請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90464完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李佳翰 | zh_TW |
| dc.contributor.advisor | Jia-Han Li | en |
| dc.contributor.author | 余世博 | zh_TW |
| dc.contributor.author | Shih-Bo Yu | en |
| dc.date.accessioned | 2023-10-03T16:11:58Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-10-03 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-07 | - |
| dc.identifier.citation | S. Z. Chen, S. H. Sun, and S. L. Kang, "System Integration of Terrestrial Mobile Communication and Satellite Communication-The Trends, Challenges and Key Technologies in B5G and 6G," China Communications, vol. 17, no. 12, pp. 156-171, Dec 2020.
https://www.virgingalactic.com/ 遠見雜誌. "SpaceX、亞馬遜搶進「新星際大戰」,低軌衛星競賽肥了誰? L. W. Massengill, A. E. Baranski, D. O. Van Nort, J. Meng, and B. L. Bhuva, "Analysis of single-event effects in combinational logic - Simulation of the AM2901 bitslice processor," Ieee Transactions on Nuclear Science, vol. 47, no. 6, pp. 2609-2615, Dec 2000, doi: 10.1109/23.903816. C. Weulersse, F. Bezerra, F. Miller, T. Carriere, N. Buard, and W. Falo, "Probing SET Sensitive Volumes in Linear Devices Using Focused Laser Beam at Different Wavelengths," Ieee Transactions on Nuclear Science, vol. 55, no. 4, pp. 2007-2012, Aug 2008, doi: 10.1109/tns.2008.2000865. https://zero-errorsystems.com/ https://www.alliedscientificpro.com/ Z. Lei, H. Luo, H. Chen, Q. Shi, and Y. He, "Single Event Effects test for CMOS devices using 1064nm pulsed laser," in 2011 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering, 2011: IEEE, pp. 325-328. A. Chugg, A. Burnell, M. Moutrie, R. Jones, and R. Harboe-Sørensen, "Laser SEE sensitivity mapping of SRAM cells," IEEE Transactions on Nuclear Science, vol. 54, no. 6, pp. 2106-2112, 2007. J. S. Melinger, S. Buchner, D. McMorrow, W. J. Stapor, T. R. Weatherford, and A. B. Campbell, "CRITICAL-EVALUATION OF THE PULSED-LASER METHOD FOR SINGLE EVENT EFFECTS TESTING AND FUNDAMENTAL-STUDIES," Ieee Transactions on Nuclear Science, vol. 41, no. 6, pp. 2574-2584, Dec 1994, doi: 10.1109/23.340618. J. S. Melinger, S. Buchner, D. McMorrow, W. J. Stapor, T. R. Weatherford, and A. B. Campbell, "CRITICAL-EVALUATION OF THE PULSED-LASER METHOD FOR SINGLE EVENT EFFECTS TESTING AND FUNDAMENTAL-STUDIES," Ieee Transactions on Nuclear Science, vol. 41, no. 6, pp. 2574-2584, Dec 1994, doi: 10.1109/23.340618. C. Gu et al., "Application of Two-Photon-Absorption Pulsed Laser for Single-Event-Effects Sensitivity Mapping Technology," Materials, vol. 12, no. 20, Oct 2019, Art no. 3411, doi: 10.3390/ma12203411. 廖培凱, "使用短脈衝雷射與質子束對反向器與比較器電路進行單事件效應測試,"工程科學及海洋工程學研究所,國立臺灣大學,2022年,2022. L. S. Novikov, V. N. Mileev, E. N. Voronina, L. I. Galanina, A. A. Makletsov, and V. V. Sinolits, "Radiation effects on spacecraft materials," Journal of Surface Investigation-X-Ray Synchrotron and Neutron Techniques, vol. 3, no. 2, pp. 199-214, Apr 2009, doi: 10.1134/s1027451009020062. L. S. Novikov, V. N. Mileev, E. N. Voronina, L. I. Galanina, A. A. Makletsov, and V. V. Sinolits, "Radiation effects on spacecraft materials," Journal of Surface Investigation-X-Ray Synchrotron and Neutron Techniques, vol. 3, no. 2, pp. 199-214, Apr 2009, doi: 10.1134/s1027451009020062. A. Doridant et al., "Impact of Total Ionizing Dose on the Electromagnetic Susceptibility of a Single Bipolar Transistor," Ieee Transactions on Nuclear Science, vol. 59, no. 4, pp. 860-865, Aug 