請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90487
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李世光 | zh_TW |
dc.contributor.advisor | Chih-Kung Lee | en |
dc.contributor.author | 林世勛 | zh_TW |
dc.contributor.author | Shih-Hsun Lin | en |
dc.date.accessioned | 2023-10-03T16:18:26Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-10-03 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-11 | - |
dc.identifier.citation | Bell, A.G., Improvement in telegraphy, in Google Patents. 1876.
Rice, C.W., A New Type of Loudspeaker for Use with Telephone, in Google Patents. 1925. Shehzad, M., S. Wang, and Y. Wang, Flexible and transparent piezoelectric loudspeaker. npj Flexible Electronics, 2021. 5(1): p. 24. Robjohns, H., A brief history of microphones. Microphone Data Book. http://microphone-data. com/media/filestore/articles/History-10. pdf, 2001. West, G.M.S.a.J.E., Self‐Biased Condenser Microphone with High Capacitance. Acoustical Society of America, 1962. Lewiner, J., Space charge and polarization in insulators: a long history with a promising future. IEEE Transactions on Dielectrics and Electrical Insulation, 2010. 17(4): p. 1096-1105. Liu, L., et al., Fiber-optic michelson interferometric acoustic sensor based on a PP/PET diaphragm. IEEE Sensors Journal, 2016. 16(9): p. 3054-3058. Mohammadi, B., et al., Mechanical and sound absorption properties of open-cell polyurethane foams modified with rock wool fiber. Journal of Building Engineering, 2022. 48: p. 103872. Sui, N., et al., A lightweight yet sound-proof honeycomb acoustic metamaterial. Applied Physics Letters, 2015. 106(17): p. 171905. Gerhard, R. Improving essential properties of dielectrics for electro-electrets, piezo-electrets and ferroelectric polymer electrets via physico-chemical routes. in 2013 IEEE International Conference on Solid Dielectrics (ICSD). 2013. IEEE. Carpi, F., et al., Dielectric elastomers as electromechanical transducers: Fundamentals, materials, devices, models and applications of an emerging electroactive polymer technology. 2011: Elsevier. Gerhard-Multhaupt, R., Less can be more. Holes in polymers lead to a new paradigm of piezoelectric materials for electret transducers. IEEE Transactions on Dielectrics and Electrical Insulation, 2002. 9(5): p. 850-859. Kressmann, R., G.M. Sessler, and P. Gunther, Space-charge electrets. IEEE Transactions on Dielectrics and Electrical Insulation, 1996. 3(5): p. 607-623. Rychkov, D. and R. Gerhard, Stabilization of positive charge on polytetrafluoroethylene electret films treated with titanium-tetrachloride vapor. Applied Physics Letters, 2011. 98(12). Gerhard, R. A matter of attraction: Electric charges localised on dielectric polymers enable electromechanical transduction. in 2014 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP). 2014. 陳柏亦, 孔洞壓電駐極體薄膜製程開發與特性分析. 國立臺灣大學應用力學研究所, 2021. 劉文凱, 以相轉變法製作多孔壓電駐極體薄膜之製程及特性分析. 國立臺灣大學工程科學及海洋工程研究所, 2022. Day, G.S., et al., Evolution of porous materials from ancient remedies to modern frameworks. Communications Chemistry, 2021. 4(1): p. 114. Peng, L., et al., Mechanic and Acoustic Properties of the Sound-Absorbing Material Made from Natural Fiber and Polyester. Advances in Materials Science and Engineering, 2015. 2015: p. 274913. Sagartzazu, X., L. Hervella-Nieto, and J.M. Pagalday, Review in Sound Absorbing Materials. Archives of Computational Methods in Engineering, 2008. 