Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90488
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳俊豪zh_TW
dc.contributor.advisorChun-Hao Chenen
dc.contributor.author劉冠廷zh_TW
dc.contributor.authorKuan-Ting Liuen
dc.date.accessioned2023-10-03T16:18:42Z-
dc.date.available2023-11-09-
dc.date.copyright2023-10-03-
dc.date.issued2023-
dc.date.submitted2023-08-10-
dc.identifier.citationAprison, E. Z., Dzitoyeva, S., Angeles-Albores, D., & Ruvinsky, I. (2022). A male pheromone that improves the quality of the oogenic germline. Proc Natl Acad Sci U S A, 119(21), e2015576119. https://doi.org/10.1073/pnas.2015576119
Aprison, E. Z., & Ruvinsky, I. (2015). Sex Pheromones of C. elegans Males Prime the Female Reproductive System and Ameliorate the Effects of Heat Stress. PLoS Genet, 11(12), e1005729. https://doi.org/10.1371/journal.pgen.1005729
Ardiel, E. L., & Rankin, C. H. (2010). An elegant mind: learning and memory in Caenorhabditis elegans. Learn Mem, 17(4), 191-201. https://doi.org/10.1101/lm.960510
Borrero-Echeverry, F., Solum, M., Trona, F., Becher, P. G., Wallin, E. A., Bengtsson, M., Witzgall, P., & Lebreton, S. (2022). The female sex pheromone (Z)-4-undecenal mediates flight attraction and courtship in Drosophila melanogaster. Journal of Insect Physiology, 137. https://doi.org/10.1016/j.jinsphys.2022.104355
Bredy, T. W., & Barad, M. (2009). Social modulation of associative fear learning by pheromone communication. Learn Mem, 16(1), 12-18. https://doi.org/10.1101/lm.1226009
Burkhardt, R. N., Artyukhin, A. B., Aprison, E. Z., Curtis, B. J., Fox, B. W., Ludewig, A. H., Palomino, D. F., Luo, J., Chaturbedi, A., Panda, O., Wrobel, C. J. J., Baumann, V., Portman, D. S., Lee, S. S., Ruvinsky, I., & Schroeder, F. C. (2023). Sex-specificity of the C. elegans metabolome. Nat Commun, 14(1), 320. https://doi.org/10.1038/s41467-023-36040-y
Burkhardt, R. N., Artyukhin, A. B., Aprison, E. Z., Curtis, B. J., Fox, B. W., Ludewig, A. H., Palomino, D. F., Luo, J., Chaturbedi, A., Panda, O., Wrobel, C. J. J., Baumann, V., Portman, D. S., Lee, S. S., Ruvinsky, I., & Schroeder, F. C. (2023). Sex-specificity of the C. elegans metabolome. Nature Communications, 14(1), 320. https://doi.org/10.1038/s41467-023-36040-y
Butcher, R. A., Fujita, M., Schroeder, F. C., & Clardy, J. (2007). Small-molecule pheromones that control dauer development in Caenorhabditis elegans. Nat Chem Biol, 3(7), 420-422. https://doi.org/10.1038/nchembio.2007.3
Butcher, R. A., Ragains, J. R., Li, W., Ruvkun, G., Clardy, J., & Mak, H. Y. (2009). Biosynthesis of the Caenorhabditis elegans dauer pheromone. Proc Natl Acad Sci U S A, 106(6), 1875-1879. https://doi.org/10.1073/pnas.0810338106
Chabaud, M. A., Isabel, G., Kaiser, L., & Preat, T. (2009). Social facilitation of long-lasting memory retrieval in Drosophila. Curr Biol, 19(19), 1654-1659. https://doi.org/10.1016/j.cub.2009.08.017
Chasnov, J. R., So, W. K., Chan, C. M., & Chow, K. L. (2007). The species, sex, and stage specificity of a Caenorhabditis sex pheromone. Proc Natl Acad Sci U S A, 104(16), 6730-6735. https://doi.org/10.1073/pnas.0608050104
Ejima, A., Smith, B. P., Lucas, C., van der Goes van Naters, W., Miller, C. J., Carlson, J. R., Levine, J. D., & Griffith, L. C. (2007). Generalization of courtship learning in Drosophila is mediated by cis-vaccenyl acetate. Curr Biol, 17(7), 599-605. https://doi.org/10.1016/j.cub.2007.01.053
