.1371/journal.pone.0247640
7 Li, D., Sempowski, G. D., Saunders, K. O., Acharya, P. & Haynes, B. F. SARS-CoV-2 neutralizing antibodies for COVID-19 prevention and treatment. Annu Rev Med 73, 1-16 (2022). https://doi.org:10.1146/annurev-med-042420-113838
8 Zheng, Q. et al. Viral neutralization by antibody-imposed physical disruption. Proc Natl Acad Sci U S A 116, 26933-26940 (2019). https://doi.org:10.1073/pnas.1916028116
9 Winkler, E. S. et al. Human neutralizing antibodies against SARS-CoV-2 require intact Fc effector functions for optimal therapeutic protection. Cell 184, 1804-1820 e1816 (2021). https://doi.org:10.1016/j.cell.2021.02.026
10 Petersen, L. R., Jamieson, D. J., Powers, A. M. & Honein, M. A. Zika virus. N Engl J Med 374, 1552-1563 (2016). https://doi.org:10.1056/NEJMra1602113
11 Sharma, V. et al. Zika virus: an emerging challenge to public health worldwide. Can J Microbiol 66, 87-98 (2020). https://doi.org:10.1139/cjm-2019-0331
12 Wang, Y., Ling, L., Zhang, Z. & Marin-Lopez, A. Current advances in Zika vaccine development. Vaccines (Basel) 10 (2022). https://doi.org:10.3390/vaccines10111816
13 Weaver, S. C. et al. Zika virus: history, emergence, biology, and prospects for control. Antiviral Res 130, 69-80 (2016). https://doi.org:10.1016/j.antiviral.2016.03.010
14 Boyer, S., Calvez, E., Chouin-Carneiro, T., Diallo, D. & Failloux, A. B. An overview of mosquito vectors of Zika virus. Microbes Infect 20, 646-660 (2018). https://doi.org:10.1016/j.micinf.2018.01.006
15 Dick, G. W., Kitchen, S. F. & Haddow, A. J. Zika virus. I. isolations and serological specificity. Trans R Soc Trop Med Hyg 46, 509-520 (1952). https://doi.org:10.1016/0035-9203(52)90042-4
16 Macnamara, F. N. Zika virus: a report on three cases of human infection during an epidemic of jaundice in Nigeria. Trans R Soc Trop Med Hyg 48, 139-145 (1954). https://doi.org:10.1016/0035-9203(54)90006-1
17 Duffy, M. R. et al. Zika virus outbreak on Yap Island, Federated States of Micronesia. N Engl J Med 360, 2536-2543 (2009). https://doi.org:10.1056/NEJMoa0805715
18 Lanciotti, R. S. et al. Genetic and serologic properties of Zika virus associated with an epidemic, Yap State, Micronesia, 2007. Emerg Infect Dis 14, 1232-1239 (2008). https://doi.org:10.3201/eid1408.080287
19 Andronico, A. et al. Real-time assessment of health-care requirements during the Zika virus epidemic in Martinique. Am J Epidemiol 186, 1194-1203 (2017). https://doi.org:10.1093/aje/kwx008
20 Sapkal, G. N. et al. First laboratory confirmation on the existence of Zika virus disease in India. J Infect 76, 314-317 (2018). https://doi.org:10.1016/j.jinf.2017.09.020
21 Haby, M. M., Pinart, M., Elias, V. & Reveiz, L. Prevalence of asymptomatic Zika virus infection: a systematic review. Bull World Health Organ 96, 402-413D (2018). https://doi.org:10.2471/BLT.17.201541
22 Musso, D. & Gubler, D. J. Zika virus. Clin Microbiol Rev 29, 487-524 (2016). https://doi.org:10.1128/CMR.00072-15
23 Abrams, R. P. M., Solis, J. & Nath, A. Therapeutic approaches for Zika virus infection of the nervous system. Neurotherapeutics 14, 1027-1048 (2017). https://doi.org:10.1007/s13311-017-0575-2
24 Oehler, E. et al. Zika virus infection complicated by Guillain-Barre syndrome--case report, French Polynesia, December 2013. Euro Surveill 19 (2014). https://doi.org:10.2807/1560-7917.es2014.19.9.20720
25 Schuler-Faccini, L. et al. Possible association between Zika virus infection and microcephaly - Brazil, 2015. MMWR Morb Mortal Wkly Rep 65, 59-62 (2016). https://doi.org:10.15585/mmwr.mm6503e2
26 de Araújo, T. V. B. et al. Association between Zika virus infection and microcephaly in Brazil, January to May, 2016: preliminary report of a case-control study. Lancet Infect Dis 16, 1356-1363 (2016). https://doi.org:10.1016/s1473-3099(16)30318-8
27 Kleber de Oliveira, W. et al. Increase in reported prevalence of microcephaly in infants born to women living in areas with confirmed Zika virus transmission during the first trimester of pregnancy - Brazil, 2015. MMWR Morb Mortal Wkly Rep 65, 242-247 (2016). https://doi.org:10.15585/mmwr.mm6509e2
28 Benazzato, C., Russo, F. B. & Beltrao-Braga, P. C. B. An update on preclinical pregnancy models of Zika virus infection for drug and vaccine discovery. Expert Opin Drug Discov 17, 19-25 (2022). https://doi.org:10.1080/17460441.2021.1973999
29 Hussain, A., Ali, F., Latiwesh, O. B. & Hussain, S. A comprehensive review of the manifestations and pathogenesis of Zika virus in neonates and adults. Cureus 10, e3290 (2018). https://doi.org:10.7759/cureus.3290
30 Hamel, R. et al. Biology of Zika virus infection in human skin cells. J Virol 89, 8880-8896 (2015). https://doi.org:10.1128/JVI.00354-15
31 Nowakowski, T. J. et al. Expression analysis highlights AXL as a candidate Zika virus entry receptor in neural stem cells. Cell Stem Cell 18, 591-596 (2016). https://doi.org:10.1016/j.stem.2016.03.012
32 Garcez, P. P. et al. Zika virus impairs growth in human neurospheres and brain organoids. Science 352, 816-818 (2016). https://doi.org:10.1126/science.aaf6116
33 Chan, J. F., Choi, G. K., Yip, C. C., Cheng, V. C. & Yuen, K. Y. Zika fever and congenital Zika syndrome: an unexpected emerging arboviral disease. J Infect 72, 507-524 (2016). https://doi.org:10.1016/j.jinf.2016.02.011
34 Lin, H. H., Yip, B. S., Huang, L. M. & Wu, S. C. Zika virus structural biology and progress in vaccine development. Biotechnol Adv 36, 47-53 (2018). https://doi.org:10.1016/j.biotechadv.2017.09.004
35 Cox, B. D., Stanton, R. A. & Schinazi, R. F. Predicting Zika virus structural biology: challenges and opportunities for intervention. Antivir Chem Chemother 24, 118-126 (2015). https://doi.org:10.1177/2040206616653873
36 Lei, J. et al. Crystal structure of Zika virus NS2B-NS3 protease in complex with a boronate inhibitor. Science 353, 503-505 (2016). https://doi.org:10.1126/science.aag2419
37 Shan, C. et al. A Zika virus envelope mutation preceding the 2015 epidemic enhances virulence and fitness for transmission. Proc Natl Acad Sci U S A 117, 20190-20197 (2020). https://doi.org:10.1073/pnas.2005722117
38 Gatherer, D. & Kohl, A. Zika virus: a previously slow pandemic spreads rapidly through the Americas. J Gen Virol 97, 269-273 (2016). https://doi.org:10.1099/jgv.0.000381
39 Marchette, N. J., Garcia, R. & Rudnick, A. Isolation of Zika virus from Aedes aegypti mosquitoes in Malaysia. Am J Trop Med Hyg 18, 411-415 (1969). https://doi.org:10.4269/ajtmh.1969.18.411
40 Freour, T. et al. Sexual transmission of Zika virus in an entirely asymptomatic couple returning from a Zika epidemic area, France, April 2016. Euro Surveill 21 (2016). https://doi.org:10.2807/1560-7917.ES.2016.21.23.30254
41 Gourinat, A. C., O'Connor, O., Calvez, E., Goarant, C. & Dupont-Rouzeyrol, M. Detection of Zika virus in urine. Emerg Infect Dis 21, 84-86 (2015). https://doi.org:10.3201/eid2101.140894
42 Musso, D. et al. Detection of Zika virus in saliva. J Clin Virol 68, 53-55 (2015). https://doi.org:10.1016/j.jcv.2015.04.021
43 Dupont-Rouzeyrol, M., Biron, A., O'Connor, O., Huguon, E. & Descloux, E. Infectious Zika viral particles in breastmilk. Lancet 387, 1051 (2016). https://doi.org:10.1016/S0140-6736(16)00624-3
44 van der Eijk, A. A. et al. Miscarriage associated with Zika virus infection. N Engl J Med 375, 1002-1004 (2016). https://doi.org:10.1056/NEJMc1605898
45 Mlakar, J. et al. Zika virus associated with microcephaly. N Engl J Med 374, 951-958 (2016). https://doi.org:10.1056/NEJMoa1600651
46 Bayer, A. et al. Type III interferons produced by human placental trophoblasts confer protection against Zika virus infection. Cell Host Microbe 19, 705-712 (2016). https://doi.org:10.1016/j.chom.2016.03.008
47 Miner, J. J. et al. Zika virus infection during pregnancy in mice causes placental damage and fetal demise. Cell 165, 1081-1091 (2016). https://doi.org:10.1016/j.cell.2016.05.008
48 Diallo, D. et al. Zika virus emergence in mosquitoes in southeastern Senegal, 2011. PLoS One 9, e109442 (2014). https://doi.org:10.1371/journal.pone.0109442
49 Ledermann, J. P. et al. Aedes hensilli as a potential vector of chikungunya and Zika viruses. PLoS Negl Trop Dis 8, e3188 (2014). https://doi.org:10.1371/journal.pntd.0003188
50 Dai, L. et al. Structures of the Zika virus envelope protein and its complex with a flavivirus broadly protective antibody. Cell Host Microbe 19, 696-704 (2016). https://doi.org:10.1016/j.chom.2016.04.013
51 Perera-Lecoin, M., Meertens, L., Carnec, X. & Amara, A. Flavivirus entry receptors: an update. Viruses 6, 69-88 (2013). https://doi.org:10.3390/v6010069
52 Heinz, F. X. & Stiasny, K. The antigenic structure of Zika virus and its relation to other flaviviruses: implications for infection and immunoprophylaxis. Microbiol Mol Biol Rev 81 (2017). https://doi.org:10.1128/MMBR.00055-16
53 Smit, J. M., Moesker, B., Rodenhuis-Zybert, I. & Wilschut, J. Flavivirus cell entry and membrane fusion. Viruses 3, 160-171 (2011). https://doi.org:10.3390/v3020160
54 Murray, C. L., Jones, C. T. & Rice, C. M. Architects of assembly: roles of Flaviviridae non-structural proteins in virion morphogenesis. Nat Rev Microbiol 6, 699-708 (2008). https://doi.org:10.1038/nrmicro1928
55 Cortese, M. et al. Ultrastructural characterization of Zika virus replication factories. Cell Rep 18, 2113-2123 (2017). https://doi.org:10.1016/j.celrep.2017.02.014
56 Prasad, V. M. et al. Structure of the immature Zika virus at 9 Å resolution. Nat Struct Mol Biol 24, 184-186 (2017). https://doi.org:10.1038/nsmb.3352
57 Pierson, T. C. & Diamond, M. S. Degrees of maturity: the complex structure and biology of flaviviruses. Curr Opin Virol 2, 168-175 (2012). https://doi.org:10.1016/j.coviro.2012.02.011
58 Sirohi, D. & Kuhn, R. J. Zika virus structure, maturation, and receptors. J Infect Dis 216, S935-S944 (2017). https://doi.org:10.1093/infdis/jix515
59 Oh, Y. et al. Zika virus directly infects peripheral neurons and induces cell death. Nat Neurosci 20, 1209-1212 (2017). https://doi.org:10.1038/nn.4612
60 Quicke, K. M. et al. Zika virus infects human placental macrophages. Cell Host Microbe 20, 83-90 (2016). https://doi.org:10.1016/j.chom.2016.05.015
61 Chavali, P. L. et al. Neurodevelopmental protein Musashi-1 interacts with the Zika genome and promotes viral replication. Science 357, 83-88 (2017). https://doi.org:10.1126/science.aam9243
62 Gould, E. A. & Solomon, T. Pathogenic flaviviruses. Lancet 371, 500-509 (2008). https://doi.org:10.1016/S0140-6736(08)60238-X
63 Balmaseda, A. et al. Comparison of four serological methods and two reverse transcription-PCR assays for diagnosis and surveillance of Zika virus infection. J Clin Microbiol 56 (2018). https://doi.org:10.1128/JCM.01785-17
64 Santiago, G. A. et al. Performance of the Trioplex real-time RT-PCR assay for detection of Zika, dengue, and chikungunya viruses. Nat Commun 9, 1391 (2018). https://doi.org:10.1038/s41467-018-03772-1
65 Theel, E. S. & Hata, D. J. Diagnostic testing for Zika virus: a postoutbreak update. J Clin Microbiol 56 (2018). https://doi.org:10.1128/JCM.01972-17
66 St George, K. et al. Zika virus testing considerations: lessons learned from the first 80 real-time reverse transcription-PCR-positive cases diagnosed in New York State. J Clin Microbiol 55, 535-544 (2017). https://doi.org:10.1128/JCM.01232-16
67 Staples, J. E. et al. Interim guidelines for the evaluation and testing of infants with possible congenital Zika virus infection - United States, 2016. MMWR Morb Mortal Wkly Rep 65, 63-67 (2016). https://doi.org:10.15585/mmwr.mm6503e3
68 Basile, A. J. et al. Performance of InBios ZIKV Detect 2.0 IgM Capture ELISA in two reference laboratories compared to the original ZIKV Detect IgM Capture ELISA. J Virol Methods 271, 113671 (2019). https://doi.org:10.1016/j.jviromet.2019.05.011
69 Silva, I. B. B. et al. Zika virus serological diagnosis: commercial tests and monoclonal antibodies as tools. J Venom Anim Toxins Incl Trop Dis 26, e20200019 (2020). https://doi.org:10.1590/1678-9199-jvatitd-2020-0019
70 Perez-Olmeda, M. et al. Evaluation of the LIAISON XL Zika Capture IgM II for the diagnosis of Zika virus infections. Viruses 12 (2020). https://doi.org:10.3390/v12010069
71 Rabe, I. B. et al. Interim guidance for interpretation of Zika virus antibody test results. MMWR Morb Mortal Wkly Rep 65, 543-546 (2016). https://doi.org:10.15585/mmwr.mm6521e1
72 Boeras, D. et al. Evaluation of Zika rapid tests as aids for clinical diagnosis and epidemic preparedness. eClinicalMedicine 49, 101478 (2022). https://doi.org:https://doi.org/10.1016/j.eclinm.2022.101478
73 Granger, D. & Theel, E. S. Evaluation of a rapid immunochromatographic assay and two enzyme-linked immunosorbent assays for detection of IgM-class antibodies to Zika virus. J Clin Microbiol 57 (2019). https://doi.org:10.1128/JCM.01413-18
74 Boeras, D. et al. Evaluation of Zika rapid tests as aids for clinical diagnosis and epidemic preparedness. eClinicalMedicine 49, 101478 (2022). https://doi.org:https://doi.org/10.1016/j.eclinm.2022.101478
75 Ethics Working Group on, Z. R. & Pregnancy. Ethics, pregnancy, and ZIKV vaccine research & development. Vaccine 35, 6819-6822 (2017). https://doi.org:10.1016/j.vaccine.2017.09.065
76 Richard, A. S. et al. Virion-associated phosphatidylethanolamine promotes TIM1-mediated infection by Ebola, dengue, and West Nile viruses. Proc Natl Acad Sci U S A 112, 14682-14687 (2015). https://doi.org:10.1073/pnas.1508095112
77 Rausch, K. et al. Screening bioactives reveals nanchangmycin as a broad spectrum antiviral active against Zika virus. Cell Rep 18, 804-815 (2017). https://doi.org:10.1016/j.celrep.2016.12.068
78 Modis, Y., Ogata, S., Clements, D. & Harrison, S. C. A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc Natl Acad Sci U S A 100, 6986-6991 (2003). https://doi.org:10.1073/pnas.0832193100
79 Kanai, R. et al. Crystal structure of West Nile virus envelope glycoprotein reveals viral surface epitopes. J Virol 80, 11000-11008 (2006). https://doi.org:10.1128/JVI.01735-06
80 Kampmann, T. et al. In silico screening of small molecule libraries using the dengue virus envelope E protein has identified compounds with antiviral activity against multiple flaviviruses. Antiviral Res 84, 234-241 (2009). https://doi.org:10.1016/j.antiviral.2009.09.007
81 Yu, Y. et al. A peptide-based viral inactivator inhibits Zika virus infection in pregnant mice and fetuses. Nat Commun 8, 15672 (2017). https://doi.org:10.1038/ncomms15672
82 Henss, L. et al. Suramin is a potent inhibitor of Chikungunya and Ebola virus cell entry. Virol J 13, 149 (2016). https://doi.org:10.1186/s12985-016-0607-2
83 Abrams, R. P. M. et al. Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors. Proc Natl Acad Sci U S A 117, 31365-31375 (2020). https://doi.org:10.1073/pnas.2005463117
84 Dussupt, V., Modjarrad, K. & Krebs, S. J. Landscape of monoclonal antibodies targeting Zika and dengue: therapeutic solutions and critical insights for vaccine development. Front Immunol 11, 621043 (2020). https://doi.org:10.3389/fimmu.2020.621043
85 Zhao, H. et al. Structural basis of Zika virus-specific antibody protection. Cell 166, 1016-1027 (2016). https://doi.org:10.1016/j.cell.2016.07.020