2012, doi: 10.1109/tns.2011.2181415. P. Li et al., "Radiation hardness assurance of single event effects on components for space application," in 2021 4th International Conference on Radiation Effects of Electronic Devices (ICREED), 2021: IEEE, pp. 1-6. https://radhome.gsfc.nasa.gov/radhome/see.htm E. Secretariat, "Space product assurance," 2008. K. Jeong, D. Ro, G. Lee, M. Kang, and H. M. Lee, "A Radiation-Hardened Instrumentation Amplifier for Sensor Readout Integrated Circuits in Nuclear Fusion Applications," Electronics, vol. 7, no. 12, Dec 2018, Art no. 429, doi: 10.3390/electronics7120429. J. Budroweit, M. P. Jaksch, and M. Sznajder, "Proton Induced Single Event Effect Characterization on a Highly Integrated RF-Transceiver," Electronics, vol. 8, no. 5, May 2019, Art no. 519, doi: 10.3390/electronics8050519. C. M. Andreou et al., "Low-Power, Subthreshold Reference Circuits for the Space Environment: Evaluated with -rays, X-rays, Protons and Heavy Ions," Electronics, vol. 8, no. 5, May 2019, Art no. 562, doi: 10.3390/electronics8050562. C. Cai et al., "Heavy-Ion Induced Single Event Upsets in Advanced 65 nm Radiation Hardened FPGAs," Electronics, vol. 8, no. 3, Mar 2019, Art no. 323, doi: 10.3390/electronics8030323. L. D. Ryder et al., "Simulation of Pulsed-Laser-Induced Testing in Microelectronic Devices," Ieee Transactions on Nuclear Science, vol. 68, no. 10, pp. 2496-2507, Oct 2021, doi: 10.1109/tns.2021.3111864. S. P. Buchner et al., "LASER SIMULATION OF SINGLE EVENT UPSETS," Ieee Transactions on Nuclear Science, vol. 34, no. 6, pp. 1228-1233, Dec 1987, doi: 10.1109/tns.1987.4337457. A. I. Chumakov, A. A. Pechenkin, D. V. Savchenkov, A. S. Tararaksin, A. L.Vasil'ev, and A. V. Yanenko, "Local laser irradiation technique for SEE testing of ICs," in 2011 12th European Conference on Radiation and Its Effects on Components and Systems, 2011: IEEE, pp. 449-453. R. Chen, Y. T. Yu, S. P. Shangguan, G. Q. Feng, and J. W. Han, "Mechanism of multiple bit upsets induced by localized latch-up effect in 90 nm complementary metal semiconductor static random-access memory," Acta Physica Sinica, vol. 63, no. 12, Jun 2014, Art no. 128501, doi: 10.7498/aps.63.128501. L. D. Ryder et al., "Polarization Dependence of Pulsed Laser-Induced SEEs in SOI FinFETs," Ieee Transactions on Nuclear Science, vol. 67, no. 1, pp. 38-43, Jan 2020, doi: 10.1109/tns.2019.2956911. J. M. Hales et al., "Experimental Validation of an Equivalent LET Approach for Correlating Heavy-Ion and Laser-Induced Charge Deposition," Ieee Transactions on Nuclear Science, vol. 65, no. 8, pp. 1724-1733, Aug 2018, doi: 10.1109/tns.2018.2828332. A. H. Johnston, "CHARGE GENERATION AND COLLECTION IN P-N-JUNCTIONS EXCITED WITH PULSED INFRARED-LASERS," Ieee Transactions on Nuclear Science, vol. 40, no. 6, pp. 1694-1702, Dec 1993, doi: 10.1109/23.273491. J. C. Pickel, "Single-event effects rate prediction," IEEE Transactions on Nuclear Science, vol. 43, no. 2, pp. 483-495, 1996. J. S. Melinger et al., "Pulsed laser-induced single event upset and charge collection measurements as a function of optical penetration depth," Journal of Applied Physics, vol. 84, no. 2, pp. 690-703, Jul 1998, doi: 10.1063/1.368124. K. Tian, Z. Cao, Y.-x. XUE, and S.-y. YANG, "Equivalent Heavy-Ion Linear Energy Transfer of Pulsed Laser Energy," Atomic Energy Science and Technology, vol. 44, no. 4, p. 489, 2010. B. Ajdari, S. Sekwao, R. Ascazubi, A. Neale, and N. Seifert, "On the correlation of laser-induced and high-energy proton beam-induced single event latchup," in 2020 IEEE International Reliability Physics Symposium (IRPS), 2020: IEEE, pp. 1-5. K. L. Ryder et al., "Comparison of Single-Event Transients in an Epitaxial Silicon Diode Resulting From Heavy-Ion-, Focused X-Ray-, and Pulsed Laser-Induced Charge Generation," Ieee Transactions on Nuclear Science, vol. 68, no. 5, pp. 626-633, May 2021, doi: 10.1109/tns.2021.3060339. A. Ildefonso et al., "Optimizing Optical Parameters to Facilitate Correlation of Laser- and Heavy-Ion-Induced Single-Event Transients in SiGe HBTs," Ieee Transactions on Nuclear Science, vol. 66, no. 1, pp. 359-367, Jan 2019, doi: 10.1109/tns.2018.2882821. J. T. Fang et al., "Understanding the Average Electron-Hole Pair-Creation Energy in Silicon and Germanium Based on Full-Band Monte Carlo Simulations," Ieee Transactions on Nuclear Science, vol. 66, no. 1, pp. 444-451, Jan 2019, doi: 10.1109/tns.2018.2879593. W. Shockley, "Problems related to pn junctions in silicon," Solid-State Electronics, vol. 2, no. 1, pp. 35-67, 1961. V. Diez-Acereda, S. L. Khemchandani, J. del Pino, and S. Mateos-Angulo, "RHBD Techniques to Mitigate SEU and SET in CMOS Frequency Synthesizers," Electronics, vol. 8, no. 6, Jun 2019, Art no. 690, doi: 10.3390/electronics8060690. SIGMAKOKI. "https://jp.optosigma.com/en_jp/pal-50-nir-l.html." G. M. Ferreira, V. Silva, G. Minas, and S. O. Catarino, "Simulation Study of Vertical p-n Junction Photodiodes' Optical Performance According to CMOS Technology," Applied Sciences-Basel, vol. 12, no. 5, Mar 2022, Art no. 2580, doi: 10.3390/app12052580. E. Kamrani, "On-chip integrated functional near infra-red spectroscopy (fNIRS) photoreceiver for portable brain imaging," École Polytechnique de Montréal, 2014. S. Löchner and H. Deppe, "Radiation studies on the UMC 180nm CMOS process at GSI," in 2009 European Conference on Radiation and Its Effects on Components and Systems, 2009: IEEE, pp. 614-616. H. Q. Gong et al., "Scaling Effects on Single-Event Transients in InGaAs FinFETs," Ieee Transactions on Nuclear Science, vol. 65, no. 1, pp. 296-303, Jan 2018, doi: 10.1109/tns.2017.2778640. D. M. Hiemstra and E. W. Blackmore, "LET spectra of proton energy levels from 50 to 500 MeV and their effectiveness for single event effects characterization of microelectronics," Ieee Transactions on Nuclear Science, vol. 50, no. 6, pp. 2245-2250, Dec 2003, doi: 10.1109/tns.2003.821811. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90464 | - |
| dc.description.abstract | 隨著太空元件抗輻射的檢測技術逐漸發展成熟,為了因應日漸壯大的太空產業,各國相繼發展出相較於傳統使用高能粒子加速器還要快速以及實惠的脈衝雷射檢測技術來進行元件單事件效應之測試,然而使用脈衝雷射來進行晶片抗輻射檢測也遭遇了分析技術上的瓶頸,包括雷射與高能粒子之間的量化對照,以及雷射會遭到元件上的金屬層阻擋的影響。
因此,本篇論文之目的即為建立一套用於分析脈衝雷射對晶片進行輻射效應測試的分析方式,首先針對客製化之待測元件建立脈衝雷射單事件效應照射實驗,並透過此實驗來取得實驗結果之相關數據,再根據這些實驗數據進行待測晶片的模擬建置以及進行模擬分析,並且將此模擬分析所獲得的結果用來與待測晶片在virtuoso模擬所獲得的結果進行對照,透過兩者的結果對照可以看到本論文的分析結果是與virtuoso結果相近的,從而驗證了此分析方式的可行性,進而建立起了脈衝雷射對晶片進行輻射效應測試之分析方式。 論文的最後也提出了此分析方式可以優化的部分,如此一來便可以使分析結果更加精確,期許此分析方式未來能夠應用於脈衝雷射在不同晶片之輻射效應的照射的分析。 | zh_TW |
| dc.description.abstract | As the radiation resistance detection technology of space components gradually matures, in order to cope with the growing space industry, countries have successively developed pulsed laser detection technology that is faster and more affordable than the traditional use of high-energy particle accelerators to detect single-event effects in the chip.
However, the use of pulsed lasers for chip radiation resistance testing also encountered analytical technical bottlenecks, including the quantitative comparison between lasers and high-energy particles, and the impact of lasers being blocked by metal layers on components. Therefore, the purpose of this paper is to establish a set of analysis methods for analyzing the radiation effect of pulsed laser on chips. At first, an experiment is done to obtain the relevant data of the experimental results, and then carry out the simulation construction and simulation analysis of the chip under test based on these experimental data, finally the results obtained by this simulation analysis is putting into compare with the results obtained by the VIRTUOSO simulation. Through the comparison of the two results, it can be seen that the analysis results of this paper are similar to the results of VIRTUOSO, thus verifying the feasibility of this analysis method, and then establishing an analysis method for the radiation effect test of the pulsed laser on the chip . At the end of the paper, it is also proposed that this analysis method can be optimized, so that the analysis results can be more accurate. It is expected that this analysis method can be applied to the analysis of the radiation effect of pulsed lasers on different chips in the future. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:11:58Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-10-03T16:11:58Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 ii
中文摘要 iii ABSTRACT iv 目錄 v 圖目錄 vii 表目錄 xi 公式符號列表 xii 專有名詞列表 xiii 第一章 緒論 1 1.1研究背景及動機 1 1.2本文架構 2 第二章 文獻探討及研究概念 3 2.1輻射效應的種類 3 2.2單事件效應分類 3 2.2.1常見的硬錯誤案例 4 2.2.2常見的軟錯誤案例 4 2.3單事件效應研究之文獻 5 2.3.1 高能粒子產生單事件效應之機制 5 2.3.2 脈衝雷射產生單事件效應之原理以及文獻 6 2.3.3 脈衝雷射與高能粒子產生單事件效應之等效方法 9 2.4 本研究之研究概念 13 第三章 實驗方法及結果 15 3.1脈衝雷射照射實驗及結果 15 3.1.1脈衝雷射之選用 15 3.1.2測試晶片 16 3.1.3雷射測試光路架設及測試流程 18 3.1.4 脈衝雷射照射實驗之結果 21 3.2比較器之雷射照射及分析之模擬建構 25 3.2.1雷射照射模擬建構 26 3.2.2雷射照射模擬結果 36 3.3待測元件之SET電流模擬建立與模擬分析結果 39 3.3.1 CHARGE模擬之建立 39 第四章 研究結果討論 51 4.1脈衝雷射照射實驗討論 51 4.2模擬脈衝雷射照射之結果討論 51 4.3 CHARGE模擬結果討論 52 4.4討論 54 4.4.1 CHARGE模擬與VIRTUOSO模擬的結果之比較 54 4.4.2 線性能量轉移(LET)之計算 55 4.4.3 LET計算結果之討論 56 第五章 總結及未來展望 58 5.1總結 58 5.2未來展望 58 5.2.1未來可優化之方向 58 5.2.2未來可發展之方向 59 參考資料 61 附錄 65 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 單事件效應 | zh_TW |
| dc.subject | 時域有限差分 | zh_TW |
| dc.subject | 脈衝雷射 | zh_TW |
| dc.subject | 晶片抗輻射檢測 | zh_TW |
| dc.subject | 線性能量轉移 | zh_TW |
| dc.subject | Pulsed laser | en |
| dc.subject | Finite Difference Time Domain | en |
| dc.subject | Radiation Hardening Inspection | en |
| dc.subject | Single Event Effect | en |
| dc.subject | Linear Energy Transfer | en |
| dc.title | 短脈衝雷射在比較器電路內誘發單事件瞬態現象之分析方式建立 | zh_TW |
| dc.title | Establishment of an analysis method for short-pulse laser-induced single-event transient phenomena in comparator circuits | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 朱旭新;蕭惠心;陳信樹;蔡坤諭 | zh_TW |
| dc.contributor.oralexamcommittee | Hsu-Hsin Chu;Hui-Hsin Hsiao;Hsin-Shu Chen;Kuen-Yu Tsai | en |
| dc.subject.keyword | 單事件效應,脈衝雷射,時域有限差分,晶片抗輻射檢測,線性能量轉移, | zh_TW |
| dc.subject.keyword | Single Event Effect,Pulsed laser,Finite Difference Time Domain,Radiation Hardening Inspection,Linear Energy Transfer, | en |
| dc.relation.page | 65 | - |
| dc.identifier.doi | 10.6342/NTU202303470 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-08-09 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 工程科學及海洋工程學系 | - |
| dc.date.embargo-lift | 2028-08-07 | - |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 5.33 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