Ferrero, D. M., Moeller, L. M., Osakada, T., Horio, N., Li, Q., Roy, D. S., Cichy, A., Spehr, M., Touhara, K., & Liberles, S. D. (2013). A juvenile mouse pheromone inhibits sexual behaviour through the vomeronasal system. Nature, 502(7471), 368-371. https://doi.org/10.1038/nature12579
Fielenbach, N., & Antebi, A. (2008). C. elegans dauer formation and the molecular basis of plasticity. Genes Dev, 22(16), 2149-2165. https://doi.org/10.1101/gad.1701508
Garcia, L. R., Mehta, P., & Sternberg, P. W. (2001). Regulation of Distinct Muscle Behaviors Controls the C. elegans Male's Copulatory Spicules during Mating. Cell, 107(6), 777-788. https://doi.org/https://doi.org/10.1016/S0092-8674(01)00600-6
Golden, J. W., & Riddle, D. L. (1982). A pheromone influences larval development in the nematode Caenorhabditis elegans. Science, 218(4572), 578-580. https://doi.org/10.1126/science.6896933
Gomez-Diaz, C., & Benton, R. (2013). The joy of sex pheromones. EMBO Rep, 14(10), 874-883. https://doi.org/10.1038/embor.2013.140
Hart, M. P., & Hobert, O. (2018). Neurexin controls plasticity of a mature, sexually dimorphic neuron. Nature, 553(7687), 165-170. https://doi.org/10.1038/nature25192
Holy, T. E., & Guo, Z. (2005). Ultrasonic songs of male mice. PLoS Biol, 3(12), e386. https://doi.org/10.1371/journal.pbio.0030386
Hong, M., Ryu, L., Ow, M. C., Kim, J., Je, A. R., Chinta, S., Huh, Y. H., Lee, K. J., Butcher, R. A., Choi, H., Sengupta, P., Hall, S. E., & Kim, K. (2017). Early Pheromone Experience Modifies a Synaptic Activity to Influence Adult Pheromone Responses of C. elegans. Curr Biol, 27(20), 3168-3177 e3163. https://doi.org/10.1016/j.cub.2017.08.068
Ikejiri, Y., Tanimoto, Y., Fujita, K., Hiramatsu, F., Yamazaki, S. J., Endo, Y., Iwatani, Y., Fujimoto, K., & Kimura, K. D. (2023). Neural mechanism of experience-dependent sensory gain control in C. elegans. Neurosci Res, 191, 77-90. https://doi.org/10.1016/j.neures.2023.01.006
Izrayelit, Y., Srinivasan, J., Campbell, S. L., Jo, Y., von Reuss, S. H., Genoff, M. C., Sternberg, P. W., & Schroeder, F. C. (2012). Targeted metabolomics reveals a male pheromone and sex-specific ascaroside biosynthesis in Caenorhabditis elegans. ACS Chem Biol, 7(8), 1321-1325. https://doi.org/10.1021/cb300169c
Jang, H., Kim, K., Neal, S. J., Macosko, E., Kim, D., Butcher, R. A., Zeiger, D. M., Bargmann, C. I., & Sengupta, P. (2012). Neuromodulatory state and sex specify alternative behaviors through antagonistic synaptic pathways in C. elegans. Neuron, 75(4), 585-592. https://doi.org/10.1016/j.neuron.2012.06.034
Jarrell, T. A., Wang, Y., Bloniarz, A. E., Brittin, C. A., Xu, M., Thomson, J. N., Albertson, D. G., Hall, D. H., & Emmons, S. W. (2012). The Connectome of a Decision-Making Neural Network. Science, 337(6093), 437-444. https://doi.org/doi:10.1126/science.1221762
Jin, X., Pokala, N., & Bargmann, C. I. (2016). Distinct Circuits for the Formation and Retrieval of an Imprinted Olfactory Memory. Cell, 164(4), 632-643. https://doi.org/10.1016/j.cell.2016.01.007
Johnston, R. E. (1986). Effects of female odors on the sexual behavior of male hamsters. Behav Neural Biol, 46(2), 168-188. https://doi.org/10.1016/s0163-1047(86)90654-0
Krupp, J. J., Kent, C., Billeter, J. C., Azanchi, R., So, A. K., Schonfeld, J. A., Smith, B. P., Lucas, C., & Levine, J. D. (2008). Social experience modifies pheromone expression and mating behavior in male Drosophila melanogaster. Curr Biol, 18(18), 1373-1383. https://doi.org/10.1016/j.cub.2008.07.089
