Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90493Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 温進德 | zh_TW |
| dc.contributor.advisor | Jin-Der Wen | en |
| dc.contributor.author | 黃瑀彤 | zh_TW |
| dc.contributor.author | Yu-Tong Huang | en |
| dc.date.accessioned | 2023-10-03T16:20:04Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-10-03 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-04 | - |
| dc.identifier.citation | Ashkin, A., Dziedzic, J.M., and Yamane, T. (1987). Optical trapping and manipulation of single cells using infrared laser beams. Nature 330, 769-771.
Bhatt, P.R., Scaiola, A., Loughran, G., Leibundgut, M., Kratzel, A., Meurs, R., Dreos, R., O’Connor, K.M., McMillan, A., and Bode, J.W. (2021). Structural basis of ribosomal frameshifting during translation of the SARS-CoV-2 RNA genome. Science 372, 1306-1313. Chang, K.-C., and Wen, J.-D. (2021). Programmed− 1 ribosomal frameshifting from the perspective of the conformational dynamics of mRNA and ribosomes. Computational and Structural Biotechnology Journal 19, 3580-3588. Flynn, B.L., and Ranno, A.E. (1999). Pharmacologic management of Alzheimer disease part II: antioxidants, antihypertensives, and ergoloid derivatives. Annals of pharmacotherapy 33, 188-197. Jacques, N., and Dreyfus, M. (1990). Translation initiation in Escherichia coli: old and new questions. Molecular microbiology 4, 1063-1067. Jin, H., Kelley, A.C., Loakes, D., and Ramakrishnan, V. (2010). Structure of the 70S ribosome bound to release factor 2 and a substrate analog provides insights into catalysis of peptide release. Proceedings of the National Academy of Sciences 107, 8593-8598. Kircik, L.H., Del Rosso, J.Q., Layton, A.M., and Schauber, J. (2016). Over 25 years of clinical experience with ivermectin: an overview of safety for an increasing number of indications. Journal of drugs in dermatology: JDD 15, 325-332. Milón, P., and Rodnina, M.V. (2012). Kinetic control of translation initiation in bacteria. Critical reviews in biochemistry and molecular biology 47, 334-348. Napthine, S., Ling, R., Finch, L.K., Jones, J.D., Bell, S., Brierley, I., and Firth, A.E. (2017). Protein-directed ribosomal frameshifting temporally regulates gene expression. Nature communications 8, 1-11. Neupane, K., Zhao, M., Lyons, A., Munshi, S., Ileperuma, S.M., Ritchie, D.B., Hoffer, N.Q., Narayan, A., and Woodside, M.T. (2021). Structural dynamics of single SARS-CoV-2 pseudoknot molecules reveal topologically distinct conformers. Nature Communications 12, 4749. Plant, E.P., Pérez-Alvarado, G.C., Jacobs, J.L., Mukhopadhyay, B., Hennig, M., and Dinman, J.D. (2005). A three-stemmed mRNA pseudoknot in the SARS coronavirus frameshift signal. PLoS biology 3, e172. Rawat, U., Zavialov, A.V., Sengupta, J., Valle, M., Grassucci, R.A., Linde, J., Vestergaard, B., Ehrenberg, M., and Frank, J. (2003). A cryo-electron microscopic study of ribosome-bound termination factor RF2. Nature 421, 87-90. Rodnina, M.V. (2018). Translation in prokaryotes. Cold Spring Harbor perspectives in biology 10, a032664. Sun, Y., Abriola, L., Niederer, R.O., Pedersen, S.F., Alfajaro, M.M., Silva Monteiro, V., Wilen, C.B., Ho, Y.-C., Gilbert, W.V., and Surovtseva, Y.V. (2021). Restriction of SARS-CoV-2 replication by targeting programmed− 1 ribosomal frameshifting. Proceedings of the National Academy of Sciences 118, e2023051118. Zavialov, A.V., Buckingham, R.H., and Ehrenberg, M. (2001). A posttermination ribosomal complex is the guanine nucleotide exchange factor for peptide release factor RF3. Cell 107, 115-124. Jui-Yun Tu (2020). Exploring How the Ribosome Affects Frameshift-Stimulating Pseudoknots by Using Optical Tweezers. Institute of Molecular and Cellular Biology College of Life Science, National Taiwan University Master Thesis. Jian-Zhou Wang (2023). Study of Frameshift-stimulating RNA Structures and their Interaction with Polyribosomes. Institute of Molecular and Cellular Biology College of Life Science, National Taiwan University Doctoral Dissertation. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90493 | - |
| dc.description.abstract | 嚴重急性呼吸道症候群冠狀病毒SARS-CoV-1與SARS-CoV-2轉譯機制中的-1計畫性核醣體框架位移(-1 PRF)對於病毒複製與基因表達至關重要,其中促進-1 PRF發生要件除了由7個核苷酸所組成的滑動序列外,必須存在一個穩定的偽結結構作為移位刺激元件。為了抑制SARS-CoV-1與SARS-CoV-2活性,探討偽結摺疊過程與刺激框架位移的關聯性,已成為一個研究重點。
近年來有研究指出,一種稱為Merafloxacin的氟喹諾酮類抗菌化合物,對於β冠狀病毒有強烈抑制-1 PRF的特異性,由於β冠狀病毒的一個共同特徵是具備由三個莖(stems,依序稱為stem1,stem2,和stem3)摺疊而成偽結結構,因此推論Merafloxacin抑制-1 PRF的作用機制與偽結有關。針對此論點,我們將一系列相關藥物分別與SARS-CoV-2偽結混合,並透過單分子光鉗技術觀察偽結摺疊比例與解旋所需外力是否受到藥物影響而有所變化,藉此解釋藥物抑制-1 PRF效率與偽結的相關性。 mRNA偽結在轉譯過程中會被核醣體解旋,接著其序列由5’端往3’端依序從核醣體中釋放而開始摺疊。為了模擬真實轉譯狀態,我們修改了SARS-CoV-2偽結的設計,將序列拆成兩組RNA (CoV2-HP+CoV2-ST3n)再黏合,不僅能藉由CoV2-HP+CoV2-ST3n還原偽結構形,也能模擬其摺疊過程以及核醣體解旋的方式(經由最上游的stem1,而不是整個偽結)。除此之外,我們也利用5’ DNA handle 的互補序列延伸進入SARS-CoV-1與CoV2-HP+CoV2-ST3n stem1中,模擬轉譯過程核醣體對stem1摺疊所造成的影響。由實驗結果,推論由於核醣體立體結構干擾最穩定的stem1前幾個核苷酸,導致次穩定的stem3先形成,接著stem1與stem2再摺疊,此時3個stems會相互作用,最終形成穩定的偽結構形。在此情況下,框架位移的效率會最佳化,因此病毒基因可以正常表現。 | zh_TW |
| dc.description.abstract | The translation mechanism of -1 programmed ribosomal frameshifting (-1 PRF) in Severe Acute Respiratory Syndrome CoronaVirus SARS-CoV-1 and SARS-CoV-2 is crucial for virus replication and gene expression. In addition to the 7-nucleotide slippery sequence, a stable pseudoknot structure must be present as a frameshift-stimulating element for -1 PRF to occur. Exploring the folding process of pseudoknots and its association with frameshifting has become a major focus of research in order to inhibit the activity of SARS-CoV-1 and SARS-CoV-2.
In recent years, studies have indicated that a fluoroquinolone antimicrobial compound called Merafloxacin exhibits strong specificity in inhibiting -1 PRF in betacoronaviruses. It has been inferred that the mechanism of Merafloxacin's inhibition of -1 PRF is related to the pseudoknot, as betacoronaviruses share the common feature of having a pseudoknot structure formed by three stems (stem1, stem2, and stem3). To examine this argument, a series of drugs were added to the pseudoknot structure of SARS-CoV-2, and the proportions of various folded conformations and the unfolding force before and after drug addition were observed using single-molecule optical tweezers techniques. This was done to determine if the efficiency of -1 PRF inhibition by the drugs is related to the pseudoknot. mRNA pseudoknots are unfolded by ribosomes during translation, and then refold in a vectorial manner from the 5’ to the 3’ ends when the strand is gradually released from the ribosome. To mimic the actual translation state, the design of the SARS-CoV-2 construct was modified by splitting the sequence into two sets of single-stranded RNA (ssRNA), which were then annealed to create CoV2-HP+CoV2-ST3n. This annealed construct not only allows the restoration of the complete pseudoknot conformation, but also mimic the ribosome-meidated unfolding (through stem1, instead of the whole pseudoknot) and refolding (the 5’-to-3’ direction) pathways. Additionally, we also extended the 5’handle into stem1 of SARS-CoV-1 and CoV2-HP+CoV2-ST3n to mimic the impact of ribosome-induced folding on stem1 during the translation process. From the experimental results, we hypothesize that, owing to the ribosome’s (or handle’s) interference on the first few nucleotides of stem1, stem2 will take turn to form first, followed by stem1 and stem3. This folding pathway will result in a highly stable pseudoknot, including the further strengthened stem1. Such ribosome-mediated pseudoknot refolding will in turn result in an optimal frameshifting efficiency to facilitate viral gene expression and replication. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:20:04Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-10-03T16:20:04Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 摘要 iv Abstract v 目錄 vii 圖目錄 x 表目錄 xii 第一章、緒論 1 1.1 轉譯 1 1.2 計畫性核醣體框架位移 2 1.3 偽結 2 1.4 嚴重急性呼吸道症候群冠狀病毒:SARS-COV-1與SARS-COV-2 3 1.5 Merafloxacin作用於SARS-COV-2 3 1.6 單分子技術:雷射光鉗 4 第二章、材料與方法 5 2.1 材料 5 2.1.1 DNA oligomers to make inserts for cloning (正反股黏合) 5 2.1.2 DNA primers to make inserts for cloning (PCR延長DNA) 5 2.1.3 Insert建構所需的oligos (正反股黏合) 8 2.1.4 Insert與Handle建構所需的primers (PCR延長DNA) 8 2.1.5 藥品試劑 9 2.1.6 試劑 12 2.1.7 溶液 13 2.1.8 小分子藥物(由清華大學楊立威老師與Ahmed提供) 14 2.2 方法 15 2.2.1 Construct建構 15 2.2.2 In vitro transcription 17 2.2.3 DNA handle建構 18 2.2.4 黏合RNA與DNA handle 20 2.2.5 單分子實驗-Optical Tweezers 21 第三章、結果 24 3.1 SARS-COV-1及SARS-COV-2 的摺疊機制 24 3.2 藥物對於SARS-COV-2偽結結構的影響 24 3.2.1 Merafloxacin與SARS-CoV-2 25 3.2.2 Rufloxacin與SARS-CoV-2 25 3.2.3 Sitafloxacin與SARS-CoV-2 26 3.2.4 Lomefloxacin與SARS-CoV-2 26 3.2.5 Dihydroergotoxine與SARS-CoV-2 27 3.2.6 Ivermectin與SARS-CoV-2 27 3.2.7 Drug 1712, 1788, 1929與SARS-CoV-2 28 3.3 SARS-COV-1偽結後序列長度觀察其摺疊效率與穩定性 29 3.4 藉由5’handle延伸至SARS-COV-1偽結上游結構模擬轉譯過程 30 3.5 SARS-COV-2雙分子偽結的摺疊機制 31 3.5.1 CoV2-HP之hairpin結構摺疊檢測 32 3.5.2 CoV2-HP+CoV2-ST3結構摺疊檢測 33 3.5.3 CoV2-HP+CoV2-ST2-RNA+5’H-HP1-dST1結構摺疊檢測stem3 34 3.5.4 CoV2-HP+CoV2-ST2-RNA結構摺疊檢測stem1與stem3 34 3.5.5 CoV2-HP+CoV2-ST3n+5’H-HP1-dST1結構摺疊檢測stem2+stem3 35 3.5.6 CoV2-HP+CoV2-ST3n結構摺疊檢測 36 3.5.7 CoV2-HP+CoV2-ST3n定力結構摺疊檢測 37 3.5.8 藉由5’handle延伸至CoV2-HP+CoV2-ST3n中模擬轉譯過程 38 3.5.9 CoV2-HP+CoV2-ST2-RNA+5’H-HP1-1結構摺疊檢測 40 3.5.10 CoV2-HP+mCoV2-ST3n結構摺疊檢測 41 參考文獻 47 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 核醣體 | zh_TW |
| dc.subject | 光鉗 | zh_TW |
| dc.subject | -1 PRF | zh_TW |
| dc.subject | SARS-CoV-1 | zh_TW |
| dc.subject | SARS-CoV-2 | zh_TW |
| dc.subject | 偽結 | zh_TW |
| dc.subject | SARS-CoV-2 | en |
| dc.subject | pseudoknot | en |
| dc.subject | optical tweezers | en |
| dc.subject | -1 PRF | en |
| dc.subject | SARS-CoV-1 | en |
| dc.subject | ribosome | en |
| dc.title | 利用光鉗技術探討RNA偽結結構對核醣體框架位移之影響 | zh_TW |
| dc.title | Exploring how RNA pseudoknots affect ribosomal frameshifting using optical tweezers | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 楊立威;張功耀 | zh_TW |
| dc.contributor.oralexamcommittee | Lee-Wei Yang;Kung-Yao Chang | en |
| dc.subject.keyword | SARS-CoV-1,SARS-CoV-2,-1 PRF,偽結,光鉗,核醣體, | zh_TW |
| dc.subject.keyword | SARS-CoV-1,SARS-CoV-2,-1 PRF,pseudoknot,optical tweezers,ribosome, | en |
| dc.relation.page | 94 | - |
| dc.identifier.doi | 10.6342/NTU202302146 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-08-08 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | - |
| Appears in Collections: | 分子與細胞生物學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-111-2.pdf Restricted Access | 4.58 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