15(3): p. 311-342. de Moraes, E.G., et al., Innovative thermal and acoustic insulation foam by using recycled ceramic shell and expandable styrofoam (EPS) wastes. Waste Management, 2019. 89: p. 336-344. Chen, S. and Y. Jiang, The acoustic property study of polyurethane foam with addition of bamboo leaves particles. Polymer composites, 2018. 39(4): p. 1370-1381. Darunte, L.A., et al., Direct air capture of CO2 using amine functionalized MIL-101 (Cr). ACS Sustainable Chemistry & Engineering, 2016. 4(10): p. 5761-5768. Zhang, J., et al., Porous liquids: a promising class of media for gas separation. Angewandte Chemie, 2015. 127(3): p. 946-950. Comas-Vives, A., Amorphous SiO 2 surface models: energetics of the dehydroxylation process, strain, ab initio atomistic thermodynamics and IR spectroscopic signatures. Physical Chemistry Chemical Physics, 2016. 18(10): p. 7475-7482. Li, Z.-G., et al., Acoustic properties of metal-organic frameworks. Research, 2021. 2021. Bennett, T.D., et al., The changing state of porous materials. Nature Materials, 2021. 20(9): p. 1179-1187. Qiu, G., J. Xiao, and J. Zhu, Research history, classification and applications of metal porous material. Metalurgia international, 2013. 18(1): p. 70. Bhatnagar, A., et al., An overview of the modification methods of activated carbon for its water treatment applications. Chemical Engineering Journal, 2013. 219: p. 499-511. Zhang, Q., et al., Bioinspired engineering of honeycomb structure–Using nature to inspire human innovation. Progress in Materials Science, 2015. 74: p. 332-400. Ashby, M.F., et al., Metal foams: a design guide. 2000: Elsevier. Gibson, L., Mechanical behavior of metallic foams. Annual review of materials science, 2000. 30(1): p. 191-227. Banhart, J., Manufacture, characterisation and application of cellular metals and metal foams. Progress in materials science, 2001. 46(6): p. 559-632. Dudina, D.V., B.B. Bokhonov, and E.A. Olevsky, Fabrication of porous materials by spark plasma sintering: a review. Materials, 2019. 12(3): p. 541. Hampden‐Smith, M.J. and T.T. Kodas, Chemical vapor deposition of metals: Part 1. An overview of CVD processes. Chemical Vapor Deposition, 1995. 1(1): p. 8-23. Nielsch, K., et al., Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition. Advanced Materials, 2000. 12(8): p. 582-586. Liu, P.S. and K.M. Liang, Review Functional materials of porous metals made by P/M, electroplating and some other techniques. Journal of Materials Science, 2001. 36(21): p. 5059-5072. Kitagawa, S., Metal–organic frameworks (MOFs). Chemical Society Reviews, 2014. 43(16): p. 5415-5418. An, J., et al., Metal-adeninate vertices for the construction of an exceptionally porous metal-organic framework. Nature communications, 2012. 3(1): p. 604. Khan, N.A., Z. Hasan, and S.H. Jhung, Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): A review. Journal of hazardous materials, 2013. 244: p. 444-456. Sun, L., M.G. Campbell, and M. Dincă, Electrically conductive porous metal–organic frameworks. Angewandte Chemie International Edition, 2016. 55(11): p. 3566-3579. Li, Y., et al., Preparation and Properties of Highly Elastic, Lightweight, and Thermally Insulating SiO2 Fibrous Porous Materials. Materials, 2022. 15(9): p. 3069. Tang, F., et al., Preparation of porous materials with controlled pore size and porosity. Journal of the European Ceramic Society, 2004. 24(2): p. 341-344. Naguib, H.E., C.B. Park, and N. Reichelt, Fundamental foaming mechanisms governing the volume expansion of extruded polypropylene foams. Journal of applied polymer science, 2004. 91(4): p. 2661-2668. Hentze, H.P. and M. Antonietti, Template synthesis of porous organic polymers. Current Opinion in Solid State and Materials Science, 2001. 5(4): p. 343-353. Siripurapu, S., et al., Generation of microcellular foams of PVDF and its blends using supercritical carbon dioxide in a continuous process. Polymer, 2002. 43(20): p. 5511-5520. Naga, N., et al., Synthesis of network polymers by means of addition reactions of multifunctional-amine and poly (ethylene glycol) diglycidyl ether or diacrylate compounds. Polymers, 2020. 12(9): p. 2047. Mishra, S., et al., Advances in piezoelectric polymer composites for energy harvesting applications: a systematic review. Macromolecular Materials and Engineering, 2019. 304(1): p. 1800463. Stewart, M., M. Cain, and D. Hall, Ferroelectric hysteresis measurement and analysis. Report CMMT (A), 1999. 152. Heaviside, O., Electromagnetic induction and its propagation. The Electrician, 1885. 14: p. 178-180. Sessler, G.M., Physical principles of electrets. Electrets, 2005: p. 13-80. Graz, I. and A. Mellinger, Polymer Electrets and Ferroelectrets as EAPs: Fundamentals, in Electromechanically Active Polymers: A Concise Reference, F. Carpi, Editor. 2016, Springer International Publishing: Cham. p. 1-10. Qiu, X., et al., Ferroelectrets: Recent developments. IET Nanodielectrics, 2022. 5(3-4): p. 113-124. Buchberger, G., R. Schwödiauer, and S. Bauer, Flexible large area ferroelectret sensors for location sensitive touchpads. Applied Physics Letters, 2008. 92(12): p. 123511. 白明憲, 工程聲學. 第八版 ed. 2022. Kimura, M., et al. A new high-frequency impedance tube for measuring sound absorption coefficient and sound transmission loss. in Inter-Noise Conference. 2014. Vissamraju, K., Measurement of absorption coefficient of road surfaces using impedance tube method. 2005. 黃稟翰, 以阻抗管法測量薄膜結構之等價 MCK 之研究. 國立臺灣大學工程科學及海洋工程研究所, 2012. Yao, K., et al., Screen-printed piezoelectric ceramic thick films with sintering additives introduced through a liquid-phase approach. Sensors and Actuators A: Physical, 2005. 118(2): p. 342-348. Kalimuldina, G., et al., A review of piezoelectric PVDF film by electrospinning and its applications. Sensors, 2020. 20(18): p. 5214. Tabatabaei, S.H., P.J. Carreau, and A. Ajji, Microporous membranes obtained from PP/HDPE multilayer films by stretching. Journal of Membrane Science, 2009. 345(1): p. 148-159. Pervin, R., P. Ghosh, and M.G. Basavaraj, Tailoring pore distribution in polymer films via evaporation induced phase separation. RSC advances, 2019. 9(27): p. 15593-15605. Roh, I.J., et al., Poly(ethylene chlorotrifluoroethylene) membrane formation via thermally induced phase separation (TIPS). Journal of Membrane Science, 2010. 362(1): p. 211-220. Venault, A., et al., A review on polymeric membranes and hydrogels prepared by vapor-induced phase separation process. Polymer Reviews, 2013. 53(4): p. 568-626. Guillen, G.R., et al., Preparation and Characterization of Membranes Formed by Nonsolvent Induced Phase Separation: A Review. Industrial & Engineering Chemistry Research, 2011. 50(7): p. 3798-3817. Li, G., et al., Influence of Temperature on Charge Accumulation in Low-Density Polyethylene Based on Depolarization Current and Space Charge Decay. Polymers, 2019. 11(4): p. 587. Giacometti, J.A., S. Fedosov, and M.M. Costa, Corona charging of polymers: recent advances on constant current charging. Brazilian Journal of Physics, 1999. 29: p. 269-279. Kloub, H., High Effectiveness Micro Electro Mechanical Capacitive Transducer for Kinetic Energy Harvesting. 2011. Fialka, J. and P. Benes, Comparison of methods of piezoelectric coefficient measurement. 2012 IEEE International Instrumentation and Measurement Technology Conference Proceedings, 2012: p. 37-42. Ray, C.A. and S.R. Anton, Multilayer piezoelectret foam stack for vibration energy harvesting. Journal of Intelligent Material Systems and Structures, 2016. 28(3): p. 408-420. Zhang, X., J. Hillenbrand, and G.M. Sessler, Ferroelectrets with improved thermal stability made from fused fluorocarbon layers. Journal of Applied Physics, 2007. 101(5). Bune, A.V., et al., Piezoelectric and pyroelectric properties of ferroelectric Langmuir–Blodgett polymer films. Journal of Applied Physics, 1999. 85: p. 7869-7873. Mellinger, A., Dielectric Resonance Spectroscopy: A Versatile Tool in the Quest for Better Piezoelectric Polymers. Dielectrics and Electrical Insulation, IEEE Transactions on, 2003. 10: p. 842-861. Standardization, I.O.f., Acoustics-Determination of sound absorption coefficient and impedance in impedance tubes. 1998. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90487 | - |
dc.description.abstract | 本研究的主軸在於探討多孔壓電駐極體的孔洞性質對其聲阻抗性質與壓電性質的影響。使用了PVDF-TrFE 和 PVDF-HFP這兩種PVDF共聚物作為製程材料,採用蒸氣誘導式相分離法、非溶劑誘導式相分離法和混合製程三種方法產生具不同孔洞大小及結構的多孔壓電駐極體薄膜,再透過電暈放電極化使其完成駐電。本研究以掃描式顯微鏡研究製成參數對孔洞結構的影響,發現蒸氣誘導式相分離法的濕度條件是一項重要因素,孔洞大小能與環境濕度呈正相關,最大孔洞能從50 μm2提升到140 μm2。而非溶劑誘導式相分離法所產生的得孔洞分布較為集中,高濃度 的非溶劑能增加孔洞大小,使最大孔洞能從70 μm2提升到110 μm2。最後,混合製程法則可以透過放置時間增加,製備出具有700 μm2等級地巨型孔洞結構,以及同時包含0.01 μm2等級的極小型孔洞。本研究透過阻抗管法量測具不同孔洞結構的薄膜聲阻抗性質,發現其結果與孔洞形貌有高度相依性。以蒸氣誘導式相分離法製作的多孔壓電駐極體,以最高濕度及最低濕度製備的薄膜聲阻抗的等效彈簧係數達3.4倍的差距,而非溶劑誘導式相分離法與混合製程法則可以產生 3.9 倍以上的差距。在 壓電性量測方面,本研究以實驗驗證出以孔洞大小密度的調節,可以使壓電薄膜有6倍以上的壓電表現差距,並歸納出小而低占比的孔洞相較於大而高佔比,能有更優秀的壓電表現,d33值可達928.8 pC/N。此外,本研究並驗證將此多孔壓電駐極體進行乾燥後,能達到20倍以上的壓電表現,此壓電性能在受潮後乾燥,可復原至原有的95%,顯示本研究薄膜具有壓電準永久性。在比較不同製程的實驗結果得知,小孔洞及較低面積占比的孔洞結構能有較佳的壓電響應,且孔洞形貌的變化能透過不同製程參數進行調節,並與壓電性、聲阻抗性質之間有高度相依性,使得這些特性能夠透過製程靈活地進行調控。 | zh_TW |
dc.description.abstract | This study investigates the influence of void structures of porous piezoelectric ferroelectric films on acoustic impedance and piezoelectric properties. Two types of PVDF copolymers, P(VDF-TrFE), and P(VDF-HFP), are used, including vapor-induced phase separation, nonsolvent-induced phase separation, and mixed-process. Fabricated films are polarized using corona discharge. After studying void structures using scanning electron microscopy, it is found that void size directly correlates with humidity in the vapor-induced phase separation method. The maximum pore size can increase from 50 μm² to 140 μm². A more concentrated void distribution is observed in the nonsolvent-induced phase separation method. A higher nonsolvent concentration leads to larger pores, increasing the maximum pore size from 70 μm² to 110 μm². The mixed-process method creates void structures with giant pores up to 700 μm² and extremely small pores down to 0.01 μm². On the other hand, the experimental results show a strong dependence on pore morphology for the acoustic impedance using the impedance tube measurement method. Furthermore, piezoelectric characteristics vary over six-fold by adjusting void size and density. Void structures containing smaller and lower-area percentage exhibiting superior responses, reaching a d33 value of 928.8 pC/N. It is also found that dehydrated porous piezoelectric films can achieved a 20-fold increase in piezoelectric performance, and a recovery of 95% performance can achieve by dehydrating a humid film. In summary, This study highlights the tunable nature of void morphology through different fabrication methods. The detailed study on the correlation between void structure and piezoelectric properties and acoustic impedance enables the adjustment of porous piezoelectric ferroelectric films | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:18:26Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-10-03T16:18:26Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii ABSTRACT iv 目錄 v 圖目錄 viii 表目錄 xii 第1章 緒論 1 1.1 前言 1 1.2 研究背景 1 1.3 研究動機 2 1.4 研究目標 3 1.5 論文架構 3 第2章 孔洞材料與聲學特性 5 2.1 孔洞材料 5 2.1.1 孔洞材料的發展 5 2.1.2 常見的孔洞材料 6 2.1.3 駐極體材料 10 2.2 聲學性質介紹及量測 14 2.2.1 聲阻抗介紹 14 2.3 轉移函數法計算聲阻抗 15 2.3.1 反射係數推導 16 2.3.2 特徵聲學阻抗 17 2.3.3 雙麥克風法 18 2.4 等效彈簧模型 19 2.4.1 等效機械系統 19 2.4.2 空腔建置 20 第3章 駐極體的製程及量測 23 3.1 駐極體的製程介紹 23 3.1.1 製程方法介紹 23 3.1.2 相分離法 24 3.1.3 極化方法 25 3.2 壓電性質的量測 27 3.2.1 正壓電效應量測壓電係數 27 3.2.2 逆壓電效應量測壓電係數 29 3.2.3 共振法量測壓電係數 29 第4章 研究方法與實驗架設 31 4.1 多孔壓電駐極體薄膜製程 31 4.1.1 高分子溶液配置 31 4.1.2 蒸氣誘導式相分離法製備駐極體薄膜 32 4.1.3 非溶劑誘導相分離法製備駐極體薄膜 34 4.1.4 混合製程製備駐極體薄膜 35 4.2 阻抗管設計架設 37 4.2.1 阻抗管設計 37 4.2.2 空腔設計 39 4.2.3 量測步驟與分析方法 39 4.3 極化程序 41 4.4 壓電係數量測 42 4.4.1 樣本製作 42 4.4.2 動態法 44 4.4.3 樣本保存 45 第5章 實驗結果與討論 47 5.1 製程與孔洞生成關係 47 5.1.1 蒸氣誘導式相分離法與孔洞形成關係 47 5.1.2 非溶劑誘導式相分離法與孔洞形成關係 51 5.1.3 混合製程與孔洞形成關係 55 5.1.4 不同製程孔洞比較 60 5.2 聲阻抗量測結果 60 5.2.1 蒸氣誘導式相分離法製程聲阻抗量測 61 5.2.2 非溶劑誘導式相分離法製程聲阻抗量測 63 5.2.3 混合製程聲阻抗量測 66 5.3 壓電係數量測結果 69 5.3.1 蒸氣誘導式相分離法壓電性量測 69 5.3.2 非溶劑誘導式相分離法製程壓電性量測 72 5.3.3 混合製程壓電性量測 76 5.3.4 乾燥時間與壓電性關係 79 5.3.5 乾燥樣本與商用薄膜比較 81 第6章 結論與未來展望 83 6.1 結論 83 6.2 未來展望 84 參考文獻 85 | - |
dc.language.iso | zh_TW | - |
dc.title | 多孔壓電駐極體的孔洞性質對聲阻抗與 壓電特性影響之研究 | zh_TW |
dc.title | Study on the Influence of Porosity of Porous Piezo-Electric Poling Structures on Acoustic Impedance and Piezoelectric Properties | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.coadvisor | 許聿翔 | zh_TW |
dc.contributor.coadvisor | Yu-Hsiang Hsu | en |
dc.contributor.oralexamcommittee | 王昭男;宋家驥;柯文清 | zh_TW |
dc.contributor.oralexamcommittee | Chao-Nan Wang;chia-chi Sung;Wen-Ching Ko | en |
dc.subject.keyword | 多孔壓電駐極體,蒸氣誘導式相分離法,非溶劑誘導式相分離法,阻抗管法,動態法, | zh_TW |
dc.subject.keyword | Porous piezoelectric electric,vapor-induced phase separation method,nonsolvent-induced phase separation method,impedance tube method,dynamic method, | en |
dc.relation.page | 89 | - |
dc.identifier.doi | 10.6342/NTU202303250 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2023-08-11 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 工程科學及海洋工程學系 | - |
顯示於系所單位: | 工程科學及海洋工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 目前未授權公開取用 | 6.91 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。