LeBoeuf, B., Correa, P., Jee, C., & Garcia, L. R. (2014). Caenorhabditis elegans male sensory-motor neurons and dopaminergic support cells couple ejaculation and post-ejaculatory behaviors. Elife, 3. https://doi.org/10.7554/eLife.02938
Lebreton, S., Borrero-Echeverry, F., Gonzalez, F., Solum, M., Wallin, E. A., Hedenström, E., Hansson, B. S., Gustavsson, A.-L., Bengtsson, M., Birgersson, G., Walker, W. B., Dweck, H. K. M., Becher, P. G., & Witzgall, P. (2017). A Drosophila female pheromone elicits species-specific long-range attraction via an olfactory channel with dual specificity for sex and food. BMC Biology, 15(1). https://doi.org/10.1186/s12915-017-0427-x
Lee, S. S., & Schroeder, F. C. (2012). Steroids as central regulators of organismal development and lifespan. PLoS Biol, 10(4), e1001307. https://doi.org/10.1371/journal.pbio.1001307
Leighton, D. H., Choe, A., Wu, S. Y., & Sternberg, P. W. (2014). Communication between oocytes and somatic cells regulates volatile pheromone production in Caenorhabditis elegans. Proc Natl Acad Sci U S A, 111(50), 17905-17910. https://doi.org/10.1073/pnas.1420439111
Lints, R., & Emmons, S. W. (1999). Patterning of dopaminergic neurotransmitter identity among Caenorhabditis elegans ray sensory neurons by a TGFbeta family signaling pathway and a Hox gene. Development, 126(24), 5819-5831. https://doi.org/10.1242/dev.126.24.5819
Liu, K. S., & Sternberg, P. W. (1995). Sensory regulation of male mating behavior in caenorhabditis elegans. Neuron, 14(1), 79-89. https://doi.org/https://doi.org/10.1016/0896-6273(95)90242-2
Liu, Y., LeBeouf, B., Guo, X., Correa, P. A., Gualberto, D. G., Lints, R., & Garcia, L. R. (2011). A cholinergic-regulated circuit coordinates the maintenance and bi-stable states of a sensory-motor behavior during Caenorhabditis elegans male copulation. PLoS Genet, 7(3), e1001326. https://doi.org/10.1371/journal.pgen.1001326
Loer, C. M., & Kenyon, C. J. (1993). Serotonin-deficient mutants and male mating behavior in the nematode Caenorhabditis elegans. J Neurosci, 13(12), 5407-5417. https://doi.org/10.1523/jneurosci.13-12-05407.1993
Ludewig, A. H., Izrayelit, Y., Park, D., Malik, R. U., Zimmermann, A., Mahanti, P., Fox, B. W., Bethke, A., Doering, F., Riddle, D. L., & Schroeder, F. C. (2013). Pheromone sensing regulates Caenorhabditis elegans lifespan and stress resistance via the deacetylase SIR-2.1. Proc Natl Acad Sci U S A, 110(14), 5522-5527. https://doi.org/10.1073/pnas.1214467110
McGrath, P. T., & Ruvinsky, I. (2019). A primer on pheromone signaling in Caenorhabditis elegans for systems biologists. Curr Opin Syst Biol, 13, 23-30. https://doi.org/10.1016/j.coisb.2018.08.012
Morsci, N. S., Haas, L. A., & Barr, M. M. (2011). Sperm status regulates sexual attraction in Caenorhabditis elegans. Genetics, 189(4), 1341-1346. https://doi.org/10.1534/genetics.111.133603
Novotny, M., Harvey, S., Jemiolo, B., & Alberts, J. (1985). Synthetic pheromones that promote inter-male aggression in mice. Proceedings of the National Academy of Sciences, 82(7), 2059-2061. https://doi.org/doi:10.1073/pnas.82.7.2059
Novotny, M., Jemiolo, B., Harvey, S., Wiesler, D., & Marchlewska-Koj, A. (1986). Adrenal-Mediated Endogenous Metabolites Inhibit Puberty in Female Mice. Science, 231(4739), 722-725. https://doi.org/doi:10.1126/science.3945805
Park, J. Y., Joo, H. J., Park, S., & Paik, Y. K. (2019). Ascaroside Pheromones: Chemical Biology and Pleiotropic Neuronal Functions. Int J Mol Sci, 20(16). https://doi.org/10.3390/ijms20163898
Peng, J. Y., Liu, X., Zeng, X. T., Hao, Y., Zhang, J. H., Li, Q., & Tong, X. J. (2023). Early pheromone perception remodels neurodevelopment and accelerates neurodegeneration in adult C. elegans. Cell Rep, 42(6), 112598. https://doi.org/10.1016/j.celrep.2023.112598
Porta-de-la-Riva, M., Fontrodona, L., Villanueva, A., & Ceron, J. (2012). Basic Caenorhabditis elegans methods: synchronization and observation. J Vis Exp(64), e4019. https://doi.org/10.3791/4019
Roper, A., & Zann, R. (2006). The Onset of Song Learning and Song Tutor Selection in Fledgling Zebra Finches. Ethology, 112(5), 458-470. https://doi.org/10.1111/j.1439-0310.2005.01169.x
Schinkmann, K., & Li, C. (1992). Localization of FMRFamide-like peptides in Caenorhabditis elegans. J Comp Neurol, 316(2), 251-260. https://doi.org/10.1002/cne.903160209
Serrano-Saiz, E., Pereira, L., Gendrel, M., Aghayeva, U., Bhattacharya, A., Howell, K., Garcia, L. R., & Hobert, O. (2017). A Neurotransmitter Atlas of the Caenorhabditis elegans Male Nervous System Reveals Sexually Dimorphic Neurotransmitter Usage. Genetics, 206(3), 1251-1269. https://doi.org/10.1534/genetics.117.202127
Srinivasan, J., Kaplan, F., Ajredini, R., Zachariah, C., Alborn, H. T., Teal, P. E., Malik, R. U., Edison, A. S., Sternberg, P. W., & Schroeder, F. C. (2008). A blend of small molecules regulates both mating and development in Caenorhabditis elegans. Nature, 454(7208), 1115-1118. https://doi.org/10.1038/nature07168
Srinivasan, J., von Reuss, S. H., Bose, N., Zaslaver, A., Mahanti, P., Ho, M. C., O'Doherty, O. G., Edison, A. S., Sternberg, P. W., & Schroeder, F. C. (2012). A modular library of small molecule signals regulates social behaviors in Caenorhabditis elegans. PLoS Biol, 10(1), e1001237. https://doi.org/10.1371/journal.pbio.1001237
von Reuss, S. H., Dolke, F., & Dong, C. (2017). Ascaroside Profiling of Caenorhabditis elegans Using Gas Chromatography–Electron Ionization Mass Spectrometry. Analytical Chemistry, 89(19), 10570-10577. https://doi.org/10.1021/acs.analchem.7b02803
Wan, X., Zhou, Y., Chan, C. M., Yang, H., Yeung, C., & Chow, K. L. (2019). SRD-1 in AWA neurons is the receptor for female volatile sex pheromones in C. elegans males. EMBO Rep, 20(3). https://doi.org/10.15252/embr.201846288
Wang, D., Levine, J. L. S., Avila-Quintero, V., Bloch, M., & Kaffman, A. (2020). Systematic review and meta-analysis: effects of maternal separation on anxiety-like behavior in rodents. Translational Psychiatry, 10(1), 174. https://doi.org/10.1038/s41398-020-0856-0
Weng, J.-W., Park, H., Valotteau, C., Chen, R.-T., Essmann, C. L., Pujol, N., Sternberg, P. W., & Chen, C.-H. (2023). Body stiffness is a mechanical property that facilitates contact-mediated mate recognition in Caenorhabditis elegans. Current Biology. https://doi.org/https://doi.org/10.1016/j.cub.2023.07.020
White, J. G., Southgate, E., Thomson, J. N., & Brenner, S. (1986). The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci, 314(1165), 1-340. https://doi.org/10.1098/rstb.1986.0056
Whittaker, A. J., & Sternberg, P. W. (2009). Coordination of opposing sex-specific and core muscle groups regulates male tail posture during Caenorhabditis elegans male mating behavior. BMC Biol, 7, 33. https://doi.org/10.1186/1741-7007-7-33
Whitten, W. K., Bronson, F. H., & Greenstein, J. A. (1968). Estrus-inducing pheromone of male mice: transport by movement of air. Science, 161(3841), 584-585. https://doi.org/10.1126/science.161.3841.584