86 Phan, T. T. N. et al. A conserved set of mutations for stabilizing soluble envelope protein dimers from dengue and Zika viruses to advance the development of subunit vaccines. J Biol Chem 298, 102079 (2022). https://doi.org:10.1016/j.jbc.2022.102079
87 Sekaran, S. D. et al. Host immune response against DENV and ZIKV infections. Front Cell Infect Microbiol 12, 975222 (2022). https://doi.org:10.3389/fcimb.2022.975222
88 Beasley, D. W. et al. Envelope protein glycosylation status influences mouse neuroinvasion phenotype of genetic lineage 1 West Nile virus strains. J Virol 79, 8339-8347 (2005). https://doi.org:10.1128/JVI.79.13.8339-8347.2005
89 Gromowski, G. D., Firestone, C. Y. & Whitehead, S. S. Genetic determinants of Japanese encephalitis virus vaccine strain SA14-14-2 that govern attenuation of virulence in mice. J Virol 89, 6328-6337 (2015). https://doi.org:10.1128/JVI.00219-15
90 Arruda, L. V., Salomao, N. G., Alves, F. A. V. & Rabelo, K. The innate defense in the Zika-infected placenta. Pathogens 11 (2022). https://doi.org:10.3390/pathogens11121410
91 Pokidysheva, E. et al. Cryo-EM reconstruction of dengue virus in complex with the carbohydrate recognition domain of DC-SIGN. Cell 124, 485-493 (2006). https://doi.org:10.1016/j.cell.2005.11.042
92 Carbaugh, D. L. & Lazear, H. M. Flavivirus envelope protein glycosylation: impacts on viral infection and pathogenesis. J Virol 94 (2020). https://doi.org:10.1128/JVI.00104-20
93 Winkler, G., Heinz, F. X. & Kunz, C. Studies on the glycosylation of flavivirus E proteins and the role of carbohydrate in antigenic structure. Virology 159, 237-243 (1987). https://doi.org:10.1016/0042-6822(87)90460-0
94 Itoh, Y. et al. Protective efficacy of passive immunization with monoclonal antibodies in animal models of H5N1 highly pathogenic avian influenza virus infection. PLoS Pathog 10, e1004192 (2014). https://doi.org:10.1371/journal.ppat.1004192
95 Sparrow, E. et al. WHO preferred product characteristics for monoclonal antibodies for passive immunization against respiratory syncytial virus (RSV) disease in infants - Key considerations for global use. Vaccine 40, 3506-3510 (2022). https://doi.org:10.1016/j.vaccine.2022.02.040
96 Qu, P. et al. Insect cell-produced recombinant protein subunit vaccines protect against Zika virus infection. Antiviral Res 154, 97-103 (2018). https://doi.org:10.1016/j.antiviral.2018.04.010
97 Zhang, W. et al. Yeast-produced subunit protein vaccine elicits broadly neutralizing antibodies that protect mice against Zika virus lethal infection. Antiviral Res 170, 104578 (2019). https://doi.org:10.1016/j.antiviral.2019.104578
98 Shin, M. et al. Vaccination with a Zika virus envelope domain III protein induces neutralizing antibodies and partial protection against Asian genotype in immunocompetent mice. Trop Med Health 50, 91 (2022). https://doi.org:10.1186/s41182-022-00485-6
99 Utset, H. A., Guthmiller, J. J. & Wilson, P. C. Bridging the B cell gap: novel technologies to study antigen-specific human B cell responses. Vaccines (Basel) 9 (2021). https://doi.org:10.3390/vaccines9070711
100 Lee, C.-H. et al. An engineered human Fc domain that behaves like a pH-toggle switch for ultra-long circulation persistence. Nature Communications 10, 5031 (2019). https://doi.org:10.1038/s41467-019-13108-2
101 Sievers, S. A., Scharf, L., West, A. P., Jr. & Bjorkman, P. J. Antibody engineering for increased potency, breadth and half-life. Curr Opin HIV AIDS 10, 151-159 (2015). https://doi.org:10.1097/coh.0000000000000148
102 Shim, B. S. et al. Zika virus-immune plasmas from symptomatic and asymptomatic individuals enhance Zika pathogenesis in adult and pregnant mice. mBio 10 (2019). https://doi.org:10.1128/mBio.00758-19
103 Camargos, V. N. et al. In-depth characterization of congenital Zika syndrome in immunocompetent mice: antibody-dependent enhancement and an antiviral peptide therapy. EBioMedicine 44, 516-529 (2019). https://doi.org:10.1016/j.ebiom.2019.05.014
104 Fernandez, E. et al. Human antibodies to the dengue virus E-dimer epitope have therapeutic activity against Zika virus infection. Nat Immunol 18, 1261-1269 (2017). https://doi.org:10.1038/ni.3849
105 Zhang, S. et al. Neutralization mechanism of a highly potent antibody against Zika virus. Nat Commun 7, 13679 (2016). https://doi.org:10.1038/ncomms13679
106 Deng, Y. Q. et al. A broadly flavivirus cross-neutralizing monoclonal antibody that recognizes a novel epitope within the fusion loop of E protein. PLoS One 6, e16059 (2011). https://doi.org:10.1371/journal.pone.0016059
107 Dussupt, V. et al. Potent Zika and dengue cross-neutralizing antibodies induced by Zika vaccination in a dengue-experienced donor. Nat Med 26, 228-235 (2020). https://doi.org:10.1038/s41591-019-0746-2
108 Hasan, S. S. et al. A human antibody against Zika virus crosslinks the E protein to prevent infection. Nat Commun 8, 14722 (2017). https://doi.org:10.1038/ncomms14722
109 Shrestha, L. B., Tedla, N. & Bull, R. A. Broadly-neutralizing antibodies against emerging SARS-CoV-2 variants. Front Immunol 12, 752003 (2021). https://doi.org:10.3389/fimmu.2021.752003
110 Rabaan, A. A. et al. SARS-CoV-2, SARS-CoV, and MERS-COV: a comparative overview. Infez Med 28, 174-184 (2020).
111 Brian, D. A. & Baric, R. S. Coronavirus genome structure and replication. Curr Top Microbiol Immunol 287, 1-30 (2005). https://doi.org:10.1007/3-540-26765-4_1
112 Brix, T. H. & Hegedus, L. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection and thyroid disease. An update. Curr Opin Endocrinol Diabetes Obes 28, 525-532 (2021). https://doi.org:10.1097/MED.0000000000000654
113 Paim, F. C. et al. Epidemiology of deltacoronaviruses (delta-CoV) and gammacoronaviruses (gamma-CoV) in wild birds in the United States. Viruses 11 (2019). https://doi.org:10.3390/v11100897
114 Uddin, S. M. I. et al. Burden and risk factors for coronavirus infections in infants in rural Nepal. Clin Infect Dis 67, 1507-1514 (2018). https://doi.org:10.1093/cid/ciy317
115 Barnes, C. O. et al. Structures of human antibodies bound to SARS-CoV-2 spike reveal common epitopes and recurrent features of antibodies. Cell 182, 828-842 e816 (2020). https://doi.org:10.1016/j.cell.2020.06.025
116 Mesel-Lemoine, M. et al. A human coronavirus responsible for the common cold massively kills dendritic cells but not monocytes. J Virol 86, 7577-7587 (2012). https://doi.org:10.1128/JVI.00269-12
117 Wrapp, D. et al. Cryo-EM Structure of the 2019-nCoV spike in the prefusion conformation. bioRxiv (2020). https://doi.org:10.1101/2020.02.11.944462
118 Xia, X. Domains and functions of spike protein in SARS-CoV-2 in the context of vaccine design. Viruses 13 (2021). https://doi.org:10.3390/v13010109
119 Hikmet, F. et al. The protein expression profile of ACE2 in human tissues. Mol Syst Biol 16, e9610 (2020). https://doi.org:10.15252/msb.20209610
120 Geng, Y. & Wang, Y. Stability and transmissibility of SARS-CoV-2 in the environment. J Med Virol 95, e28103 (2023). https://doi.org:10.1002/jmv.28103
121 Yang, W. T. et al. SARS-CoV-2 E484K mutation narrative review: epidemiology, immune escape, clinical implications, and future considerations. Infect Drug Resist 15, 373-385 (2022). https://doi.org:10.2147/IDR.S344099
122 Choi, J. Y. & Smith, D. M. SARS-CoV-2 variants of concern. Yonsei Med J 62, 961-968 (2021). https://doi.org:10.3349/ymj.2021.62.11.961
123 Groves, D. C., Rowland-Jones, S. L. & Angyal, A. The D614G mutations in the SARS-CoV-2 spike protein: implications for viral infectivity, disease severity and vaccine design. Biochem Biophys Res Commun 538, 104-107 (2021). https://doi.org:10.1016/j.bbrc.2020.10.109
124 Korber, B. et al. Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell 182, 812-827.e819 (2020). https://doi.org:10.1016/j.cell.2020.06.043
125 Earnest, R. et al. Comparative transmissibility of SARS-CoV-2 variants Delta and Alpha in New England, USA. medRxiv (2021). https://doi.org:10.1101/2021.10.06.21264641
126 Chaillon, A. & Smith, D. M. Phylogenetic analyses of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) B.1.1.7 lineage suggest a single origin followed by multiple exportation events versus convergent evolution. Clin Infect Dis 73, 2314-2317 (2021). https://doi.org:10.1093/cid/ciab265
127 Davies, N. G. et al. Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science 372 (2021). https://doi.org:10.1126/science.abg3055
128 Peacock, T. P. et al. The furin cleavage site in the SARS-CoV-2 spike protein is required for transmission in ferrets. Nature Microbiology 6, 899-909 (2021). https://doi.org:10.1038/s41564-021-00908-w
129 Meng, B. et al. Recurrent emergence of SARS-CoV-2 spike deletion H69/V70 and its role in the Alpha variant B.1.1.7. Cell Rep 35, 109292 (2021). https://doi.org:10.1016/j.celrep.2021.109292
130 Liu, Y. et al. The N501Y spike substitution enhances SARS-CoV-2 infection and transmission. Nature 602, 294-299 (2022). https://doi.org:10.1038/s41586-021-04245-0
131 Collier, D. A. et al. Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies. Nature 593, 136-141 (2021). https://doi.org:10.1038/s41586-021-03412-7
132 Wang, P. et al. Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature 593, 130-135 (2021). https://doi.org:10.1038/s41586-021-03398-2
133 Chen, R. E. et al. Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies. Nat Med 27, 717-726 (2021). https://doi.org:10.1038/s41591-021-01294-w
134 Starr, T. N. et al. Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 binding. Cell 182, 1295-1310.e1220 (2020). https://doi.org:10.1016/j.cell.2020.08.012
135 Ramanathan, M., Ferguson, I. D., Miao, W. & Khavari, P. A. SARS-CoV-2 B.1.1.7 and B.1.351 spike variants bind human ACE2 with increased affinity. Lancet Infect Dis 21, 1070 (2021). https://doi.org:10.1016/S1473-3099(21)00262-0
136 Khan, A. et al. Higher infectivity of the SARS-CoV-2 new variants is associated with K417N/T, E484K, and N501Y mutants: an insight from structural data. J Cell Physiol 236, 7045-7057 (2021). https://doi.org:10.1002/jcp.30367
137 Jangra, S. et al. SARS-CoV-2 spike E484K mutation reduces antibody neutralisation. Lancet Microbe 2, e283-e284 (2021). https://doi.org:10.1016/S2666-5247(21)00068-9
138 Wibmer, C. K. et al. SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma. Nat Med 27, 622-625 (2021). https://doi.org:10.1038/s41591-021-01285-x
139 Wang, Z. et al. mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants. Nature 592, 616-622 (2021). https://doi.org:10.1038/s41586-021-03324-6
140 Xie, X. et al. Neutralization of SARS-CoV-2 spike 69/70 deletion, E484K and N501Y variants by BNT162b2 vaccine-elicited sera. Nat Med 27, 620-621 (2021). https://doi.org:10.1038/s41591-021-01270-4
141 Aleem A, Akbar Samad AB, Vaqar S. Emerging variants of SARS-CoV-2 and novel therapeutics against coronavirus (COVID-19). StatPearls. (2023). https://www.ncbi.nlm.nih.gov/books/NBK570580/
142 Funk, T. et al. Characteristics of SARS-CoV-2 variants of concern B.1.1.7, B.1.351 or P.1: data from seven EU/EEA countries, weeks 38/2020 to 10/2021. Euro Surveill 26 (2021). https://doi.org:10.2807/1560-7917.ES.2021.26.16.2100348
143 Wang, P. et al. Increased resistance of SARS-CoV-2 variant P.1 to antibody neutralization. Cell Host Microbe 29, 747-751 e744 (2021). https://doi.org:10.1016/j.chom.2021.04.007
144 Sabino, E. C. et al. Resurgence of COVID-19 in Manaus, Brazil, despite high seroprevalence. Lancet 397, 452-455 (2021). https://doi.org:10.1016/S0140-6736(21)00183-5
145 Mohammadi, M., Shayestehpour, M. & Mirzaei, H. The impact of spike mutated variants of SARS-CoV2 [Alpha, Beta, Gamma, Delta, and Lambda] on the efficacy of subunit recombinant vaccines. Braz J Infect Dis 25, 101606 (2021). https://doi.org:10.1016/j.bjid.2021.101606
146 Deng, X. et al. Transmission, infectivity, and neutralization of a spike L452R SARS-CoV-2 variant. Cell 184, 3426-3437 e3428 (2021). https://doi.org:10.1016/j.cell.2021.04.025
147 Allen, H. et al. Household transmission of COVID-19 cases associated with SARS-CoV-2 delta variant (B.1.617.2): national case-control study. Lancet Reg Health Eur 12, 100252 (2022). https://doi.org:10.1016/j.lanepe.2021.100252
148 Ong, S. W. X. et al. Clinical and virological features of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern: a retrospective cohort study comparing B.1.1.7 (Alpha), B.1.351 (Beta), and B.1.617.2 (Delta). Clin Infect Dis 75, e1128-e1136 (2022). https://doi.org:10.1093/cid/ciab721
149 Planas, D. et al. Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. Nature 596, 276-280 (2021). https://doi.org:10.1038/s41586-021-03777-9
150 Mlcochova, P. et al. SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion. Nature 599, 114-119 (2021). https://doi.org:10.1038/s41586-021-03944-y
151 Sheikh, A., McMenamin, J., Taylor, B. & Robertson, C. SARS-CoV-2 Delta VOC in Scotland: demographics, risk of hospital admission, and vaccine effectiveness. Lancet 397, 2461-2462 (2021). https://doi.org:10.1016/s0140-6736(21)01358-1
152 McCallum, M. et al. SARS-CoV-2 immune evasion by the B.1.427/B.1.429 variant of concern. Science 373, 648-654 (2021). https://doi.org:10.1126/science.abi7994
153 Mohsin, M. & Mahmud, S. Omicron SARS-CoV-2 variant of concern: a review on its transmissibility, immune evasion, reinfection, and severity. Medicine (Baltimore) 101, e29165 (2022). https://doi.org:10.1097/MD.0000000000029165
154 Shishir, T. A., Jannat, T. & Naser, I. B. An in-silico study of the mutation-associated effects on the spike protein of SARS-CoV-2, Omicron variant. PLoS One 17, e0266844 (2022). https://doi.org:10.1371/journal.pone.0266844
155 Yu, J. et al. Neutralization of the SARS-CoV-2 Omicron BA.1 and BA.2 variants. N Engl J Med 386, 1579-1580 (2022). https://doi.org:10.1056/NEJMc2201849
156 Yamasoba, D. et al. Virological characteristics of the SARS-CoV-2 Omicron XBB.1.16 variant. bioRxiv, 2023.2004.2006.535883 (2023). https://doi.org:10.1101/2023.04.06.535883
157 Akinosoglou, K., Schinas, G. & Gogos, C. Oral antiviral treatment for COVID-19: a comprehensive review on nirmatrelvir/ritonavir. viruses 14 (2022). https://doi.org:10.3390/v14112540
158 Wong, C. K. H. et al. Real-world effectiveness of early molnupiravir or nirmatrelvir-ritonavir in hospitalised patients with COVID-19 without supplemental oxygen requirement on admission during Hong Kong's Omicron BA.2 wave: a retrospective cohort study. Lancet Infect Dis 22, 1681-1693 (2022). https://doi.org:10.1016/S1473-3099(22)00507-2
159 Piepenbrink, M. S. et al. Potent universal beta-coronavirus therapeutic activity mediated by direct respiratory administration of a spike S2 domain-specific human neutralizing monoclonal antibody. PLoS Pathog 18, e1010691 (2022). https://doi.org:10.1371/journal.ppat.1010691
160 Dickey, T. H. et al. Design of the SARS-CoV-2 RBD vaccine antigen improves neutralizing antibody response. Sci Adv 8, eabq8276 (2022). https://doi.org:10.1126/sciadv.abq8276
161 McCreary, E. K. et al. Evaluation of bebtelovimab for treatment of COVID-19 during the SARS-CoV-2 Omicron variant era. Open Forum Infect Dis 9, ofac517 (2022). https://doi.org:10.1093/ofid/ofac517
162 Keam, S. J. Tixagevimab + Cilgavimab: first approval. Drugs 82, 1001-1010 (2022). https://doi.org:10.1007/s40265-022-01731-1
163 Deeks, E. D. Casirivimab/Imdevimab: first approval. Drugs 81, 2047-2055 (2021). https://doi.org:10.1007/s40265-021-01620-z
164 Dougan, M. et al. Bamlanivimab plus Etesevimab in mild or moderate COVID-19. N Engl J Med 385, 1382-1392 (2021). https://doi.org:10.1056/NEJMoa2102685
165 Flahault, A. et al. Breakthrough Omicron COVID-19 infections in patients receiving the REGEN-CoV antibody combination. Kidney Int 101, 824-825 (2022). https://doi.org:10.1016/j.kint.2022.01.016
166 Heo, Y. A. Sotrovimab: first approval. Drugs 82, 477-484 (2022). https://doi.org:10.1007/s40265-022-01690-7
167 Gupta, A. et al. Early treatment for COVID-19 with SARS-CoV-2 neutralizing antibody sotrovimab. N Engl J Med 385, 1941-1950 (2021). https://doi.org:10.1056/NEJMoa2107934
168 Takashita, E. et al. Efficacy of antibodies and antiviral drugs against Omicron BA.2.12.1, BA.4, and BA.5 subvariants. N Engl J Med 387, 468-470 (2022). https://doi.org:10.1056/NEJMc2207519
169 Westendorf, K. et al. LY-CoV1404 (bebtelovimab) potently neutralizes SARS-CoV-2 variants. Cell Rep 39, 110812 (2022). https://doi.org:10.1016/j.celrep.2022.110812
170 Planas, D. et al. Resistance of Omicron subvariants BA.2.75.2, BA.4.6, and BQ.1.1 to neutralizing antibodies. Nat Commun 14, 824 (2023). https://doi.org:10.1038/s41467-023-36561-6
171 Almehdi, A. M. et al. SARS-CoV-2 spike protein: pathogenesis, vaccines, and potential therapies. Infection 49, 855-876 (2021). https://doi.org:10.1007/s15010-021-01677-8
172 Zhong, X. et al. B-cell responses in patients who have recovered from severe acute respiratory syndrome target a dominant site in the S2 domain of the surface spike glycoprotein. J Virol 79, 3401-3408 (2005). https://doi.org:10.1128/JVI.79.6.3401-3408.2005
173 Zhang, H. et al. Identification of an antigenic determinant on the S2 domain of the severe acute respiratory syndrome coronavirus spike glycoprotein capable of inducing neutralizing antibodies. J Virol 78, 6938-6945 (2004). https://doi.org:10.1128/JVI.78.13.6938-6945.2004
174 Wang, M. Y. et al. SARS-CoV-2: Structure, biology, and structure-based therapeutics development. Front Cell Infect Microbiol 10, 587269 (2020). https://doi.org:10.3389/fcimb.2020.587269
175 Elshabrawy, H. A., Coughlin, M. M., Baker, S. C. & Prabhakar, B. S. Human monoclonal antibodies against highly conserved HR1 and HR2 domains of the SARS-CoV spike protein are more broadly neutralizing. PLoS One 7, e50366 (2012). https://doi.org:10.1371/journal.pone.0050366
176 Keng, C. T. et al. Amino acids 1055 to 1192 in the S2 region of severe acute respiratory syndrome coronavirus S protein induce neutralizing antibodies: implications for the development of vaccines and antiviral agents. J Virol 79, 3289-3296 (2005). https://doi.org:10.1128/JVI.79.6.3289-3296.2005
177 Lip, K. M. et al. Monoclonal antibodies targeting the HR2 domain and the region immediately upstream of the HR2 of the S protein neutralize in vitro infection of severe acute respiratory syndrome coronavirus. J Virol 80, 941-950 (2006). https://doi.org:10.1128/JVI.80.2.941-950.2006
178 Zhu, Y. et al. Cross-reactive neutralization of SARS-CoV-2 by serum antibodies from recovered SARS patients and immunized animals. Sci Adv 6 (2020). https://doi.org:10.1126/sciadv.abc9999
179 Maeda, D. et al. Killed whole-genome reduced-bacteria surface-expressed coronavirus fusion peptide vaccines protect against disease in a porcine model. Proc Natl Acad Sci U S A 118 (2021). https://doi.org:10.1073/pnas.2025622118
180 Sun, X. et al. Neutralization mechanism of a human antibody with pan-coronavirus reactivity including SARS-CoV-2. Nat Microbiol 7, 1063-1074 (2022). https://doi.org:10.1038/s41564-022-01155-3
181 Dacon, C. et al. Broadly neutralizing antibodies target the coronavirus fusion peptide. Science 377, 728-735 (2022). https://doi.org:10.1126/science.abq3773
182 Low, J. S. et al. ACE2-binding exposes the SARS-CoV-2 fusion peptide to broadly neutralizing coronavirus antibodies. Science 377, 735-742 (2022). https://doi.org:10.1126/science.abq2679
183 Broer, R., Boson, B., Spaan, W., Cosset, F. L. & Corver, J. Important role for the transmembrane domain of severe acute respiratory syndrome coronavirus spike protein during entry. J Virol 80, 1302-1310 (2006). https://doi.org:10.1128/JVI.80.3.1302-1310.2006
184 Huang, Y., Yang, C., Xu, X. F., Xu, W. & Liu, S. W. Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol Sin 41, 1141-1149 (2020). https://doi.org:10.1038/s41401-020-0485-4
185 Bosch, B. J. et al. Severe acute respiratory syndrome coronavirus (SARS-CoV) infection inhibition using spike protein heptad repeat-derived peptides. Proc Natl Acad Sci U S A 101, 8455-8460 (2004). https://doi.org:10.1073/pnas.0400576101
186 Xia, S. et al. A pan-coronavirus fusion inhibitor targeting the HR1 domain of human coronavirus spike. Sci Adv 5, eaav4580 (2019). https://doi.org:10.1126/sciadv.aav4580
187 Xia, S. et al. Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res 30, 343-355 (2020). https://doi.org:10.1038/s41422-020-0305-x
188 Zhu, Y., Yu, D., Yan, H., Chong, H. & He, Y. Design of potent membrane fusion inhibitors against SARS-CoV-2, an emerging coronavirus with high fusogenic activity. J Virol 94 (2020). https://doi.org:10.1128/JVI.00635-20
189 Vishwakarma, P. et al. Severe acute respiratory syndrome coronavirus 2 spike protein based novel epitopes induce potent immune responses in vivo and inhibit viral replication in vitro. Front Immunol 12, 613045 (2021). https://doi.org:10.3389/fimmu.2021.613045
190 Wu, W. L. et al. Monoclonal antibody targeting the conserved region of the SARS-CoV-2 spike protein to overcome viral variants. JCI Insight 7 (2022). https://doi.org:10.1172/jci.insight.157597
191 Pinto, D. et al. Broad betacoronavirus neutralization by a stem helix-specific human antibody. Science 373, 1109-1116 (2021). https://doi.org:10.1126/science.abj3321
192 Zhou, P. et al. Broadly neutralizing anti-S2 antibodies protect against all three human betacoronaviruses that cause severe disease. bioRxiv (2022). https://doi.org:10.1101/2022.03.04.479488
193 Zhou, P. et al. A human antibody reveals a conserved site on beta-coronavirus spike proteins and confers protection against SARS-CoV-2 infection. Sci Transl Med 14, eabi9215 (2022). https://doi.org:10.1126/scitranslmed.abi9215
194 Deshpande, A. et al. Structure and epitope of a neutralizing monoclonal antibody that targets the stem helix of β coronaviruses. bioRxiv, 2022.2009.2014.507947 (2022). https://doi.org:10.1101/2022.09.14.507947
195 Shi, W. et al. Vaccine-elicited murine antibody WS6 neutralizes diverse beta-coronaviruses by recognizing a helical stem supersite of vulnerability. Structure 30, 1233-1244 (2022). https://doi.org:10.1016/j.str.2022.06.004
196 Sauer, M. M. et al. Structural basis for broad coronavirus neutralization. Nat Struct Mol Biol 28, 478-486 (2021). https://doi.org:10.1038/s41594-021-00596-4
197 Hsieh, C. L. et al. Stabilized coronavirus spike stem elicits a broadly protective antibody. Cell Rep 37, 109929 (2021). https://doi.org:10.1016/j.celrep.2021.109929
198 Hurlburt, N. K. et al. Structural definition of a pan-sarbecovirus neutralizing epitope on the spike S2 subunit. Commun Biol 5, 342 (2022). https://doi.org:10.1038/s42003-022-03262-7
199 Li, W. et al. Structural basis and mode of action for two broadly neutralizing antibodies against SARS-CoV-2 emerging variants of concern. Cell Rep 38, 110210 (2022). https://doi.org:10.1016/j.celrep.2021.110210
200 Ullah, I. et al. Live imaging of SARS-CoV-2 infection in mice reveals that neutralizing antibodies require Fc function for optimal efficacy. Immunity 54, 2143-2158 (2021). https://doi.org:10.1016/j.immuni.2021.08.015
201 U. S. Food and Drug Administration. Pfizer-BioNTech COVID-19 vaccines: Pfizer-BioNTech COVID-19 vaccine, bivalent now authorized for all doses. (2023). https://www.fda.gov/vaccines-blood-biologics/coronavirus-covid-19-cber-regulated-biologics/pfizer-biontech-covid-19-vaccines
202 U. S. Food and Drug Administration. Moderna COVID-19 vaccines: Moderna COVID-19 vaccine, bivalent now authorized for all doses. (2023). https://www.fda.gov/vaccines-blood-biologics/coronavirus-covid-19-cber-regulated-biologics/moderna-covid-19-vaccines
203 U. S. Food and Drug Administration. Janssen COVID-19 vaccine. (2023). https://www.fda.gov/vaccines-blood-biologics/coronavirus-covid-19-cber-regulated-biologics/janssen-covid-19-vaccine
204 U. S. Food and Drug Administration. Novavax COVID-19 vaccine, adjuvanted. (2023). https://www.fda.gov/vaccines-blood-biologics/coronavirus-covid-19-cber-regulated-biologics/novavax-covid-19-vaccine-adjuvanted
205 Chalkias, S. et al. A bivalent Omicron-containing booster vaccine against COVID-19. N Engl J Med 387, 1279-1291 (2022). https://doi.org:10.1056/NEJMoa2208343
206 Yamaguchi, Y. et al. Persistence of SARS-CoV-2 neutralizing antibodies and anti-Omicron IgG induced by BNT162b2 mRNA vaccine in patients with autoimmune inflammatory rheumatic disease: an explanatory study in Japan. Lancet Reg Health West Pac 32, 100661 (2023). https://doi.org:10.1016/j.lanwpc.2022.100661
207 Muik, A. et al. Neutralization of SARS-CoV-2 Omicron by BNT162b2 mRNA vaccine-elicited human sera. Science 375, 678-680 (2022). https://doi.org:10.1126/science.abn7591
208 Wang, Q. et al. Antibody response to Omicron BA.4-BA.5 bivalent booster. N Engl J Med 388, 567-569 (2023). https://doi.org:10.1056/NEJMc2213907
209 Teo, S. P. Review of COVID-19 mRNA vaccines: BNT162b2 and mRNA-1273. J Pharm Pract 35, 947-951 (2022). https://doi.org:10.1177/08971900211009650
210 Iavarone, C., O'Hagan D, T., Yu, D., Delahaye, N. F. & Ulmer, J. B. Mechanism of action of mRNA-based vaccines. Expert Rev Vaccines 16, 871-881 (2017). https://doi.org:10.1080/14760584.2017.1355245
211 Schlake, T., Thess, A., Fotin-Mleczek, M. & Kallen, K. J. Developing mRNA-vaccine technologies. RNA Biol 9, 1319-1330 (2012). https://doi.org:10.4161/rna.22269
212 Underwood, E. et al. Safety, efficacy, and immunogenicity of the NVX-CoV2373 vaccine. Expert Rev Vaccines (2023). https://doi.org:10.1080/14760584.2023.2218913
213 Tan, M. & Jiang, X. Recent advancements in combination subunit vaccine development. Hum Vaccin Immunother 13, 180-185 (2017). https://doi.org:10.1080/21645515.2016.1229719
214 Kapsenberg, M. L. Dendritic-cell control of pathogen-driven T-cell polarization. Nat Rev Immunol 3, 984-993 (2003). https://doi.org:10.1038/nri1246
215 Hos, B. J., Tondini, E., van Kasteren, S. I. & Ossendorp, F. Approaches to improve chemically defined synthetic peptide vaccines. Front Immunol 9, 884 (2018). https://doi.org:10.3389/fimmu.2018.00884
216 Garcia, A. & De Sanctis, J. B. An overview of adjuvant formulations and delivery systems. APMIS 122, 257-267 (2014). https://doi.org:10.1111/apm.12143
217 Smith, K. M. et al. Th1 and Th2 CD4+ T cells provide help for B cell clonal expansion and antibody synthesis in a similar manner in vivo. J Immunol 165, 3136-3144 (2000). https://doi.org:10.4049/jimmunol.165.6.3136
218 O'Garra, A. & Murphy, K. Role of cytokines in determining T-lymphocyte function. Curr Opin Immunol 6, 458-466 (1994). https://doi.org:10.1016/0952-7915(94)90128-7
219 Chaplin, D. D. Overview of the immune response. J Allergy Clin Immunol 125, S3-23 (2010). https://doi.org:10.1016/j.jaci.2009.12.980
220 Crotty, S. Follicular helper CD4 T cells (TFH). Annu Rev Immunol 29, 621-663 (2011). https://doi.org:10.1146/annurev-immunol-031210-101400
221 Li, C. J. et al. Neutralizing monoclonal antibodies inhibit SARS-CoV-2 infection through blocking membrane fusion. Microbiol Spectr 10, e0181421 (2022). https://doi.org:10.1128/spectrum.01814-21
222 Hsiao, C. C. et al. Simultaneous detection of antibody responses to multiple SARS-CoV-2 antigens by a Western blot serological assay. Appl Microbiol Biotechnol 106, 8183-8194 (2022). https://doi.org:10.1007/s00253-022-12288-0
223 Chiang, Y. W. et al. Development of mouse monoclonal antibody for detecting hemagglutinin of avian influenza A(H7N9) virus and preventing virus infection. Appl Microbiol Biotechnol 105, 3235-3248 (2021). https://doi.org:10.1007/s00253-021-11253-7
224 Wingfield, P. T., Palmer, I. & Liang, S. M. Folding and purification of insoluble (inclusion body) proteins from Escherichia coli. Curr Protoc Protein Sci 78, 6 5 1-6 5 30 (2014). https://doi.org:10.1002/0471140864.ps0605s78
225 Li, C. J., Huang, P. H., Chen, H. W. & Chang, S. C. Development and characterization of mouse monoclonal antibodies targeting to distinct epitopes of Zika virus envelope protein for specific detection of Zika virus. Appl Microbiol Biotechnol 105, 4663-4673 (2021). https://doi.org:10.1007/s00253-021-11364-1
226 Rispens, T. et al. Nanomolar to sub-picomolar affinity measurements of antibody-antigen interactions and protein multimerizations: fluorescence-assisted high-performance liquid chromatography. Anal Biochem 437, 118-122 (2013). https://doi.org:10.1016/j.ab.2013.02.027
227 Luconi, M. et al. Identification and characterization of functional nongenomic progesterone receptors on human sperm membrane. J Clin Endocrinol Metab 83, 877-885 (1998). https://doi.org:10.1210/jcem.83.3.4672
228 Wang, L. et al. Structural basis for neutralization and protection by a Zika virus-specific human antibody. Cell Rep 26, 3360-3368 e3365 (2019). https://doi.org:10.1016/j.celrep.2019.02.062
229 Liang, K. H. et al. Antibody cocktail effective against variants of SARS-CoV-2. J Biomed Sci 28, 80 (2021). https://doi.org:10.1186/s12929-021-00777-9
230 Su, M. et al. Expression and purification of recombinant ATF-mellitin, a new type fusion protein targeting ovarian cancer cells, in P. pastoris. Oncol Rep 35, 1179-1185 (2016). https://doi.org:10.3892/or.2015.4448
231 Luckow, V. A. & Summers, M. D. Trends in the development of baculovirus expression vectors. Nat Biotechnol 6, 47-55 (1988). https://doi.org:10.1038/nbt0188-47
232 Klenk, H. D. Post-translational modifications in insect cells. Cytotechnology 20, 139-144 (1996). https://doi.org:10.1007/BF00350394
233 Ailor, E., Pathmanathan, J., Jongbloed, J. D. & Betenbaugh, M. J. A bacterial signal peptidase enhances processing of a recombinant single chain antibody fragment in insect cells. Biochem Biophys Res Commun 255, 444-450 (1999). https://doi.org:10.1006/bbrc.1999.0233
234 Olczak, M. & Olczak, T. Comparison of different signal peptides for protein secretion in nonlytic insect cell system. Anal Biochem 359, 45-53 (2006). https://doi.org:10.1016/j.ab.2006.09.003
235 Liddell, E. in The Immunoassay Handbook (Fourth Edition) (ed David Wild) 245-265 (Elsevier, 2013).
236 Micoli, F., Adamo, R. & Costantino, P. Protein carriers for glycoconjugate vaccines: history, selection criteria, characterization and new trends. Molecules 23 (2018). https://doi.org:10.3390/molecules23061451
237 Zhou, D. et al. Evidence of escape of SARS-CoV-2 variant B.1.351 from natural and vaccine-induced sera. Cell 184, 2348-2361 e2346 (2021). https://doi.org:10.1016/j.cell.2021.02.037
238 Davies, N. G. et al. Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science 372 (2021). https://doi.org:10.1126/science.abg3055
239 Di Caro, A. et al. Severe acute respiratory syndrome coronavirus 2 escape mutants and protective immunity from natural infections or immunizations. Clin Microbiol Infect 27, 823-826 (2021). https://doi.org:10.1016/j.cmi.2021.03.011
240 Sui, J. et al. Potent neutralization of severe acute respiratory syndrome (SARS) coronavirus by a human mAb to S1 protein that blocks receptor association. Proc Natl Acad Sci U S A 101, 2536-2541 (2004). https://doi.org:10.1073/pnas.0307140101
241 Chou, T. H. et al. Epitope mapping and biological function analysis of antibodies produced by immunization of mice with an inactivated Chinese isolate of severe acute respiratory syndrome-associated coronavirus (SARS-CoV). Virology 334, 134-143 (2005). https://doi.org:10.1016/j.virol.2005.01.035
242 Kubo, H., Takase-Yoden, S. & Taguchi, F. Neutralization and fusion inhibition activities of monoclonal antibodies specific for the S1 subunit of the spike protein of neurovirulent murine coronavirus JHMV c1-2 variant. J Gen Virol 74 ( Pt 7), 1421-1425 (1993). https://doi.org:10.1099/0022-1317-74-7-1421
243 Taguchi, F. & Shimazaki, Y. K. Functional analysis of an epitope in the S2 subunit of the murine coronavirus spike protein: involvement in fusion activity. J Gen Virol 81, 2867-2871 (2000). https://doi.org:10.1099/0022-1317-81-12-2867
244 Yang, Y. & Du, L. Neutralizing antibodies and their cocktails against SARS-CoV-2 Omicron and other circulating variants. Cell Mol Immunol 19, 962-964 (2022). https://doi.org:10.1038/s41423-022-00890-1
245 Honegger, A. Engineering antibodies for stability and efficient folding. Handb Exp Pharmacol, 47-68 (2008). https://doi.org:10.1007/978-3-540-73259-4_3
246 Lu, R. M. et al. Development of therapeutic antibodies for the treatment of diseases. J Biomed Sci 27, 1 (2020). https://doi.org:10.1186/s12929-019-0592-z
247 Ministro, J., Manuel, A. M. & Goncalves, J. Therapeutic antibody engineering and selection strategies. Adv Biochem Eng Biotechnol 171, 55-86 (2020). https://doi.org:10.1007/10_2019_116
248 Diaz, A. et al. Immunogenicity and safety of a RBD vaccine against SARS-CoV-2 in a murine model. Travel Med Infect Dis 49, 102427 (2022). https://doi.org:10.1016/j.tmaid.2022.102427
249 Amanat, F. et al. The plasmablast response to SARS-CoV-2 mRNA vaccination is dominated by non-neutralizing antibodies and targets both the NTD and the RBD. medRxiv (2021). https://doi.org:10.1101/2021.03.07.21253098
250 Cho, H. et al. Ultrapotent bispecific antibodies neutralize emerging SARS-CoV-2 variants. bioRxiv (2021). https://doi.org:10.1101/2021.04.01.437942
251 Stils, H. F., Jr. Adjuvants and antibody production: dispelling the myths associated with Freund's complete and other adjuvants. ILAR Journal 46, 280-293 (2005). https://doi.org:10.1093/ilar.46.3.280
252 Tregoning, J. S., Russell, R. F. & Kinnear, E. Adjuvanted influenza vaccines. Hum Vaccin Immunother 14, 550-564 (2018). https://doi.org:10.1080/21645515.2017.1415684
253 Wang, T. T. et al. Vaccination with a synthetic peptide from the influenza virus hemagglutinin provides protection against distinct viral subtypes. Proc Natl Acad Sci U S A 107, 18979-18984 (2010). https://doi.org:10.1073/pnas.1013387107
254 Jiang, Z. et al. Platform technology to generate broadly cross-reactive antibodies to alpha-helical epitopes in hemagglutinin proteins from influenza A viruses. Biopolymers 106, 144-159 (2016). https://doi.org:10.1002/bip.22808
255 Skwarczynski, M. & Toth, I. Peptide-based synthetic vaccines. Chem Sci 7, 842-854 (2016). https://doi.org:10.1039/c5sc03892h
256 Boyoglu-Barnum, S. et al. Quadrivalent influenza nanoparticle vaccines induce broad protection. Nature 592, 623-628 (2021). https://doi.org:10.1038/s41586-021-03365-x
257 Kanekiyo, M. et al. Self-assembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1 antibodies. Nature 499, 102-106 (2013). https://doi.org:10.1038/nature12202
258 Kanekiyo, M. et al. Mosaic nanoparticle display of diverse influenza virus hemagglutinins elicits broad B cell responses. Nat Immunol 20, 362-372 (2019). https://doi.org:10.1038/s41590-018-0305-x
259 Marcandalli, J. et al. Induction of potent neutralizing antibody responses by a designed protein nanoparticle vaccine for respiratory syncytial virus. Cell 176, 1420-1431 (2019). https://doi.org:10.1016/j.cell.2019.01.046
260 Walls, A. C. et al. Elicitation of potent neutralizing antibody responses by designed protein nanoparticle vaccines for SARS-CoV-2. Cell 183, 1367-1382 (2020). https://doi.org:10.1016/j.cell.2020.10.043
261 Walls, A. C. et al. Elicitation of broadly protective sarbecovirus immunity by receptor-binding domain nanoparticle vaccines. Cell 184, 5432-5447 (2021). https://doi.org:10.1016/j.cell.2021.09.015
262 Guthmiller, J. J. & Wilson, P. C. Remembering seasonal coronaviruses. Science 370, 1272-1273 (2020). https://doi.org:10.1126/science.abf4860
263 Ng, K. T., Mohd-Ismail, N. K. & Tan, Y. J. Spike S2 subunit: the dark horse in the race for prophylactic and therapeutic interventions against SARS-CoV-2. Vaccines (Basel) 9 (2021). https://doi.org:10.3390/vaccines9020178
264 Song, G. et al. Cross-reactive serum and memory B-cell responses to spike protein in SARS-CoV-2 and endemic coronavirus infection. Nat Commun 12, 2938 (2021). https://doi.org:10.1038/s41467-021-23074-3
265 Kong, R. et al. Antibody lineages with vaccine-induced antigen-binding hotspots develop broad HIV neutralization. Cell 178, 567-584 e519 (2019). https://doi.org:10.1016/j.cell.2019.06.030
266 Li, C. J. & Chang, S. C. SARS-CoV-2 spike S2-specific neutralizing antibodies. Emerg Microbes Infect 12, 2220582 (2023). https://doi.org:10.1080/22221751.2023.2220582
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90513-
dc.description.abstract茲卡病毒 (Zika virus;ZIKV) 感染可能造成嚴重神經疾病,然而目前並無FDA 核准的茲卡病毒疫苗及抗病毒藥物可以預防或治療該疾病。此外,茲卡病毒感染之症狀與其他Flavivirus 類似,因此不易診斷。茲卡病毒利用表面套膜蛋白 (envelope protein;E蛋白) 結合宿主細胞並引發膜融合,為重要之中和性抗體標的。本研究以融合瘤細胞技術開發出抗E 蛋白之單株抗體A1、B1、C1 及9E-1,雖然這四株抗體皆無法中和茲卡病毒,但是抗體B1 及9E-1 可以結合茲卡病毒,因此利用這兩株抗體開發出茲卡病毒之快篩檢測試片。
新型冠狀病毒 (Severe Acute Respiratory Syndrome Coronavirus 2;SARS-CoV-2) 所引起的新型冠狀病毒肺炎 (Coronavirus-induced disease;COVID-19) 在全球造成嚴重疫情,雖然目前已有疫苗與藥物可以預防及治療該疾病,但是病毒不斷變異可能導致抗體或疫苗失效。當病毒表面棘蛋白 (spike protein;S蛋白) 的S1 subunit結合宿主細胞ACE2受體,S2 subunit會引發病毒與宿主細胞產生膜融合。抗體藥物主要透過結合S 蛋白S1subunit的受體結合域 (receptor-binding domain;RBD) 防止病毒與宿主細胞結合,然而該區域的高突變率會造成中和性抗體失效及疫苗保護力下降。相較之下負責引發膜融合的S2 subunit 具有較高保守性,然而針對此區域的抗體卻較少被發表。本研究針對S2subunit開發單株抗體,成功製備出三株中和性抗體S2-4D、S2-5D 及S2-8D,其抗原決定位 (epitope) 在SARS-CoV-2 變異株中具有100%保守性。S2-4D、S2-5D 及S2-8D 可以透過阻止S 蛋白引起的膜融合現象抑制病毒感染,並且對於突變株仍具有廣效性。血清學實驗顯示部分COVID-19 病人血清中亦含有此類抗體。進一步將S2-4D、S2-5D 及S2-8D 的抗原決定位S(1127-1167) 製備為疫苗,可以在小鼠體內成功誘導產生中和性血清,並且可以抑制膜融合現象,因此該片段具有發展成廣效性疫苗的潛力。
zh_TW
dc.description.abstractZika virus (ZIKV) infection may cause severe neurological complications. However, there are no FDA-approved vaccines and antivirals for Zika viral disease. Moreover, it can be misdiagnosed as other infectious diseases since its clinical presentations closely resemble other Flavivirus. The ZIKV envelope protein (E) mediates host receptor binding and membrane fusion, and is therefore the major target for neutralizing antibodies. In this study, four monoclonal antibodies (mAbs) (A1, B, C1, and 9E-1) targeting the ZIKV envelope protein have been developed by using hybridoma technology. Although these four mAbs cannot neutralize ZIKV, mAbs B and 9E-1 can bind ZIKV. Therefore, mAbs B and 9E-1 have been developed as the lateral flow immunochromatographic assay for specific detection of ZIKV.
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused more than 760 million confirmed cases. Though vaccines and antivirals for this disease are currently available, the newly emerged variants may render them ineffective. After the S1 subunit of SARS-CoV-2 spike (S) protein binds to host ACE2 receptor, the spike S2 subunit trigger virus-host cell membrane fusion. Most neutralizing antibodies (nAbs) target the receptor binding domain (RBD) of S1 subunit to inhibit virus-host cell binding, however, they lost their neutralizing activity against the newly emerged SARS-CoV-2 variants with sequence mutations at RBD. In contrast, the nAbs targeting the relatively conserved S2 subunit were poorly defined and investigated. Here we report three S2-specific nAbs, S2-4D, S2-5D, and S2-8D, which targeted a highly conserved epitope at S2 subunit of S protein, performed potent neutralizing activity against SARS-CoV-2 infection through blocking the S protein-mediated virus-host cell membrane fusion. Notably, these nAbs exhibited broadly neutralizing activity against SARS-CoV-2 variants. Furthermore, the human sera obtained from COVID-19 patients contain similar antibodies. Antisera collected from mice immunized with the identified epitope peptides S(1127-1167) of these three nAbs also showed potent neutralizing activity and can inhibit membrane fusion, indicating that the highly conserved binding epitope of S2-4D, S2-5D, and S2-8D is a potential vaccine candidate and may provide protection against newly emerged SARS-CoV-2 variants.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:25:36Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-10-03T16:25:36Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要...........................................................................................................................................................................................i
Abstract...................................................................................................................................................................................ii
縮寫表.....................................................................................................................................................................................iv
第一章 緒論..........................................................................................................................................................................1
1.1 單株抗體.....................................................................................................................................................................1
1.2 茲卡病毒與茲卡症狀.............................................................................................................................................3
1.2.1 茲卡病毒...........................................................................................................................................................3
1.2.2 茲卡病毒感染之症狀…..............................................................................................................................4
1.2.3 茲卡病毒組成.................................................................................................................................................6
1.2.4 茲卡病毒傳染.................................................................................................................................................6
1.2.5 茲卡病毒感染對象.......................................................................................................................................8
1.2.6 茲卡病毒之診斷............................................................................................................................................9
1.2.7 茲卡病毒感染之預防與治療..................................................................................................................11
1.3 茲卡病毒E蛋白....................................................................................................................................................13
1.3.1 E蛋白結構....................................................................................................................................................13
1.3.2 E蛋白受器....................................................................................................................................................14
1.3.3 抗E蛋白抗體..............................................................................................................................................15
1.4 新型冠狀病毒肺炎與新型冠狀病毒..............................................................................................................17
1.4.1 冠狀病毒........................................................................................................................................................17
1.4.2 SARS-CoV-2...................................................................................................................................................18
1.4.3 SARS-CoV-2突變株...................................................................................................................................19
1.4.4 新型冠狀病毒肺炎抗體藥物..................................................................................................................24
1.5 SARS-COV-2 S蛋白S2 subunit........................................................................................................................25
1.5.1 抗SARS-CoV S蛋白S2 subunit抗體................................................................................................26
1.5.2 抗SARS-CoV-2 S蛋白S2 subunit抗體.............................................................................................27
1.5.3 結合於S蛋白FP的抗體........................................................................................................................27
1.5.4 結合於S蛋白HR1或HR2的抗體......................................................................................................27
1.5.5 結合於S蛋白stem helix的抗體.........................................................................................................28
1.6 COVID-19疫苗........................................................................................................................................................29
1.6.1 FDA核可之COVID-19疫苗...................................................................................................................29
1.6.2 疫苗誘導T細胞免疫反應......................................................................................................................31
1.7 研究動機...................................................................................................................................................................32
1.7.1 抗茲卡病毒E蛋白抗體開發.................................................................................................................32
1.7.2 抗SARS-CoV-2 S蛋白S2 subunit抗體開發...................................................................................33
第二章 材料與方法..........................................................................................................................................................34
2.1 聚丙烯醯胺凝膠電泳...........................................................................................................................................34
2.2 CBR染色法..............................................................................................................................................................34
2.3 西方墨點法..............................................................................................................................................................34
2.4 BRADFORD蛋白質定量法................................................................................................................................35
2.5 酵素結合免疫吸附分析法.................................................................................................................................35
2.6 登革熱病毒E蛋白...............................................................................................................................................36
2.7 抗原製備:茲卡病毒E蛋白............................................................................................................................36
2.7.1 E蛋白表現....................................................................................................................................................36
2.7.2 外泌蛋白純化...............................................................................................................................................37
2.7.3 細胞內可溶蛋白純化................................................................................................................................37
2.7.4 細胞內不可溶蛋白純化............................................................................................................................38
2.8 抗原製備:SARS-COV-2 S蛋白S2 subunit...............................................................................................38
2.8.1 S蛋白S2 subunit質體建構...................................................................................................................38
2.8.2 S蛋白S2 subunit表現.............................................................................................................................39
2.8.3 S蛋白S2 subunit純化.............................................................................................................................39
2.9 單株抗體製備.........................................................................................................................................................39
2.9.1 小鼠免疫........................................................................................................................................................40
2.9.2 抗血清取樣....................................................................................................................................................40
2.9.3 融合瘤細胞製備..........................................................................................................................................40
2.9.4 融合瘤細胞單株化.....................................................................................................................................41
2.9.5 單株抗體純化...............................................................................................................................................42
2.10 抗體親和力分析..................................................................................................................................................42
2.11 Multi-antigen-coated western blot strip (mWBS) 試片製備................................................................43
2.12 抗體型別測定.......................................................................................................................................................44
2.13 抗體之抗原結合位分析....................................................................................................................................44
2.13.1 截斷E蛋白質體建構................................................................................................................................44
2.13.2 S2截斷蛋白質體建構...............................................................................................................................45
2.13.3 截斷蛋白表現...............................................................................................................................................45
2.13.4 S2截斷蛋白純化.........................................................................................................................................45
2.13.5 抗原結合位分析..........................................................................................................................................46
2.14 溶斑減少中和試驗.............................................................................................................................................46
2.14.1 茲卡病毒溶斑減少中和試驗..................................................................................................................46
2.14.2 SARS-CoV-2溶斑減少中和試驗...........................................................................................................47
2.15 膜融合實驗............................................................................................................................................................47
2.15.1 293T/S效應細胞............................................................................................................................... ..........48
2.15.2 293T/ACE2/EGFP目標細胞...................................................................................................................49
2.15.3 膜融合條件測試..........................................................................................................................................49
2.15.4 膜融合抑制實驗..........................................................................................................................................49
2.16 COVID-19病人血清分析...................................................................................................................................49
2.17 COVID-19疫苗製備與分析..............................................................................................................................50
2.17.1 第一代COVID-19疫苗開發....................................................................................................................50
2.17.2 第二代COVID-19疫苗開發....................................................................................................................50
2.17.3 血清效價分析...............................................................................................................................................51
2.17.4 ELISpot............................................................................................................................................................51
2.18 茲卡病毒快篩試片.............................................................................................................................................53
2.18.1 製備單株抗體標定之奈米金粒子........................................................................................................53
2.18.2 快篩試片製備...............................................................................................................................................53
2.18.3 以茲卡病毒快篩試片進行檢測.............................................................................................................54
2.19 PyMOL分析蛋白質結構..................................................................................................................................54
第三章 結果:抗茲卡病毒E蛋白抗體...................................................................................................................56
3.1 茲卡病毒E蛋白製備..........................................................................................................................................56
3.1.1 以昆蟲細胞表現茲卡病毒E蛋白........................................................................................................56
3.1.2 E蛋白純化....................................................................................................................................................57
3.2 小鼠血清分析.........................................................................................................................................................58
3.3 單株抗體製備與純化...........................................................................................................................................58
3.4 抗E蛋白單株抗體分析.....................................................................................................................................58
3.4.1 抗體結合能力與型別分析.......................................................................................................................59
3.4.2 抗體親和力分析..........................................................................................................................................59
3.5 抗E蛋白抗體之抗原決定位分析..................................................................................................................59
3.6 抗體廣效性分析....................................................................................................................................................60
3.7 分析抗體對茲卡病毒中和能力.......................................................................................................................60
3.8 茲卡病毒快篩試片...............................................................................................................................................61
第四章 結果:抗SARS-COV-2 S蛋白抗體...........................................................................................................62
4.1 抗SARS-COV-2 S蛋白S2 subunit抗體......................................................................................................62
4.2 抗體製備與純化.....................................................................................................................................................62
4.3 抗S蛋白S2 subunit抗體分析.........................................................................................................................62
4.4 抗S蛋白S2 subunit抗體之抗原決定位分析............................................................................................63
4.5 抗體結合位序列比對............................................................................................................................................64
4.5.1 冠狀病毒之序列比對................................................................................................................................64
4.5.2 SARS-CoV-2變異株之序列比對...........................................................................................................64
4.6 抗體中和能力分析.................................................................................................................................................65
4.7 膜融合抑制實驗.....................................................................................................................................................65
4.7.1 293T/S效應細胞與293T/ACE2/EGFP目標細胞...........................................................................65
4.7.2 膜融合條件測試..........................................................................................................................................66
4.7.3 抗體之膜融合抑制實驗............................................................................................................................67
4.8 抗體廣效性分析.....................................................................................................................................................67
4.9 分析S2-4D、S2-5D以及S2-8D結合之抗原位點......................................................................................68
4.9.1 結構分析抗體之結合位點.......................................................................................................................68
4.9.2 最小抗原決定位..........................................................................................................................................68
4.10 COVID-19病人血清分析...................................................................................................................................69
4.11 第一代COVID-19疫苗開發............................................................................................................................69
4.11.1 第一代COVID-19疫苗設計....................................................................................................................70
4.11.2 第一代COVID-19疫苗效價分析..........................................................................................................70
4.11.3 第一代疫苗抗血清之膜融合抑制實驗...............................................................................................70
4.12 第二代COVID-19疫苗開發............................................................................................................................71
4.12.1 第二代COVID-19疫苗設計....................................................................................................................71
4.12.2 分析第二代COVID-19疫苗誘導之B細胞反應.............................................................................72
4.12.3 分析第二代COVID-19疫苗誘導之T細胞反應............................................................................73
4.12.4 第二代COVID-19疫苗保護力分析.....................................................................................................74
4.12.5 比較施打第一代與第二代COVID-19疫苗的小鼠血清...............................................................74
4.13 小鼠血清分析.......................................................................................................................................................75
第五章 討論........................................................................................................................................................................76
5.1 抗茲卡病毒E蛋白抗體......................................................................................................................................76
5.2 抗SARS-COV-2 S蛋白S2 subunit抗體.......................................................................................................78
圖與表....................................................................................................................................................................................90
參考文獻.............................................................................................................................................................................163
-
dc.language.isozh_TW-
dc.title單株抗體於茲卡病毒及新型冠狀病毒之研究與應用zh_TW
dc.titleStudy and Application of Monoclonal Antibodies for Zika Virus and Severe Acute Respiratory Syndrome Coronavirus 2en
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee林翰佳;廖憶純;黃楓婷;張淑媛zh_TW
dc.contributor.oralexamcommitteeHan-Jia Lin;Yi-Chun Liao;Feng-Ting Huang;Sui-Yuan Changen
dc.subject.keyword茲卡病毒,套膜蛋白,快篩試片,SARS-CoV-2,棘蛋白,中和性抗體,膜融合,疫苗,zh_TW
dc.subject.keywordZika virus,envelope protein,immunochromatographic assay,SARS-CoV-2,spike protein,neutralizing antibody,membrane fusion,vaccine,en
dc.relation.page183-
dc.identifier.doi10.6342/NTU202301769-
dc.rights.note未授權-
dc.date.accepted2023-07-20-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept生化科技學系-
顯示於系所單位:生化科技學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  目前未授權公開取用
32.19 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved