Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90509
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳育任zh_TW
dc.contributor.advisorYuh-Renn Wuen
dc.contributor.author陳詩旻zh_TW
dc.contributor.authorShih-Min Chenen
dc.date.accessioned2023-10-03T16:24:30Z-
dc.date.available2023-11-10-
dc.date.copyright2023-10-03-
dc.date.issued2023-
dc.date.submitted2023-08-13-
dc.identifier.citation[1] Shengnan Zhang, Jianli Zhang, Jiangdong Gao, Xiaolan Wang, Changda Zheng, Meng Zhang, Xiaoming Wu, Longquan Xu, Jie Ding, Zhijue Quan, et al. Efficient emission of InGaN-based light-emitting diodes: toward orange and red. Photonics Research, 8(11):1671–1675, 2020.
[2] Barry Dalal Clayton. Getting to grips with green plans: national-level experience in industrial countries, volume 2. Routledge, 2013.
[3] Sang-Heon Han, Dong-Yul Lee, Hyun-Wook Shim, Jeong Wook Lee, Dong-Joon Kim, Sukho Yoon, Young Sun Kim, and Sung-Tae Kim. Improvement of efficiency and electrical properties using intentionally formed V-shaped pits in InGaN/GaN multiple quantum well light-emitting diodes. Applied Physics Letters, 102(25):251123, 2013.
[4] Cheng-Han Ho, James S Speck, Claude Weisbuch, and Yuh-Renn Wu. Efficiency and forward voltage of blue and green lateral LEDs with V-shaped defects and random alloy fluctuation in quantum wells. Physical Review Applied, 17(1):014033, 2022.
[5] SD Lester, Fernando A Ponce, M George Craford, and Daniel A Steigerwald. High dislocation densities in high efficiency GaN-based light-emitting diodes. Applied Physics Letters, 66(10):1249–1251, 1995.
[6] Vladislav Voronenkov, Natalia Bochkareva, Ruslan Gorbunov, Philipp Latyshev, Yuri Lelikov, Yury Rebane, Alexander Tsyuk, Andrey Zubrilov, and Yuri Shreter. Nature of V-shaped defects in GaN. Japanese Journal of Applied Physics, 52(8S):08JE14, 2013.
[7] Hisashi Yoshida, Toshiki Hikosaka, Hajime Nago, and Shinya Nunoue. Impact of dislocations and defects on the relaxation behavior of InGaN/GaN multiple quantum wells grown on Si and sapphire substrates. physica status solidi (b), 252(5):917–922, 2015.
[8] Shengjun Zhou and Xingtong Liu. Effect of V-pits embedded InGaN/GaN superlattices on optical and electrical properties of GaN-based green light-emitting diodes. physica status solidi (a), 214(5):1600782, 2017.
[9] AE Romanov, TJ Baker, S Nakamura, JS Speck, and ERATO/JST UCSB Group. Strain-induced polarization in wurtzite III-nitride semipolar layers. Journal of Applied Physics, 100(2):023522, 2006.
[10] Chi-Kang Li, Chen-Kuo Wu, Chung-Cheng Hsu, Li-Shuo Lu, Heng Li, Tien-Chang Lu, and Yuh-Renn Wu. 3D numerical modeling of the carrier transport and radiative efficiency for InGaN/GaN light emitting diodes with V-shaped pits. AIP Advances, 6(5):055208, 2016.
[11] Jaekyun Kim, Joosung Kim, Youngjo Tak, Suhee Chae, Jun-Youn Kim, and Young-soo Park. Effect of V-shaped pit size on the reverse leakage current of InGaN/GaN light-emitting diodes. IEEE electron device letters, 34(11):1409–1411, 2013.
[12] S Mahanty, M Hao, T Sugahara, RS Qhalid Fareed, Y Morishima, Y Naoi, T Wang, and S Sakai. V-shaped defects in InGaN/GaN multiquantum wells. Materials Letters, 41(2):67–71, 1999.
[13] Chiao-Yun Chang, Heng Li, Yang-Ta Shih, and Tien-Chang Lu. Manipulation of nanoscale V-pits to optimize internal quantum efficiency of InGaN multiple quantum wells. Applied Physics Letters, 106(9):091104, 2015.
[14] Yuh-Renn Wu, Ravi Shivaraman, Kuang-Chung Wang, and James S Speck. Analyzing the physical properties of InGaN multiple quantum well light emitting diodes from nano scale structure. Applied Physics Letters, 101(8):083505, 2012.
[15] Yong-Hee Cho, Jun-Youn Kim, Jaekyun Kim, Mun-Bo Shim, Sangheum Hwang, Seoung-Hwan Park, Young-Soo Park, and Sungjin Kim. Quantum efficiency affected by localized carrier distribution near the V-defect in GaN based quantum well. Applied Physics Letters, 103(26):261101, 2013.
[16] Tsung-Jui Yang, Ravi Shivaraman, James S Speck, and Yuh-Renn Wu. The influence of random indium alloy fluctuations in indium gallium nitride quantum wells on the device behavior. Journal of Applied Physics, 116(11):113104, 2014.
[17] Huan-Ting Shen, Claude Weisbuch, James S Speck, and Yuh-Renn Wu. Three-Dimensional Modeling of Minority-Carrier Lateral Diffusion Length Including Random Alloy Fluctuations in (In, Ga) N and (Al, Ga) N Single Quantum Wells. Physical Review Applied, 16(2):024054, 2021.
[18] P Iskander. Chemical sensors based on GaN heterostructures. Bachelor Thesis, Ulm University, Ulm, Germany, 2017.
[19] Emmanouil Kioupakis, Patrick Rinke, Kris T Delaney, and Chris G Van de Walle. Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes. Applied Physics Letters, 98(16):161107, 2011.
[20] A Di Vito, A Pecchia, A Di Carlo, and M Auf der Maur. Simulating random alloy effects in III-nitride light emitting diodes. Journal of Applied Physics, 128(4):041102, 2020.
[21] Marcel Filoche, Marco Piccardo, Yuh-Renn Wu, Chi-Kang Li, Claude Weisbuch, and Svitlana Mayboroda. Localization landscape theory of disorder in semiconductors. I. Theory and modeling. Physical Review B, 95(14):144204, 2017.
[22] Douglas N Arnold, Guy David, David Jerison, Svitlana Mayboroda, and Marcel Filoche. Effective confining potential of quantum states in disordered media. Physical review letters, 116(5):056602, 2016.
[23] Marcel Filoche and Svitlana Mayboroda. Universal mechanism for Anderson and weak localization. Proceedings of the National Academy of Sciences, 109(37):14761–14766, 2012.
[24] Chi-Kang Li, Marco Piccardo, Li-Shuo Lu, Svitlana Mayboroda, Lucio Martinelli, Jacques Peretti, James S Speck, Claude Weisbuch, Marcel Filoche, and Yuh-Renn Wu. Localization landscape theory of disorder in semiconductors. III. Application to carrier transport and recombination in light emitting diodes. Physical Review B, 95(14):144206, 2017.
[25] V Ramesh, Akihiko Kikuchi, Katsumi Kishino, Mitsuru Funato, and Yoichi Kawakami. Strain relaxation effect by nanotexturing InGaN/GaN multiple quantum well. Journal of Applied Physics, 107(11):114303, 2010.
[26] LC Le, DG Zhao, DS Jiang, L Li, LL Wu, P Chen, ZS Liu, ZC Li, YM Fan, JJ Zhu, et al. Carriers capturing of V-defect and its effect on leakage current and electroluminescence in InGaN-based light-emitting diodes. Applied Physics Letters, 101(25):252110, 2012.
[27] Xiaoming Wu, Junlin Liu, Zhijue Quan, Chuanbing Xiong, Changda Zheng, Jianli Zhang, Qinghua Mao, and Fengyi Jiang. Electroluminescence from the sidewall quantum wells in the V-shaped pits of InGaN light emitting diodes. Applied Physics Letters, 104(22):221101, 2014.
[28] Shigetaka Tomiya, Yuya Kanitani, Shinji Tanaka, Tadakatsu Ohkubo, and Kazuhiro Hono. Atomic scale characterization of GaInN/GaN multiple quantum wells in V-shaped pits. Applied Physics Letters, 98(18):181904, 2011.
[29] Taesung Kim, Paul O Leisher, Aaron J Danner, Ralph Wirth, Klaus Streubel, and Kent D Choquette. Photonic crystal structure effect on the enhancement in the external quantum efficiency of a red LED. IEEE photonics technology letters, 18(17):1876–1878, 2006.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90509-
dc.description.abstract隨著微發光二極體的尺寸不斷微縮,研究發現紅光磷化鋁鎵銦發光二極體的側壁表面複合效應加劇,由於載子遷移率高和等效質量輕,因此載子擴散得很快至側壁的缺陷進行複合,元件性能逐漸趨於劣勢;氮化鎵材料相對不易受尺寸、溫度變化限制,然而紅光氮化銦鎵發光二極體存在著晶格不匹配的問題,導致元件形成V型缺陷,以及產生不容忽視的量子侷限斯塔克效應,強大的壓電場引發更高的能障,使載子難以流入量子井進行複合。雖然V型缺陷包含非輻射中心,但載子可藉由V型缺陷傾斜面上的側壁量子井流進量子井,載子注入受限的狀況得以改善,啟動電壓也大幅下降。目前紅光氮化銦鎵發光二極體的效率約15∼25%,現今許多學者致力於找出提升效率的方法。

本篇論文除了探討V型缺陷,還有紅光量子井的數量和位置對於紅光氮化銦鎵發光二極體的影響,其中氮化銦鎵量子井有考慮現實情況中的隨機合金擾動。我們的模擬結果顯示:(1)若V型缺陷上的量子井的銦濃度較小,載子特別是電洞容易通過多重量子井,抵達底層的量子井,這代表載子主要從V型缺陷的側壁注入。(2)若以橘光量子井上下包夾紅光量子井,載子傾向流進量子井深度較深的紅光量子井,這將有助於工程師設計讓載子複合在品質更好的量子井來提高效率,實驗部份[1]也有相關的研究證實此趨勢。
zh_TW
dc.description.abstractWith the chip size continuing to shrink for micro-LED applications, the sidewall surface recombination effect has been shown to be more severe in red AlGaInP LEDs. Since the carriers have higher mobility and lighter effective mass, they quickly diffuse into the sidewall and recombine at the defects. The device performance gets worse. On the other hand, indium gallium nitride (InGaN) material is now less dependent on the chip size and temperature. However, the red InGaN LEDs suffer from the lattice mismatch problem, which generates the V-defect in the device and the substantial Quantum Confined Stark Effect (QCSE). The piezoelectric polarization field induces more considerable barriers, which makes the carriers hard to flow into the quantum well (QWs) to recombine. Though V-defect includes a non-radiative recombination center, the carriers can inject into the QWs through the sidewall QW in the V-defects tilted plane. The current injection is improved, and the turn-on voltage drops significantly. To date, the efficiency of the red InGaN LEDs is around 15~25%. Many researchers are dedicated to increasing efficiency.

In addition to V-defects, the number and the position of red QWs are discussed about their influence on the red InGaN LEDs, considering the random alloy fluctuation that exists in reality. Our simulation results show that (1) if the indium composition of the V-defect sidewall QWs is more minor, The carrier, especially for the hole, is easier to cross the multiple QW and reach the bottom QW. This shows that carriers injected are mainly from the sidewall of the V-defect center. (2) If orange QWs sandwich the red QWs, the carrier tends to flow into red QWs since they are deeper. This help engineers to design carrier to recombine at better quality QW layers and improve efficiency. The result was reported experimentally in Ref. [1].
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:24:30Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-10-03T16:24:30Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsVerification Letter from the Oral Examination Committee i
Acknowledgments iii
摘要 v
Abstract vii
Contents ix
List of Figures xiii
List of Tables xxi
Chapter 1 Introduction 1
1.1 Background 1
1.2 Motivation 2
1.2.1 V-defect 2
1.2.1.1 The Recent Study on V-defect 4
1.2.2 Random Alloy Fluctuation 6
1.2.3 Quantum Confined Stark Effect (QCSE) 8
1.2.4 Current Crowding Effect 10
1.2.4.1 Droop Effect 13
1.3 Thesis Overview 13
Chapter 2 Methodology 15
2.1 Process Flow of the 2D Solver 15
2.2 Computation Algorithm 16
2.3 Random Alloy Fluctuation Generator 18
2.3.1 Random Alloy Fluctuation in Red InGaN LEDs 20
2.4 Localization Landscape Theory 21
Chapter 3 The Influences of Indium Composition of V-defect Sidewall QWs on Red InGaN LEDs 23
3.1 The Device Structure Used in the Simulation 24
3.1.1 V-defect Setting 26
3.2 Carrier Injection Mechanism Through V-defects 30
3.3 The Influences of Indium Composition of V-defect Sidewall QWs on the Device Performance 31
3.3.1 The Major Light-Emitting QW Layers Shift 34
3.3.2 The recombination in the V-defects 36
3.3.3 The Efficiency and Loss 41
3.3.4 The Device Performance in Different V-defect Area Ratios and QW Numbers 43
3.3.4.1 The Definition of V-defect Area Ratio 43
3.3.4.2 The Definition of QW Number 44
3.3.4.3 The Voltage and Efficiency in Different V-defect Area Ratios and QW Numbers 45
3.4 Summary 47
Chapter 4 The Influences of the Number and the Position of Red QWs on Red InGaN LEDs 49
4.1 Sample B: The Number of Red QWs is Reduced 50
4.2 The Influences of the Number of Red QWs on the Device Performance 53
4.2.1 The Major Light-Emitting QW Layers Shift 53
4.3 The Influences of the Position of Red QWs on the Device Performance 57
4.3.1 The Comparison and the Optimized Case 65
4.3.2 The Major Light-Emitting QW Layers Shift with Red QWs 66
4.4 Summary 66
Chapter 5 Conclusion 69
References 71
-
dc.language.isoen-
dc.subject隨機合金擾動zh_TW
dc.subject量子侷限斯塔克效應zh_TW
dc.subject氮化銦鎵zh_TW
dc.subjectV型缺陷zh_TW
dc.subject紅光發光二極體zh_TW
dc.subjectQuantum Confined Stark Effecten
dc.subjectRandom alloy fluctuationen
dc.subjectV-defecten
dc.subjectred LEDsen
dc.subjectInGaNen
dc.title探究V型缺陷與隨機合金擾動對於紅光氮化銦鎵發光二極體的影響zh_TW
dc.titleStudy of the Influences of V-defects and Random Alloy Fluctuation on Red InGaN LEDsen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee賴韋志;黃嘉彥;林建中;吳肇欣zh_TW
dc.contributor.oralexamcommitteeWei-Chi Lai;Jia-Yen Huang;Chien-Chung Lin;Chao-Hsin Wuen
dc.subject.keyword氮化銦鎵,紅光發光二極體,V型缺陷,隨機合金擾動,量子侷限斯塔克效應,zh_TW
dc.subject.keywordInGaN,red LEDs,V-defect,Random alloy fluctuation,Quantum Confined Stark Effect,en
dc.relation.page75-
dc.identifier.doi10.6342/NTU202303635-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-08-14-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept光電工程學研究所-
dc.date.embargo-lift2024-11-20-
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
31.52 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved