Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 獸醫專業學院
  4. 獸醫學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90484
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡沛學zh_TW
dc.contributor.advisorPei-Shiue Tsaien
dc.contributor.author簡均容zh_TW
dc.contributor.authorChun-Jung Chienen
dc.date.accessioned2023-10-03T16:17:37Z-
dc.date.available2023-11-09-
dc.date.copyright2023-10-03-
dc.date.issued2023-
dc.date.submitted2023-08-08-
dc.identifier.citation1. Agarwal, R., Defining end-stage renal disease in clinical trials: a framework for adjudication. Nephrology Dialysis Transplantation, 2016. 31(6): p. 864-867.
2. Levey, A.S., et al., The definition, classification, and prognosis of chronic kidney disease: a KDIGO Controversies Conference report. Kidney International, 2011. 80(1): p. 17-28.
3. https://www.bmj.com/content/367/bmj.l5873.long.
4. Hsu, C.-C., et al., Achievements and challenges in chronic kidney disease care in Taiwan. Journal of the Formosan Medical Association, 2022. 121: p. S3-S4.
5. Bello, A.K., et al., Epidemiology of peritoneal dialysis outcomes. Nature Reviews Nephrology, 2022. 18(12): p. 779-793.
6. Djurdjevic-Mirkovic, T., Peritoneal dialysis - experiences. Medical review, 2010. 63(11-12): p. 753-757.
7. Karopadi, A.N., et al., Cost of peritoneal dialysis and haemodialysis across the world. Nephrology Dialysis Transplantation, 2013. 28(10): p. 2553-2569.
8. Cameron, J.I., et al., Differences in quality of life across renal replacement therapies: A meta-analytic comparison. American Journal of Kidney Diseases, 2000. 35(4): p. 629-637.
9. Devuyst, O. and B. Rippe, Water transport across the peritoneal membrane. Kidney International, 2014. 85(4): p. 750-758.
10. Masola, V., et al., Fibrosis of Peritoneal Membrane as Target of New Therapies in Peritoneal Dialysis. International Journal of Molecular Sciences, 2022. 23(9): p. 4831.
11. Usman, M., C. Yeoungjee, and W.J. David, Peritoneal Dialysis Solutions, in Some Special Problems in Peritoneal Dialysis, E. Robert, Editor. 2016, IntechOpen: Rijeka. p. Ch. 2.
12. Healy, J.C. and R.H. Reznek, The peritoneum, mesenteries and omenta: normal anatomy and pathological processes. European Radiology, 1998. 8(6): p. 886-900.
13. van Baal, J.O.A.M., et al., The histophysiology and pathophysiology of the peritoneum. Tissue and Cell, 2017. 49(1): p. 95-105.
14. Zhao, X., et al., New insights into fibrosis from the ECM degradation perspective: the macrophage-MMP-ECM interaction. Cell & Bioscience, 2022. 12(1).
15. Klingberg, F., B. Hinz, and E.S. White, The myofibroblast matrix: implications for tissue repair and fibrosis. The Journal of Pathology, 2013. 229(2): p. 298-309.
16. Margetts, P.J., et al., Transient Overexpression of TGF-β1 Induces Epithelial Mesenchymal Transition in the Rodent Peritoneum. Journal of the American Society of Nephrology, 2005. 16(2).
17. Patel, P., et al., Platelet derived growth factor B and epithelial mesenchymal transition of peritoneal mesothelial cells. Matrix Biology, 2010. 29(2): p. 97-106.
18. Yang, A.H., J.Y. Chen, and J.K. Lin, Myofibroblastic conversion of mesothelial cells. Kidney International, 2003. 63(4): p. 1530-1539.
19. Wong, T.Y.H., et al., Glucose-mediated induction of TGF-β1 and MCP-1 in mesothelial cells in vitro is osmolality and polyol pathway dependent. Kidney International, 2003. 63(4): p. 1404-1416.
20. Chen, Y.T., et al., Lineage tracing reveals distinctive fates for mesothelial cells and submesothelial fibroblasts during peritoneal injury. J Am Soc Nephrol, 2014. 25(12): p. 2847-58.
21. Grgic, I., J.S. Duffield, and B.D. Humphreys, The origin of interstitial myofibroblasts in chronic kidney disease. Pediatr Nephrol, 2012. 27(2): p. 183-93.
22. Humphreys, B.D., et al., Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol, 2010. 176(1): p. 85-97.
23. LeBleu, V.S., et al., Origin and function of myofibroblasts in kidney fibrosis. Nat Med, 2013. 19(8): p. 1047-53.
24. Lee, S.H., et al., The monocyte chemoattractant protein-1 (MCP-1)/CCR2 system is involved in peritoneal dialysis-related epithelial-mesenchymal transition of peritoneal mesothelial cells. Lab Invest, 2012. 92(12): p. 1698-711.
25. Yung, S. and T.M. Chan, Pathophysiological changes to the peritoneal membrane during PD-related peritonitis: the role of mesothelial cells. Mediators Inflamm, 2012. 2012: p. 484167.
26. Hu, H.-H., et al., New insights into TGF-β/Smad signaling in tissue fibrosis. Chemico-Biological Interactions, 2018. 292: p. 76-83.
27. Shi, Y. and J. Massagué, Mechanisms of TGF-β Signaling from Cell Membrane to the Nucleus. Cell, 2003. 113(6): p. 685-700.
28. Balzer, M.S., Molecular pathways in peritoneal fibrosis. Cellular Signalling, 2020. 75: p. 109778.
29. Padwal, M., et al., WNT signaling is required for peritoneal membrane angiogenesis. Am J Physiol Renal Physiol, 2018. 314(6): p. F1036-f1045.
30. Zhang, F., et al., New insights into the pathogenesis and treatment of peritoneal fibrosis: A potential role of Wnt/β-catenin induced epithelial to mesenchymal transition and stem cells for therapy. Medical Hypotheses, 2013. 81(1): p. 97-100.
31. Chang, M.Y., et al., A Mice Model of Chlorhexidine Gluconate-Induced Peritoneal Damage. J Vis Exp, 2022(182).
32. Margetts, P.J., et al., Transforming growth factor β-induced peritoneal fibrosis is mouse strain dependent. Nephrol Dial Transplant, 2013. 28(8): p. 2015-27.
33. Li, L., et al., Inhibiting core fucosylation attenuates glucose-induced peritoneal fibrosis in rats. Kidney International, 2018. 93(6): p. 1384-1396.
34. Nagai, T., et al., Linagliptin Ameliorates Methylglyoxal-Induced Peritoneal Fibrosis in Mice. PLoS One, 2016. 11(8): p. e0160993.
35. Kanemura, S., et al., PDI Family Members as Guides for Client Folding and Assembly. Int J Mol Sci, 2020. 21(24).
36. Wang, X., H. Li, and X. Chang, The role and mechanism of TXNDC5 in diseases. Eur J Med Res, 2022. 27(1): p. 145.
37. Shih, Y.C., et al., Endoplasmic Reticulum Protein TXNDC5 Augments Myocardial Fibrosis by Facilitating Extracellular Matrix Protein Folding and Redox-Sensitive Cardiac Fibroblast Activation. Circ Res, 2018. 122(8): p. 1052-1068.
38. Chen, Y.T., et al., Endoplasmic reticulum protein TXNDC5 promotes renal fibrosis by enforcing TGF-β signaling in kidney fibroblasts. J Clin Invest, 2021. 131(5).
39. Hung, C.T., et al., Targeting ER protein TXNDC5 in hepatic stellate cell mitigates liver fibrosis by repressing non-canonical TGFβ signalling. Gut, 2022. 71(9): p. 1876-1891.
40. Lee, T.H., et al., Fibroblast-enriched endoplasmic reticulum protein TXNDC5 promotes pulmonary fibrosis by augmenting TGFβ signaling through TGFBR1 stabilization. Nat Commun, 2020. 11(1): p. 4254.
41. Hung, C.T., et al., The novel role of ER protein TXNDC5 in the pathogenesis of organ fibrosis: mechanistic insights and therapeutic implications. J Biomed Sci, 2022. 29(1): p. 63.
42. Lin, S.L., et al., Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney. Am J Pathol, 2008. 173(6): p. 1617-27.
43. Kitamura, M., et al., Epigallocatechin gallate suppresses peritoneal fibrosis in mice. Chem Biol Interact, 2012. 195(1): p. 95-104.
44. Tamura, R., et al., Inhibition of the H3K4 methyltransferase SET7/9 ameliorates peritoneal fibrosis. PLoS One, 2018. 13(5): p. e0196844.
45. López-Cabrera, M., Mesenchymal Conversion of Mesothelial Cells Is a Key Event in the Pathophysiology of the Peritoneum during Peritoneal Dialysis. Advances in Medicine, 2014. 2014.
46. Margetts, P.J., et al., Transient overexpression of TGF-{beta}1 induces epithelial mesenchymal transition in the rodent peritoneum. J Am Soc Nephrol, 2005. 16(2): p. 425-36.
47. Namvar, S., et al., Functional molecules in mesothelial-to-mesenchymal transition revealed by transcriptome analyses. J Pathol, 2018. 245(4): p. 491-501.
48. Krenkel, O., et al., Single Cell RNA Sequencing Identifies Subsets of Hepatic Stellate Cells and Myofibroblasts in Liver Fibrosis. Cells, 2019. 8(5).
49. Shi, P., et al., The antioxidative effects of empagliflozin on high glucose‑induced epithelial-mesenchymal transition in peritoneal mesothelial cells via the Nrf2/HO-1 signaling. Ren Fail, 2022. 44(1): p. 1528-1542.
50. Yang, X., et al., STAT3/HIF-1α signaling activation mediates peritoneal fibrosis induced by high glucose. J Transl Med, 2021. 19(1): p. 283.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90484-
dc.description.abstract腹膜透析利用腹膜充當半透膜以過濾血液中的廢物和多餘水分,為末期腎病患者的腎臟替代療法之一。然而,腹膜透析液中所含之高濃度葡萄糖會於透析過程產生葡萄糖降解產物,長期暴露於此物質會導致腹膜纖維化。腹膜纖維化會導致腹膜間皮細胞的脫落以及間皮下層的增厚,進而改變腹膜功能並最終造成腹膜透析的超過濾功能喪失。目前雖然已知造成腹膜纖維化的主要機制是由TGF-β及其相關路徑引起的,但對於腹膜透析所導致的腹膜纖維化尚無有效的治療方法。最近,內質網蛋白TXNDC5已被發現可調控心臟、肺、腎和肝之纖維化,因此也被認為可能參與腹膜纖維化的發生。本研究的目的是探討TXNDC5在腹膜透析所導致之腹膜纖維化中的角色。透過腹膜厚度的顯著增加、TGF-β1、膠原蛋白 I 和 α-SMA 蛋白質表現量上升,可得知此甲基乙二醛誘導的wild-type C57BL/6 小鼠腹膜纖維化模型被成功地建立。此外,TXNDC5蛋白質與基因表現在甲基乙二醛誘導的腹膜中也顯著的增加。然而,剔除Txndc5並無法緩解由甲基乙二醛誘導的腹膜纖維化,我們仍觀察到增厚的腹膜及高表現量之α-SMA。次世代定序數據亦顯示,Txndc5剔除不會抑制與甲基乙二醛誘導之腹膜纖維化相關的基因與訊息傳遞路徑,這表明在腹膜透析所導致之腹膜纖維化也許透過不同於其他器官的TGF-β路徑。此外,在wild-type 及Txndc5-/-小鼠中皆有觀察到同時呈現α-SMA及cytokeratin雙重染色的間皮細胞,並且次世代定序分析結果顯示在甲基乙二醛下誘導之小鼠具上升之Snail基因表現量,間接指出發生間皮間質轉化的可能性。在甲基乙二醛誘導的小鼠腹膜上,觀察到Col1a1-GFP陽性細胞的增加,然而人類間皮細胞線在甲基乙二醛的處置下沒有表現出膠原蛋白表現量的變化。綜上所述,雖然TXNDC5 在甲基乙二醛誘導的wild-type小鼠腹膜纖維化中具高表現量,但是Txndc5剔除未能減緩甲基乙二醛誘導之腹膜纖維化。因此未來仍需要更多的研究探討TXNDC5在腹膜纖維化與其他實質器官纖維化之間的差異。zh_TW
dc.description.abstractPeritoneal dialysis (PD) is one of the kidney replacement therapies that maintain the lives of patients with end-stage renal disease (ESRD), where the peritoneum acts as a semipermeable membrane to filter waste products and excess water from the blood. However, the high glucose contained in the PD fluid (PDF) leads to the formation of glucose degradation products (GDPs), which can cause peritoneal fibrosis (PF). PF denudes mesothelial cells from the basement membrane and thickens the sub-mesothelial compact zone, which changes the peritoneal function and results in ultrafiltration failure. Mesothelial-to-mesenchymal transition (MMT), a process that considers mesothelial cells as the main progenitors of myofibroblasts in PF, has been doubted in these years. In addition, though PF is known to be mediated by TGF-β and its associated pathways, no effective treatment can be applied. Recently, an endoplasmic reticulum protein, thioredoxin domain-containing protein 5 (TXNDC5), has proven to be a novel mediator in cardiac, pulmonary, renal, and hepatic fibrosis and is also considered involved in PF. The purpose of this study is to investigate the involvement of TXNDC5 in PF. In this study, methylglyoxal (MGO) successfully induced PF as identified by significantly increased peritoneal thickness and the elevation of TGF-β1, collagen I and α-SMA protein expression in wild-type C57BL/6 mice. Furthermore, TXNDC5 expression was upregulated in the MGO-induced peritoneum. However, the deletion of Txndc5 did not ameliorate the MGO-induced PF, as the thickened sub-mesothelial compact zone with collagen accumulation and high α-SMA expression were still observed. Next-generation sequencing (NGS) data revealed that Txndc5 knockout did not suppress genes associated with MGO-induced peritoneal fibrosis, suggesting distinctive signaling pathways that differed from other organs might be involved in MGO-induced PF. In addition, mesothelial-to-mesenchymal transition (MMT), a process that considers mesothelial cells as the main progenitors of myofibroblasts, might occur upon MGO-induced peritoneal fibrosis, as evidenced by double positive cells of cytokeratin and α-SMA shown in immunofluorescence staining. This is further supported by RNAseq analysis showing an increased Snail gene expression. An increase in Col1a1-GFP positive cells was also observed on the surface of the MGO-induced peritoneum in mice. However, MeT5A cells, a human mesothelial cell line, did not show changes in collagen I protein expression under MGO treatment in vitro. In conclusion, apart from the high expression of TXNDC5 in MGO-induced peritoneal fibrosis in wild-type mice, the deletion of Txndc5 failed to prevent MGO-induced PF. Further studies are needed to explore the differences in TXNDC5 involvement between PF and fibrosis in other solid organs.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:17:37Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-10-03T16:17:37Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
中文摘要 ii
Abstract iv
Contents vii
List of figures ix
List of tables xi
Chapter 1 Introduction 1
1.1. Peritoneal dialysis (PD) 1
1.2. Long-term PD and its damaging consequences 3
1.2.1. Peritoneum anatomy 3
1.2.2. Peritoneal fibrosis (PF) 4
1.2.3. Mesothelial-to-mesenchymal transition (MMT) 5
1.2.4. PF-related molecular mechanism 6
1.2.5. Animal models for PF 8
1.3. Thioredoxin domain-containing 5 (TXNDC5) 9
1.3.1. General function of TXNDC5 9
1.3.2. The mechanism of TXNDC5 in fibrotic disease 9
1.4. Aim of this project 10
Chapter 2 Material and Methods 12
2.1 Animals 12
2.2 MGO-induced PF mouse model 13
2.3 Cell culture 14
2.4 Collagen secreting evaluation of MeT-5A 15
2.5 Histological and indirect immunofluorescent (IFA) staining 15
2.6 Quantification of peritoneal thickness 17
2.7 Immunoblot analysis 18
2.8 Next-generation sequencing (RNA-seq) 20
2.9 Bio-informatic analyses 20
2.10 Statistical analysis 21
Chapter 3 Results 22
3.1 MGO administration did not affect body weight in wild-type mice. 22
3.2 MGO induction caused ascites, abdominal adhesion, and thickened peritoneum in wild-type mice. 23
3.3 Fibrosis-related signaling pathways were upregulated in MGO-induced peritoneum of WT mice. 25
3.4 TXNDC5 expression was upregulated in the MGO-induced peritoneum of WT mice. 28
3.5 Characterizations of MGO-induced fibrosis in Txndc5-/- mice. 30
3.6 Fibrosis-related factors were upregulated in MGO-induced Txndc5-/- mice. 32
3.7 NGS revealed that the deletion of Txndc5 did not suppress genes associated with MGO-induced peritoneal fibrosis. 36
3.8 Collagen secreting capability of MGO-induced MeT-5A did not increase compared to the vehicle control. 41
Chapter 4 Discussion 43
References 50
 
-
dc.language.isoen-
dc.subject甲基乙二醛zh_TW
dc.subject間皮間質轉化(MMT)zh_TW
dc.subject腹膜纖維化zh_TW
dc.subject末期腎病zh_TW
dc.subject腹膜透析zh_TW
dc.subject超濾失敗zh_TW
dc.subject次世代定序zh_TW
dc.subjectTXNDC5zh_TW
dc.subjectmesothelial-to-mesenchymal transitionen
dc.subjectnext-generation sequencingen
dc.subjectmethylglyoxalen
dc.subjectthioredoxin domain-containing protein 5en
dc.subjectperitoneal dialysisen
dc.subjectultrafiltration failureen
dc.subjectperitoneal fibrosisen
dc.subjectend-stage renal diseaseen
dc.title探討內質網蛋白TXNDC5在甲基乙二醛誘發之腹膜纖維化扮演的角色zh_TW
dc.titleInvestigate the Role of Thioredoxin Domain-Containing Protein 5 (TXNDC5) in Methylglyoxal-induced Peritoneal Fibrosisen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳怡婷;張惠雯;武敬和zh_TW
dc.contributor.oralexamcommitteeYi-Ting Chen;Hui-Wen Chang ;Chin-Ho Wuen
dc.subject.keyword腹膜透析,末期腎病,腹膜纖維化,間皮間質轉化(MMT),超濾失敗,TXNDC5,甲基乙二醛,次世代定序,zh_TW
dc.subject.keywordperitoneal dialysis,end-stage renal disease,peritoneal fibrosis,ultrafiltration failure,mesothelial-to-mesenchymal transition,thioredoxin domain-containing protein 5,methylglyoxal,next-generation sequencing,en
dc.relation.page53-
dc.identifier.doi10.6342/NTU202302521-
dc.rights.note未授權-
dc.date.accepted2023-08-09-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept獸醫學系-
顯示於系所單位:獸醫學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
3.42 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved