請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90485完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉啟德 | zh_TW |
| dc.contributor.advisor | Chi-Te Liu | en |
| dc.contributor.author | 呂東澤 | zh_TW |
| dc.contributor.author | Tung-Tse Lu | en |
| dc.date.accessioned | 2023-10-03T16:17:53Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-10-03 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-08 | - |
| dc.identifier.citation | Ahmad, P., Abdel Latef, A. A., Abd_Allah, E. F., Hashem, A., Sarwat, M., Anjum, N. A., & Gucel, S. (2016). Calcium and potassium supplementation enhanced growth, osmolyte secondary metabolite production, and enzymatic antioxidant machinery in cadmium-exposed chickpea (Cicer arietinum L.). Frontiers in Plant Science, 7, 513.
Ahmed, A. F., Attia, F. A., Liu, Z., Li, C., Wei, J., & Kang, W. (2019). Antioxidant activity and total phenolic content of essential oils and extracts of sweet basil (Ocimum basilicum L.) plants. Food Science and Human Wellness, 8(3), 299-305. Akbari, B., Baghaei‐Yazdi, N., Bahmaie, M., & Mahdavi Abhari, F. (2022). The role of plant‐derived natural antioxidants in reduction of oxidative stress. BioFactors, 48(3), 611-633. Al Abbasy, D. W., Pathare, N., Al-Sabahi, J. N., & Khan, S. A. (2015). Chemical composition and antibacterial activity of essential oil isolated from Omani basil (Ocimum basilicum Linn.). Asian Pacific Journal of Tropical Disease, 5(8), 645-649. Alam, M. Z., & Rahman, M. M. (2003). Accumulation of arsenic in rice plant from arsenic contaminated irrigation water and effect on nutrient content. BUET-UNU International symposium of fate of arsenic in the environment, Dhaka, Bangladesh. Conference paper, Ali, A., Petrov, V., Yun, D.-J., & Gechev, T. (2023). Revisiting plant salt tolerance: novel components of the SOS pathway. Trends in plant science. Ali, B., Al-Wabel, N. A., Shams, S., Ahamad, A., Khan, S. A., & Anwar, F. (2015). Essential oils used in aromatherapy: A systemic review. Asian Pacific Journal of Tropical Biomedicine, 5(8), 601-611. Alvarado, A. M., Aguirre-Becerra, H., Vázquez-Hernández, M. C., Magaña-Lopez, E., Parola-Contreras, I., Caicedo-Lopez, L. H., Contreras-Medina, L. M., Garcia-Trejo, J. F., Guevara-Gonzalez, R. G., & Feregrino-Perez, A. A. (2019). Influence of elicitors and eustressors on the production of plant secondary metabolites. Natural Bio-active Compounds: Volume 1: Production and Applications, 333-388. Anusmitha, K. M., Aruna, M., Job, J. T., Narayanankutty, A., Benil, P., Rajagopal, R., Alfarhan, A., & Barcelo, D. (2022). Phytochemical analysis, antioxidant, anti-inflammatory, anti-genotoxic, and anticancer activities of different Ocimum plant extracts prepared by ultrasound-assisted method. Physiological and Molecular Plant Pathology, 117, 101746. Aune, D., Giovannucci, E., Boffetta, P., Fadnes, L. T., Keum, N., Norat, T., Greenwood, D. C., Riboli, E., Vatten, L. J., & Tonstad, S. (2017). Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality—a systematic review and dose-response meta-analysis of prospective studies. International Journal of Epidemiology, 46(3), 1029-1056. Bajomo, E. M., Aing, M. S., Ford, L. S., & Niemeyer, E. D. (2022). Chemotyping of commercially available basil (Ocimum basilicum L.) varieties: Cultivar and morphotype influence phenolic acid composition and antioxidant properties. NFS Journal, 26, 1-9. Biswas, T. (2020). Elicitor induced increased rosmarinic acid content of in vitro root cultures of Ocimum basilicum L.(Sweet Basil). Plant Science Today, 7(2), 157-163. Cakmak, I. (2005). The role of potassium in alleviating detrimental effects of abiotic stresses in plants. Journal of Plant Nutrition and Soil Science, 168(4), 521-530. Carović-Stanko, K., Šalinović, A., Grdiša, M., Liber, Z., Kolak, I., & Satovic, Z. (2011). Efficiency of morphological trait descriptors in discrimination of Ocimum basilicum L. accessions. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 145(2), 298-305. Chang, C.-C., Yang, M.-H., Wen, H.-M., & Chern, J.-C. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis, 10(3). Chaubey, M. (2012). Acute, lethal and synergistic effects of some terpenes against Tribolium castaneum Herbst (Coleoptera: Tenebrionidae). Ecologia Balkanica, 4(1). Chen, Y., Lin, F., Yang, H., Yue, L., Hu, F., Wang, J., Luo, Y., & Cao, F. (2014). Effect of varying NaCl doses on flavonoid production in suspension cells of Ginkgo biloba: relationship to chlorophyll fluorescence, ion homeostasis, antioxidant system and ultrastructure. Acta Physiologiae Plantarum, 36, 3173-3187. Cheng, C., Ho, W. E., Goh, F. Y., Guan, S. P., Kong, L. R., Lai, W.-Q., Leung, B. P., & Wong, W. F. (2011). Anti-malarial drug artesunate attenuates experimental allergic asthma via inhibition of the phosphoinositide 3-kinase/Akt pathway. PLoS One, 6(6), e20932. Cheong, Y. H., Kim, K.-N., Pandey, G. K., Gupta, R., Grant, J. J., & Luan, S. (2003). CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis. The Plant Cell, 15(8), 1833-1845. Cheong, Y. H., Pandey, G. K., Grant, J. J., Batistic, O., Li, L., Kim, B. G., Lee, S. C., Kudla, J., & Luan, S. (2007). Two calcineurin B‐like calcium sensors, interacting with protein kinase CIPK23, regulate leaf transpiration and root potassium uptake in Arabidopsis. The Plant Journal, 52(2), 223-239. Darko, E., Végh, B., Khalil, R., Marček, T., Szalai, G., Pál, M., & Janda, T. (2019). Metabolic responses of wheat seedlings to osmotic stress induced by various osmolytes under iso-osmotic conditions. PLoS One, 14(12), e0226151. Dewanjee, S., Gangopadhyay, M., Das, U., Sahu, R., Samanta, A., & Banerjee, P. (2014). Signal transducer and oxidative stress mediated modulation of phenylpropanoid pathway to enhance rosmarinic acid biosynthesis in fungi elicited whole plant culture of Solenostemon scutellarioides. Enzyme and Microbial Technology, 66, 1-9. Dhyani, P., Quispe, C., Sharma, E., Bahukhandi, A., Sati, P., Attri, D. C., Szopa, A., Sharifi-Rad, J., Docea, A. O., & Mardare, I. (2022). Anticancer potential of alkaloids: a key emphasis to colchicine, vinblastine, vincristine, vindesine, vinorelbine and vincamine. Cancer Cell International, 22(1), 1-20. Easlon, H. M., & Bloom, A. J. (2014). Easy Leaf Area: Automated digital image analysis for rapid and accurate measurement of leaf area. Applications in Plant Sciences, 2(7), 1400033. El-Naggar, H. M., & Read, P. E. (2010). PAL gene activity and rosmarinic acid production in rosemary genotypes. Journal of Herbs, Spices & Medicinal Plants, 16(1), 83-89. Elhaak, M., Abo-Kassem, E., & Saad-Allah, K. (2014). Effect of the combined treatment with sodium and calcium chlorides on the growth and medicinal compounds of Cichorium intybus. International Journal of Current Microbiology and Applied Sciences, 3(7), 613-630. Espinosa-Leal, C. A., Mora-Vásquez, S., Puente-Garza, C. A., Alvarez-Sosa, D. S., & García-Lara, S. (2022). Recent advances on the use of abiotic stress (water, UV radiation, atmospheric gases, and temperature stress) for the enhanced production of secondary metabolites on in vitro plant tissue culture. Plant Growth Regulation, 97(1), 1-20. Feng, X., Cao, S., Qiu, F., & Zhang, B. (2020). Traditional application and modern pharmacological research of Artemisia annua L. Pharmacology & Therapeutics, 216, 107650. Galli, V., da Silva Messias, R., Perin, E. C., Borowski, J. M., Bamberg, A. L., & Rombaldi, C. V. (2016). Mild salt stress improves strawberry fruit quality. Lwt, 73, 693-699. George, B. P., Chandran, R., & Abrahamse, H. (2021). Role of phytochemicals in cancer chemoprevention: Insights. Antioxidants, 10(9), 1455. Ghassemi, S., Delangiz, N., Lajayer, B. A., Saghafi, D., & Maggi, F. (2021). Review and future prospects on the mechanisms related to cold stress resistance and tolerance in medicinal plants. Acta Ecologica Sinica, 41(2), 120-129. Ghuge, S. A., Rai, A. N., & Suprasanna, P. (2010). Comparative effects of NaCl, PEG and mannitol iso-osmotic stress on solute accumulation and antioxidant enzyme system in potato (Solanum tuberosum L.). Plant Stress, 4(1), 50-55. Gong, X., Chao, L., Zhou, M., Hong, M., Luo, L., Wang, L., Ying, W., Jingwei, C., Songjie, G., & Fashui, H. (2011). Oxidative damages of maize seedlings caused by exposure to a combination of potassium deficiency and salt stress. Plant and Soil, 340, 443-452. Guo, H., Zhu, N., Deyholos, M. K., Liu, J., Zhang, X., & Dong, J. (2015). Calcium mobilization in salicylic acid-induced Salvia miltiorrhiza cell cultures and its effect on the accumulation of rosmarinic acid. Applied Biochemistry and Biotechnology, 175, 2689-2702. Hashimoto, K., & Kudla, J. (2011). Calcium decoding mechanisms in plants. Biochimie, 93(12), 2054-2059. Hassan, F.