Wu, T., Duan, F., Yang, W., Liu, H., Caballero, A., Fernandes de Abreu, D. A., Dar, A. R., Alcedo, J., Ch'ng, Q., Butcher, R. A., & Zhang, Y. (2019). Pheromones Modulate Learning by Regulating the Balanced Signals of Two Insulin-like Peptides. Neuron, 104(6), 1095-1109 e1095. https://doi.org/10.1016/j.neuron.2019.09.006
Zhou, Y., Wang, Y., Zhang, X., Bhar, S., Jones Lipinski, R. A., Han, J., Feng, L., & Butcher, R. A. (2018). Biosynthetic tailoring of existing ascaroside pheromones alters their biological function in C. elegans. Elife, 7. https://doi.org/10.7554/eLife.33286
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90488-
dc.description.abstract早期經驗塑造神經系統,從而完善成年動物的行為表現。已有研究表明,在一個關鍵時期內的早期經驗所產生的感官印記會調節後期發育階段的行為;然而,目前還不清楚動物是否能整合多種感官經驗來調節行為。在這裡,我們發現秀麗隱桿線蟲雄性整合了幼蟲和成蟲對雌雄同體專一性費洛蒙的感官經驗,從而完善了交配行為的表現。在幼蟲和成蟲階段,性別專一性費洛蒙的存在顯著縮短了雄性接觸雌雄同體和伸出雌雄同體骨針的時間。有趣的是,我們發現雄性在幼蟲和成蟲階段通過兩個階段的時間整合費洛蒙信號。早期短暫暴露於費洛蒙是神經調節效應的先決條件,但這還不夠。相反,早期接觸費洛蒙的成年雄性只有在富含費洛蒙的環境中才會表現出行為上的改進。因此,我們的研究結果揭示了一種出乎意料的複雜學習方案,即在整合了多種感官經驗的情況下,雄性秀麗隱桿線蟲的行為表現會得到改進。zh_TW
dc.description.abstractEarly experience sculpts the nervous system to refine behavioral performance of adults. It has been shown that sensory imprinting by early experience within a critical period modulates the behaviors in later developmental stages; however, it is current unclear whether animals can integrate multiple sensory experiences for behavioral modulations. Here we show that C. elegans males integrate larvae and adult sensory experience of hermaphrodite-specific pheromones to refine the performance of stereotyped mating behaviors. The presence of sex-specific pheromones across early and adult stages remarkably reduces the time for males to contact hermaphrodites and protract spicules. Interestingly, we find that males integrate pheromonal signaling through two windows in larva and adult stages. Early exposure to pheromones for a minimal time is prerequisite but not sufficient to display the neuromodulatory effects. Instead, adult males with early exposure of pheromones show the behavioral refinements only in the environment enriched with pheromones. Our results thus reveal an unexpected complex learning scheme to refine the behavioral outputs integrating multiple sensory experiences in C. elegans males.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:18:42Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-10-03T16:18:42Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 #
誌謝………… i
中文摘要…… ii
ABSTRACT… iii
CONTENTS… iv
Chapter 1 Introduction 1
1.1 Early experience sculpt the behavior in the future 1
1.2 Pheromones signaling for sexual behavior 3
1.3 Pheromone-mediated behavioral and physiological modulations in C. elegans 5
1.4 Pheromones perception system in C. elegans 6
1.5 Pheromones serve as experience to modulate behavior 7
Chapter 2 Material and Method 8
2.1 C. elegans strains and worm maintenance 8
2.2 Preparation of pheromone-conditioning plates 8
2.3 Quantifications of the time for males to contact and protract the spicule with hermaphrodites 9
2.4 Quantification of mating efficiency 9
2.5 Spicule protraction induced by aldicarb 10
2.5.1 Preparation of aldicarb plates 10
2.5.2 Spicule protraction assay 10
2.6 Synchronization of developmental stages 10
2.7 Statistics analysis 11
Chapter 3 Results 12
3.1 Early exposure to pheromones refines mating behaviors in adult males 12