-u., Rehman, M. S.-u., Khan, M. S., Ali, M. A., Javed, A., Nawaz, A., & Yang, C. (2019). Curcumin as an alternative epigenetic modulator: mechanism of action and potential effects. Frontiers in Genetics, 10, 514. Hoagland, D. R., & Arnon, D. I. (1950). The water-culture method for growing plants without soil. Circular. California agricultural experiment station, 347(2nd edit). Hohl, M., & Schopfer, P. (1991). Water relations of growing maize coleoptiles: comparison between mannitol and polyethylene glycol 6000 as external osmotica for adjusting turgor pressure. Plant Physiology, 95(3), 716-722. Hosseini, N. S., Ghasimi Hagh, Z., & Khoshghalb, H. (2020). Morphological, antioxidant enzyme activity and secondary metabolites accumulation in response of polyethylene glycol-induced osmotic stress in embryo-derived plantlets and callus cultures of Salvia leriifolia. Plant Cell, Tissue and Organ Culture (PCTOC), 140, 143-155. Huang, L., Wu, D.-z., & Zhang, G.-p. (2020). Advances in studies on ion transporters involved in salt tolerance and breeding crop cultivars with high salt tolerance. Journal of Zhejiang University. Science. B, 21(6), 426. Ishitani, M., Liu, J., Halfter, U., Kim, C.-S., Shi, W., & Zhu, J.-K. (2000). SOS3 function in plant salt tolerance requires N-myristoylation and calcium binding. The Plant Cell, 12(9), 1667-1677. Jakovljević, D., Stanković, M., Warchoł, M., & Skrzypek, E. (2022). Basil (Ocimum L.) cell and organ culture for the secondary metabolites production: A review. Plant Cell, Tissue and Organ Culture (PCTOC), 149(1-2), 61-79. Jiang, Y., & Ding, P. (2023). Calcium signaling in plant immunity: a spatiotemporally controlled symphony. Trends in Plant Science. Jung, I., Kim, H., Moon, S., Lee, H., & Kim, B. (2020). Overview of Salvia miltiorrhiza as a potential therapeutic agent for various diseases: an update on efficacy and mechanisms of action. Antioxidants, 9(9), 857. Karataş, İ. (2023). Optimization of sucrose concentration to promote root proliferation and secondary metabolite accumulation in adventitious root cultures of Ocimum basilicum. In Vitro Cellular & Developmental Biology-Plant, 1-13. Karlin, M. S. (2016). Soil-plant relationships in the Sabkhat of America. Sabkha Ecosystems: Volume V: The Americas, 329-347. Kessler, A., & Heil, M. (2011). The multiple faces of indirect defences and their agents of natural selection. Functional Ecology, 25(2), 348-357. Kim, S.-I., Choi, H.-K., Kim, J.-H., Lee, H.-S., & Hong, S.-S. (2001). Effect of osmotic pressure on paclitaxel production in suspension cell cultures of Taxus chinensis. Enzyme and Microbial Technology, 28(2-3), 202-209. Kontogianni, V. G., Tomic, G., Nikolic, I., Nerantzaki, A. A., Sayyad, N., Stosic-Grujicic, S., Stojanovic, I., Gerothanassis, I. P., & Tzakos, A. G. (2013). Phytochemical profile of Rosmarinus officinalis and Salvia officinalis extracts and correlation to their antioxidant and anti-proliferative activity. Food Chemistry, 136(1), 120-129. Kour, J., Khanna, K., Singh, A. D., Dhiman, S., Bhardwaj, T., Devi, K., Sharma, N., Ohri, P., & Bhardwaj, R. (2023). Calcium's multifaceted functions: From nutrient to secondary messenger during stress. South African Journal of Botany, 152, 247-263. https://doi.org/10.1016/j.sajb.2022.11.048 Kumar, S., Abedin, M. M., Singh, A. K., & Das, S. (2020). Role of phenolic compounds in plant-defensive mechanisms. Plant Phenolics in Sustainable Agriculture: Volume 1, 517-532. Kwon, D. Y., Kim, Y. B., Kim, J. K., & Park, S. U. (2021). Production of rosmarinic acid and correlated gene expression in hairy root cultures of green and purple basil (Ocimum basilicum L.). Preparative Biochemistry & Biotechnology, 51(1), 35-43. Labra, M., Miele, M., Ledda, B., Grassi, F., Mazzei, M., & Sala, F. (2004). Morphological characterization, essential oil composition and DNA genotyping of Ocimum basilicum L. cultivars. Plant science, 167(4), 725-731. Lamers, J., Van Der Meer, T., & Testerink, C. (2020). How plants sense and respond to stressful environments. Plant Physiology, 182(4), 1624-1635. Lecourieux, D., Ranjeva, R., & Pugin, A. (2006). Calcium in plant defence‐signalling pathways. New Phytologist, 171(2), 249-269. Li, J., Ou-Lee, T.-M., Raba, R., Amundson, R. G., & Last, R. L. (1993). Arabidopsis flavonoid mutants are hypersensitive to UV-B irradiation. The Plant Cell, 5(2), 171-179. Li, L., & Zou, Y. (2017). Induction of disease resistance by salicylic acid and calcium ion against Botrytis cinerea in tomato (Lycopersicon esculentum). Emirates Journal of Food and Agriculture, 78-82. Li, X., Guo, H., Qi, Y., Liu, H., Zhang, X., Ma, P., Liang, Z., & Dong, J. (2016). Salicylic acid-induced cytosolic acidification increases the accumulation of phenolic acids in Salvia miltiorrhiza cells. Plant Cell, Tissue and Organ Culture (PCTOC), 126, 333-341. Li, Z., Wang, X., Chen, F., & Kim, H.-J. (2007). Chemical changes and overexpressed genes in sweet basil (Ocimum basilicum L.) upon methyl jasmonate treatment. Journal of Agricultural and Food Chemistry, 55(3), 706-713. Linde, K., Berner, M. M., & Kriston, L. (2008). St John's wort for major depression. Cochrane Database of Systematic Reviews(4). Liu, X., & Chi, C. (2014). Estimating osmotic potential from electrical conductivity for solutions/extracts in salt-affected soils using an universal equation. J. Food Agric. Environ, 12, 1033-1035. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. methods, 25(4), 402-408. Luan, S., Lan, W., & Lee, S. C. (2009). Potassium nutrition, sodium toxicity, and calcium signaling: connections through the CBL–CIPK network. Current Opinion in Plant Biology, 12(3), 339-346. Ma, X., Li, Q.-H., Yu, Y.-N., Qiao, Y.-M., Haq, S. u., & Gong, Z.-H. (2020). The CBL–CIPK pathway in plant response to stress signals. International Journal of Molecular Sciences, 21(16), 5668. Ma, Y., Wang, P., Wang, M., Sun, M., Gu, Z., & Yang, R. (2019). GABA mediates phenolic compounds accumulation and the antioxidant system enhancement in germinated hulless barley under NaCl stress. Food Chemistry, 270, 593-601. Mahendran, G., & Rahman, L. U. (2020). Ethnomedicinal, phytochemical and pharmacological updates on Peppermint (Mentha× piperita L.)—A review. Phytotherapy Research, 34(9), 2088-2139. Mahmoud, E., Starowicz, M., Ciska, E., Topolska, J., & Farouk, A. (2022). Determination of volatiles, antioxidant activity, and polyphenol content in the postharvest waste of Ocimum basilicum L. Food Chemistry, 375, 131692. Manishankar, P., Wang, N., Köster, P., Alatar, A. A., & Kudla, J. (2018). Calcium signaling during salt stress and in the regulation of ion homeostasis. Journal of Experimental Botany, 69(17), 4215-4226. Marchev, A. S., Vasileva, L. V., Amirova, K. M., Savova, M. S., Koycheva, I. K., Balcheva-Sivenova, Z. P., Vasileva, S. M., & Georgiev, M. I. (2021). Rosmarinic acid-From bench to valuable applications in food industry. Trends in Food Science & Technology, 117, 182-193. Martinez, V., Mestre, T. C., Rubio, F., Girones-Vilaplana, A., Moreno, D. A., Mittler, R., & Rivero, R. M. (2016). Accumulation of flavonols over hydroxycinnamic acids favors oxidative damage protection under abiotic stress. Frontiers in Plant Science, 7, 838. Michel, B. E., & Kaufmann, M. R. (1973). The osmotic potential of polyethylene glycol 6000. Plant Physiology, 51(5), 914-916. Money, N. P. (1989). Osmotic pressure of aqueous polyethylene glycols: relationship between molecular weight and vapor pressure deficit. Plant Physiology, 91(2), 766-769. Moradbeygi, H., Jamei, R., Heidari, R., & Darvishzadeh, R. (2020). Fe2O3 nanoparticles induced biochemical responses and expression of genes involved in rosmarinic acid biosynthesis pathway in Moldavian balm under salinity stress. Physiologia Plantarum, 169(4), 555-570. Nazir, M., Ullah, M. A., Younas, M., Siddiquah, A., Shah, M., Giglioli-Guivarc’h, N., Hano, C., & Abbasi, B. H. (2020). Light-mediated biosynthesis of phenylpropanoid metabolites and antioxidant potential in callus cultures of purple basil (Ocimum basilicum L. var purpurascens). Plant Cell, Tissue and Organ Culture (PCTOC), 142, 107-120. Nguyen, P. M., Kwee, E. M., & Niemeyer, E. D. (2010). Potassium rate alters the antioxidant capacity and phenolic concentration of basil (Ocimum basilicum L.) leaves. Food Chemistry, 123(4), 1235-1241. https://doi.org/10.1016/j.foodchem.2010.05.092 Nicolussi, S., Drewe, J., Butterweck, V., & Meyer zu Schwabedissen, H. E. (2020). Clinical relevance of St. John's wort drug interactions revisited. British Journal of Pharmacology, 177(6), 1212-1226. Pappi, P., Nikoloudakis, N., Fanourakis, D., Zambounis, A., Delis, C., & Tsaniklidis, G. (2021). Differential triggering of the phenylpropanoid biosynthetic pathway key genes transcription upon cold stress and viral infection in tomato leaves. Horticulturae, 7(11), 448. Park, W. T., Arasu, M. V., Al-Dhabi, N. A., Yeo, S. K., Jeon, J., Park, J. S., Lee, S. Y., & Park, S. U. (2016). Yeast extract and silver nitrate induce the expression of phenylpropanoid biosynthetic genes and induce the accumulation of rosmarinic acid in Agastache rugosa cell culture. Molecules, 21(4), 426. Pathak, J., Ahmed, H., Kumari, N., Pandey, A., Rajneesh, & Sinha, R. P. (2020). Role of Calcium and Potassium in Amelioration of Environmental Stress in Plants. In Protective Chemical Agents in the Amelioration of Plant Abiotic Stress (pp. 535-562). https://doi.org/10.1002/9781119552154.ch27 Peng, Y., Sun, Q., & Park, Y. (2019). The bioactive effects of chicoric acid as a functional food ingredient. Journal of Medicinal Food, 22(7), 645-652. Petersen, M. (2013). Rosmarinic acid: new aspects. Phytochemistry Reviews, 12, 207-227. Piras, A., Gonçalves, M. J., Alves, J., Falconieri, D., Porcedda, S., Maxia, A., & Salgueiro, L. (2018). Ocimum tenuiflorum L. and Ocimum basilicum L., two spices of Lamiaceae family with bioactive essential oils. Industrial Crops and Products, 113, 89-97. Poovaiah, B., & Du, L. (2018). Calcium signaling: decoding mechanism of calcium signatures. New Phytologist, 217(4), 1394-1396. Ren, J., Fu, L., Nile, S. H., Zhang, J., & Kai, G. (2019). Salvia miltiorrhiza in treating cardiovascular diseases: a review on its pharmacological and clinical applications. Frontiers in Pharmacology, 10, 753. Reuter, S., Gupta, S. C., Chaturvedi, M. M., & Aggarwal, B. B. (2010). Oxidative stress, inflammation, and cancer: how are they linked? Free Radical Biology and Medicine, 49(11), 1603-1616. Rowinsky, E. K., & Donehower, R. C. (1995). Paclitaxel (taxol). New England Journal of Medicine, 332(15), 1004-1014. Rusu, T., Cowden, R. J., Moraru, P. I., Maxim, M. A., & Ghaley, B. B. (2021). Overview of multiple applications of basil species and cultivars and the effects of production environmental parameters on yields and secondary metabolites in hydroponic systems. Sustainability, 13(20), 11332. Scagel, C. F., Lee, J., & Mitchell, J. N. (2019). Salinity from NaCl changes the nutrient and polyphenolic composition of basil leaves. Industrial Crops and Products, 127, 119-128. Schulz, E., Tohge, T., Zuther, E., Fernie, A. R., & Hincha, D. K. (2016). Flavonoids are determinants of freezing tolerance and cold acclimation in Arabidopsis thaliana. Scientific Reports, 6(1), 34027. Seifikalhor, M., Aliniaeifard, S., Shomali, A., Azad, N., Hassani, B., Lastochkina, O., & Li, T. (2019). Calcium signaling and salt tolerance are diversely entwined in plants. Plant Signaling & Behavior, 14(11), 1665455. Sevindik, B., Sevindik, O., & Selli, S. (2022). Effect of drought stress induced by PEG 6000 on Ocimum basilicum L. aroma profile. Journal of Food Processing and Preservation, 46(6), e15948. Shabala, S., & Pottosin, I. (2014). Regulation of potassium transport in plants under hostile conditions: implications for abiotic and biotic stress tolerance. Physiol Plant, 151(3), 257-279. https://doi.org/10.1111/ppl.12165 Shi, M., Kwok, K. W., & Wu, J. Y. (2007). Enhancement of tanshinone production in Salvia miltiorrhiza Bunge (red or Chinese sage) hairy‐root culture by hyperosmotic stress and yeast elicitor. Biotechnology and Applied Biochemistry, 46(4), 191-196. Sim, U., Sung, J., Lee, H., Heo, H., Jeong, H. S., & Lee, J. (2020). Effect of calcium chloride and sucrose on the composition of bioactive compounds and antioxidant activities in buckwheat sprouts. Food Chem, 312, 126075. https://doi.org/10.1016/j.foodchem.2019.126075 Simeoni, M. C., Pellegrini, M., Sergi, M., Pittia, P., Ricci, A., & Compagnone, D. (2018). Analysis of polyphenols in the Lamiaceae family by matrix solid-phase dispersion extraction followed by ultra-high-performance liquid chromatography–tandem mass spectrometry determination. ACS Omega, 3(12), 17610-17616. Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture, 16(3), 144-158. Slama, I., Ghnaya, T., Hessini, K., Messedi, D., Savouré, A., & Abdelly, C. (2007). Comparative study of the effects of mannitol and PEG osmotic stress on growth and solute accumulation in Sesuvium portulacastrum. Environmental and Experimental Botany, 61(1), 10-17. Song, Z., & Li, X. (2015). Expression profiles of rosmarinic acid biosynthesis genes in two Salvia miltiorrhiza lines with differing water-soluble phenolic contents. Industrial Crops and Products, 71, 24-30. Stankovic, M. S. (2011). Total phenolic content, flavonoid concentration and antioxidant activity of Marrubium peregrinum L. extracts. Kragujevac J Sci, 33(2011), 63-72. Stasinos, S., & Zabetakis, I. (2013). The uptake of nickel and chromium from irrigation water by potatoes, carrots and onions. Ecotoxicology and Environmental Safety, 91, 122-128. Steck, S. E., & Murphy, E. A. (2020). Dietary patterns and cancer risk. Nature Reviews Cancer, 20(2), 125-138. Suthar, M. K., Purohit, P. M., & Saran, P. L. (2021). Molecular cloning, expression and in-silico characterization of rosmarinic acid synthase from Ocimum tenuiflorum L. Journal of Plant Biochemistry and Biotechnology, 30(2), 317-325. Trócsányi, E., György, Z., & Zámboriné-Németh, É. (2020). New insights into rosmarinic acid biosynthesis based on molecular studies. Current Plant Biology, 23, 100162. Upadhyaya, H., Panda, S. K., & Dutta, B. K. (2011). CaCl2 improves post-drought recovery potential in Camellia sinensis (L) O. Kuntze. Plant Cell Reports, 30(4), 495-503. Vafadar, F., Amooaghaie, R., Ehsanzadeh, P., & Ghanadian, M. (2020). Salinity stress alters ion homeostasis, antioxidant activities and the production of rosmarinic acid, luteolin and apigenin in Dracocephalum kotschyi Boiss. Biologia, 75, 2147-2158. Vafadar, F., Amooaghaie, R., Ehsanzadeh, P., Ghanadian, M., Talebi, M., & Ghanati, F. (2020). Melatonin and calcium modulate the production of rosmarinic acid, luteolin, and apigenin in Dracocephalum kotschyi under salinity stress. Phytochemistry, 177, 112422. https://doi.org/10.1016/j.phytochem.2020.112422 Valifard, M., Mohsenzadeh, S., Niazi, A., & Moghadam, A. (2015). Phenylalanine ammonia lyase isolation and functional analysis of phenylpropanoid pathway under salinity stress in'Salvia'species. Australian Journal of Crop Science, 9(7), 656-665. Vázquez-Hernández, M., Parola-Contreras, I., Montoya-Gómez, L., Torres-Pacheco, I., Schwarz, D., & Guevara-González, R. (2019). Eustressors: Chemical and physical stress factors used to enhance vegetables production. Scientia Horticulturae, 250, 223-229. Vormfelde, S. V., & Poser, W. (2000). Hyperforin in extracts of St John's wort (Hypericum perforatum) for depression. Archives of Internal Medicine, 160(16), 2546-2546. Wang, M., Gu, D., Liu, T., Wang, Z., Guo, X., Hou, W., Bai, Y., Chen, X., & Wang, G. (2007). Overexpression of a putative maize calcineurin B-like protein in Arabidopsis confers salt tolerance. Plant Molecular Biology, 65, 733-746. Wang, S.-J., Chen, Q., Liu, M.-Y., Yu, H.-Y., Xu, J.-Q., Wu, J.-Q., Zhang, Y., & Wang, T. (2019). Regulation effects of rosemary (Rosmarinus officinalis Linn.) on hepatic lipid metabolism in OA induced NAFLD rats. Food & Function, 10(11), 7356-7365. Waśkiewicz, A., Muzolf-Panek, M., & Goliński, P. (2013). Phenolic content changes in plants under salt stress. Ecophysiology and Responses of Plants under Salt Stress, 283-314. Weaver, B. A. (2014). How Taxol/paclitaxel kills cancer cells. Molecular Biology of The Cell, 25(18), 2677-2681. Xu, J., Li, H.-D., Chen, L.-Q., Wang, Y., Liu, L.-L., He, L., & Wu, W.-H. (2006). A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis. Cell, 125(7), 1347-1360. Yokoi, S., Bressan, R. A., & Hasegawa, P. M. (2002). Salt stress tolerance of plants. JIRCAS Working Report, 23(1), 25-33. Zeljković, S. Ć., Aucique-Perez, C. E., Štefelová, N., & De Diego, N. (2022). Optimizing growing conditions for hydroponic farming of selected medicinal and aromatic plants. Food Chemistry, 375, 131845. Zhang, H., Yin, W., & Xia, X. (2008). Calcineurin B-Like family in Populus: comparative genome analysis and expression pattern under cold, drought and salt stress treatment. Plant Growth Regulation, 56, 129-140. Zhang, Q.-Y., Wang, F.-X., Jia, K.-K., & Kong, L.-D. (2018). Natural product interventions for chemotherapy and radiotherapy-induced side effects. Frontiers in Pharmacology, 9, 1253. Zhao, L., Zhang, Y., Liu, G., Hao, S., Wang, C., & Wang, Y. (2018). Black rice anthocyanin-rich extract and rosmarinic acid, alone and in combination, protect against DSS-induced colitis in mice. Food & function, 9(5), 2796-2808. Zhu, J.-K., Liu, J., & Xiong, L. (1998). Genetic analysis of salt tolerance in Arabidopsis: evidence for a critical role of potassium nutrition. The Plant Cell, 10(7), 1181-1191. Złotek, U., Szychowski, K. A., & Świeca, M. (2017). Potential in vitro antioxidant, anti-inflammatory, antidiabetic, and anticancer effect of arachidonic acid-elicited basil leaves. Journal of Functional Foods, 36, 290-299. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90485 | - |
| dc.description.abstract | 羅勒為一種被廣泛使用的香草作物,因有較高含量的酚酸、類黃酮和其他對人體有益的活性代謝物而備受矚目。本研究目的為提高水耕羅勒葉片中具生物活性之次級代謝物產量,並同時在維持其生長間取得平衡。當添加鈉離子(氯化鈉)或是鈣離子(氯化鈣)至水耕液中,羅勒葉中的總酚酸及總類黃酮含量明顯提升,迷迭香酸生合成相關基因PAL、C4H、4CL、TAT、HPPR、RAS的表現量也隨之顯著上調。此外,藉由PEG6000模擬處理上述鈉與鈣離子所對應的滲透勢。實驗結果顯示植物外部滲透壓力的改變確實會造成酚酸及類黃酮的含量上升,但其組成與鹽離子處理有顯著的不同。根據感應耦合電漿光學發射光譜法(ICP-OES)對離子累積的分析結果,推測添加鈉與鈣離子所影響的次級代謝物路徑可能不同。因羅勒的類鈣調神經素B亞基蛋白(CBL1)基因表現量在各處理組間並無顯著差異,推測應有其他的鈣離子訊息接收蛋白在添加鹽類陽離子時影響羅勒對離子的吸收。綜合上述結果,添加適量鹽類陽離子可作為一種刺激羅勒生成有益次級代謝物的策略,其影響和非離子造成的滲透壓環境改變有顯著不同,而機制仍有待更多研究以闡明。 | zh_TW |
| dc.description.abstract | Basil (Ocimum basilicum) is a commonly used culinary herb known for its abundance of phenolic compounds, flavonoids, and other bioactive metabolites that benefit human. The aim of this study was to find a balance between increasing the production of bioactive compounds and maintaining plant growth in hydroponic basil. By adding sodium (NaCl) or calcium (CaCl2) ions to the hydroponic culture system, a notable increase in the total phenolic and flavonoid contents was observed in the basil leaves. Additionally, the expression of rosmarinic acid upstream genes, including phenylalanine ammino lyase (PAL), cinnamate 4-hydroxylase (C4H), 4-coumaroyl-CoA ligase (4CL), tyrosine aminotransferase (TAT), hydroxyl phenyl pyruvate reductase (HPPR), and rosmarinic acid synthase (RAS), was elevated. On the other hand, polyethylene 6000 was introduced to adjust the corresponding osmotic pressure of the two cation treatments. This osmolality change resulted in an increase in phenolics and flavonoids, which showed obviously different compositions from the effects of ion treatments. Ion accumulation analyzed by inductively coupled plasma-optical emission spectrometry (ICP-OES) revealed the two cation treatments may affect the secondary metabolic pathway through distinct mechanisms. However, the gene expression levels of calcineurin B-like 1 (CBL1) showed no difference between the treatments, indicating that other calcium signal receptors may be involved in ion absorption under the cation treatments. In conclusion, these findings suggest that the addition of a proper concentration of cations can enhance the production of bioactive compounds in basil, which differs from the effects of non-ionic osmotic pressure However, further research is needed to clarify the underlying mechanisms. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:17:53Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-10-03T16:17:53Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 I
中文摘要 II Abstract III List of Figures VIII List of Tables X Chapter 1 Introduction 1 1.1 Plant secondary metabolites and their roles in plants 1 1.2 The utilizations of the phytochemicals in human 2 1.3 Medicinal and aromatic plants (MAPs) 4 1.4 Characteristic of basil and its valuable compounds 5 1.5 Improving the contents of bioactive compounds in basil 7 1.6 Salt stress and ion homeostasis in plants 8 1.7 Aims of the study 9 Chapter 2 Materials and methods 10 2.1 Plant materials and growth conditions 10 2.2 Modulation of the concentrations of sodium and calcium ions in hydroponic solution as an elicitation strategy 11 2.3 Simulating the osmolality of sodium and calcium treatments in hydroponic solution 12 2.4 Growth parameters 13 2.4 Determine the total phenolic content and total flavonoid content 13 2.5 Analysis of major secondary metabolites by Liquid Chromatography-Mass Spectrometry (LC-MS) 14 2.6 Extraction of total RNA and analysis of gene expression 16 2.7 Quantification of the calcium concentration in leaf tissue 19 2.8 statistical analysis 21 Chapter 3 Results 22 3-1. Evaluation the effect of sodium chloride and calcium chloride on basil growth and secondary metabolism 22 3.1.1 Growth parameters 22 3.1.2 Phenolics and flavonoids change 23 3.1.3 Identification of phenolics and flavonoids under ion treatments 23 3.1.4 The effect of sodium and calcium ion on the gene expression of phenolic-synthesis pathway 24 3.2. Evaluation the effect of PEG6000 on basil growth and secondary metabolism 25 3.2.1 Basil growth under PEG-induced osmotic pressure 25 3.2.2 Phenolics and flavonoids change by PEG-caused osmotic pressure 25 3.2.3 Identification of phenolics and flavonoids under PEG-caused osmotic pressure 26 3.2.4 The effect of PEG-caused osmotic pressure on the gene expression of phenolic-synthesis pathway 26 3.3 Calcium and potassium ion quantification in basil leaf by inductively coupled plasma-optical emission spectrometry (ICP-OES) 27 3.4 CBL gene sequencing, alignment and PCR semi-quantification 27 Chapter 4 Discussion 29 4.1 NaCl and CaCl2 were potential stimulants to improve the nutritional quality and valuable compounds in basil leaves 29 4.2 PEG6000-induced osmotic pressure increased secondary metabolites, but with a different profile compared to the ion treatments 30 4-3 Relationship between the upstream gene expressions and the production of RA 32 4-4 Ion Accumulation and their deduced mechanisms for the production of bioactive compounds in basil 34 4-5 Similar transcription levels of the calcium signal protein CBL1 gene among treatments 36 Conclusion 39 Figures 40 References 56 | - |
| dc.language.iso | en | - |
| dc.subject | 聚乙二醇 | zh_TW |
| dc.subject | 鹽 | zh_TW |
| dc.subject | 陽離子 | zh_TW |
| dc.subject | 次級代謝物 | zh_TW |
| dc.subject | 羅勒 | zh_TW |
| dc.subject | salt | en |
| dc.subject | Polyethylene glycol (PEG) | en |
| dc.subject | basil | en |
| dc.subject | cation | en |
| dc.subject | secondary metabolites | en |
| dc.title | 陽離子對水耕羅勒生成活性代謝物之影響 | zh_TW |
| dc.title | Cation effects on bioactive metabolites production in hydroponically grown Ocimum basilicum | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳仁治;呂廷璋;許正一;徐麗芬 | zh_TW |
| dc.contributor.oralexamcommittee | Jen-Chih Chen;Ting-Jang Lu;Zeng-Yei Hseu;Lie-Fen Shyur | en |
| dc.subject.keyword | 羅勒,次級代謝物,陽離子,鹽,聚乙二醇, | zh_TW |
| dc.subject.keyword | basil,secondary metabolites,cation,salt,Polyethylene glycol (PEG), | en |
| dc.relation.page | 66 | - |
| dc.identifier.doi | 10.6342/NTU202302921 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-08-09 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 生物科技研究所 | - |
| dc.date.embargo-lift | 2027-08-08 | - |
| 顯示於系所單位: | 生物科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 3.35 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