3.2 Sex-specific pheromones modulate spicule protraction triggered by acetylcholine signaling 13
3.3 Volatile pheromones are essential to modulate spicule protraction in males 15
3.4 Both larval and adult sensory experiences are required to trigger modulation of mating behavior 16
Chapter 4 Discussion 18
4.1 Multiple sensory experiences at different stages shapes behavioral responses 18
4.2 Possible neuromodulatory mechanisms by pheromones that sensitize spicule protraction 18
4.3 Explanation for the difference between naive daf-22 male and WT male under pheromone-conditioning 20
4.4 Possible roles of volatile pheromones in mating behavior 20
Chapter 5 Figures 22
Figure 1. A schematic diagram of C. elegans male mating behavior………………...22
Figure 2. A schematic illustration of worm preparation for measuring key time points in C. elegans mating behavior……………………………………………….24
Figure 3. Early experience with pheromones refines mating behaviors in adult males…………………………………………………………………………26
Figure 4. A schematic representation of a method for quantifying male mating competence in C. elegans………………………………………………...….28
Figure 5. Exposure to pheromones promote mating efficiency in adult males………30
Figure 6. A circuit map of spicule protraction in males……………………………...32
Figure 7. Experimental design of fog-2 conditioning………………………………...34
Figure 8. Conditioning males with pheromones generated by different number of fog-2 females………………………………………………………………...36
Figure 9. Female/hermaphrodite pheromones exist dominant effect to neuromodulation effect………………………………………………………38
Figure 10. The role of ascarosides and volatile pheromones in the neuromodulation of spicule protraction…………………………………………………………...40
Figure 11. Effects on N2 males with the exposure of different sources of pheromones from environments…………………………………………………………..42
Figure 12. The neuromodulation effect requires exposure to pheromones at L4 stage and adult stage………………………………………………………………44
Figure 13. A schematic illustration of the time when the pheromone conditioned media was applied…………………………………………………………..46
Figure 14. Two critical periods of sensory experience are required for neuromodulation…………………………………………………………….48
Figure 15. A schematic illustration of the time when the pheromone conditioned media was applied………………………………………………………..….50
Figure 16. A flexible time frame for early sensory experience……………………....52
Figure 17. Early sensory experience with pheromones and under pheromonal environment at adult stage refine mating behaviors…………………………54
Figure 18. Model of pheromonal-mediated neuromodulation of mating behavior......56
Chapter 6 Table 58
Reference …………………………………………………………………………..59
-
dc.language.isoen-
dc.title雄性線蟲整合幼年與成年期的感官經驗調控交配行為zh_TW
dc.titleC. elegans males integrate larval and adult sensory experience to modulate mating behaviorsen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee潘俊良;薛雁冰zh_TW
dc.contributor.oralexamcommitteeChun-Liang Pan;Yen-Ping Hsuehen
dc.subject.keyword骨針,費洛蒙,交配行為,感官經驗,行為調節,神經,線蟲,zh_TW
dc.subject.keywordSpicule,Sensory experiences,Pheromones,Mating behavior,Behavioral modulation,C. elegans,en
dc.relation.page63-
dc.identifier.doi10.6342/NTU202303737-
dc.rights.note未授權-
dc.date.accepted2023-08-11-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept分子與細胞生物學研究所-
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  目前未授權公開取用
1.67 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved