請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90460完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳文中 | zh_TW |
| dc.contributor.advisor | Wen-Jong Wu | en |
| dc.contributor.author | 謝佩頤 | zh_TW |
| dc.contributor.author | Pei-Yi Hsieh | en |
| dc.date.accessioned | 2023-10-03T16:10:45Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-10-03 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-11 | - |
| dc.identifier.citation | [1] K. Suzuki, K. Higuchi, and H. Tanigawa, "A silicon electrostatic ultrasonic transducer," IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 36, no. 6, pp. 620-627, 1989.
[2] Y. Qiu et al., "Piezoelectric micromachined ultrasound transducer (PMUT) arrays for integrated sensing, actuation and imaging," Sensors, vol. 15, no. 4, pp. 8020-8041, 2015. [3] M. HQ. "What's the difference between dynamic and condenser microphones." (accessed. [4] e. Europe. "Startup’s piezoelectric MEMS mics may take over." (accessed. [5] S. Horowitz, T. Nishida, L. Cattafesta, and M. Sheplak, "Development of a micromachined piezoelectric microphone for aeroacoustics applications," the journal of the acoustical society of America, vol. 122, no. 6, pp. 3428-3436, 2007. [6] Z. Zhou, S. Yoshida, and S. Tanaka, "Epitaxial PMnN-PZT/Si MEMS ultrasonic rangefinder with 2 m range at 1 V drive," Sensors and Actuators A: Physical, vol. 266, pp. 352-360, 2017. [7] G.-L. Luo, Y. Kusano, and D. A. Horsley, "Airborne piezoelectric micromachined ultrasonic transducers for long-range detection," journal of microelectromechanical systems, vol. 30, no. 1, pp. 81-89, 2020. [8] G. Cai et al., "An Enhanced-Differential PMUT for Ultra-Long Distance Measurement in Air," in 2021 IEEE 34th International Conference on Micro Electro Mechanical Systems (MEMS), 2021: IEEE, pp. 899-902. [9] A. D. a. J. Mouly, "Ultrasound Sensing Technologies 2020 Report," Yole Développement, 2020. [10] P. Y. Cheng, "Airborne Piezoelectric Micromachined Ultrasound Transducer for Range Detection System," ed, 2021. [11] E. Fukada, "History and recent progress in piezoelectric polymers," IEEE Transactions on ultrasonics, ferroelectrics, and frequency control, vol. 47, no. 6, pp. 1277-1290, 2000. [12] B.-K. Fang, M.-S. Ju, and C.-C. K. Lin, "A new approach to develop ionic polymer–metal composites (IPMC) actuator: Fabrication and control for active catheter systems," Sensors and Actuators A: Physical, vol. 137, no. 2, pp. 321-329, 2007. [13] H. Jaffe, "Piezoelectric ceramics," Journal of the American Ceramic Society, vol. 41, no. 11, pp. 494-498, 1958. [14] G. H. Haertling, "Ferroelectric ceramics: history and technology," Journal of the American Ceramic Society, vol. 82, no. 4, pp. 797-818, 1999. [15] Y. Yamashita, Y. Hosono, K. Harada, and N. Ichinose, "Effect of molecular mass of B-site ions on electromechanical coupling factors of lead-based perovskite piezoelectric materials," Japanese Journal of Applied Physics, vol. 39, no. 9S, p. 5593, 2000. [16] S. Mabud, "The morphotropic phase boundary in PZT solid solutions," Journal of Applied Crystallography, vol. 13, no. 3, pp. 211-216, 1980. [17] D. Zhu, N. Hu, and D. W. Schaefer, "Water-based sol–gel coatings for military coating applications," Handbook of Waterborne Coatings, pp. 1-27, 2020. [18] G. Vijaya, M. Krupashankara, B. Sridhara, and T. Shridhar, "Studies on nanostructure aluminium thin film coatings deposited using DC magnetron sputtering process," in IOP Conference Series: Materials Science and Engineering, 2016, vol. 149, no. 1: IOP Publishing, p. 012071. [19] T. Morita, "Piezoelectric materials synthesized by the hydrothermal method and their applications," Materials, vol. 3, no. 12, pp. 5236-5245, 2010. [20] R. Parashkov, E. Becker, T. Riedl, H.-H. Johannes, and W. Kowalsky, "Large area electronics using printing methods," Proceedings of the IEEE, vol. 93, no. 7, pp. 1321-1329, 2005. [21] B. Farahani, M. Jadidi, and S. Moghtadernejad, "Compressibility and Rarefaction Effects on Particle Dynamics and Heat Transfer in Aerosol Deposition Process," Coatings, vol. 12, no. 10, p. 1578, 2022. [22] S. B. Horowitz, A. D. Mathias, J. R. Fox, J. Cortes, M. Sanghadasa, and P. Ashley, "Effects of scaling and geometry on the performance of piezoelectric microphones," Sensors and Actuators A: Physical, vol. 185, pp. 24-32, 2012. [23] S. A. Prasad et al., "Analytical electroacoustic model of a piezoelectric composite circular plate," AIAA journal, vol. 44, no. 10, pp. 2311-2318, 2006. [24] Z. Wang, J. Miao, and W. Zhu, "Micromachined ultrasonic transducers and arrays based on piezoelectric thick film," Applied Physics A, vol. 91, pp. 107-117, 2008. [25] L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of acoustics. John wiley & sons, 2000. [26] G. S. Shan, "Airborne Piezoelectric Micromachined Ultrasound Transducer for Range Detection System," ed, 2022. [27] S.-C. Lin and W.-J. Wu, "Piezoelectric micro energy harvesters based on stainless-steel substrates," Smart Materials and Structures, vol. 22, no. 4, p. 045016, 2013. [28] P. Muralt et al., "Piezoelectric micromachined ultrasonic transducers based on PZT thin films," IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 52, no. 12, pp. 2276-2288, 2005. [29] S.-C. Lin and W.-J. Wu, "Fabrication of PZT MEMS energy harvester based on silicon and stainless-steel substrates utilizing an aerosol deposition method," Journal of Micromechanics and Microengineering, vol. 23, no. 12, p. 125028, 2013. [30] S. L. Kok, "Energy harvesting technologies: Thick-film piezoelectric microgenerator," Sustainable Energy Harvesting Technologies-Past, Present and Future, pp. 192-214, 2011. [31] M. Shen, Y. Wang, Y. Jiang, H. Ji, B. Wang, and Z. Huang, "A new positioning method based on multiple ultrasonic sensors for autonomous mobile robot," Sensors, vol. 20, no. 1, p. 17, 2019. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90460 | - |
| dc.description.abstract | 在自動化時代的進步下,大眾對於實現自動駕駛的夢想更加渴望,因此先進駕駛輔助系統(ADAS)的發展成為當今熱門的議題之一,加上隨著超音波感測技術的進步,若能開發出體積小、製程簡便、低能耗且性能優越的超音波距離感測器,對於先進駕駛輔助系統的應用有很大的發展性。
本研究是以開發壓電式微機電超音波感測器為目標,實現超音波感測技術之空間距離感測應用。使用不鏽鋼基板搭配微機電製程和氣膠沉積法,製作出壓電感測器元件,並且與 PCB 板、電路板整合,最終成功提升靈敏度,並且透過飛時測距系統來達到空間距離感測之目的搭配微機電製程。元件共振頻位於63.35 kHz,平均靈敏度為-34.85 dBV/Pa,在聲壓位準為94 dB、頻率為共振頻時,元件之訊噪比為26.97 dB,指向性型態為接近全指向性。 在距離感測的量測成果中,當驅動高音喇叭之電壓固定為12 Vpp時,可偵測到之最遠距離為1.25 m,即超音波傳遞之來回距離為2.5 m,且量測結果和實際距離之相關係數為0.99995,而相對誤差為1.4%,約為18 mm。 | zh_TW |
| dc.description.abstract | With the advancements in automation, the general public has a growing desire to realize the dream of autonomous driving. As a result, the development of Advanced Driver Assistance Systems (ADAS) has become a hot topic in today's world. Furthermore, with the progress in ultrasonic sensing technology, there is great potential for the development of small-sized, easily manufacturable, low-power consumption, and high-performance ultrasonic distance sensors, which can significantly enhance the applications of ADAS.
In this study, we present a piezoelectric micromachined ultrasound sensor for range detection. By modifying the thickness of stainless-steel substrate and fabricated by aerosol deposition and MEMS fabrication techniques, the sensor is fabricated and integrated with PCB board and circuit. The resonant frequency of the sensor component is 63.35 kHz, with an average sensitivity of -34.85 dBV/Pa. Measured at resonant frequency and sound pressure level of 94 dB, the signal-to-noise ratio of the component is 26.97 dB, and the directional pattern is close to omnidirectional. The experimental results of range detection reveal, when driving the speaker with a fixed voltage of 12 Vpp, the maximum detectable distance is 1.25 m, corresponding to a roundtrip distance of ultrasound propagation of 2.5 m. The measurement results exhibit a correlation coefficient of 0.99995 and a relative error of 1.4%, approximately 18 mm. The experimental results of range detection reveal that the maximum roundtrip range and range error about 2.5 m±36 mm by applied tweeter 12 Vpp voltage. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:10:45Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-10-03T16:10:45Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
中文摘要 iii ABSTRACT iv 目錄 vi 圖目錄 ix 表目錄 xii 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 4 1.3 研究目的 8 1.4 論文架構 9 第二章 壓電原理 10 2.1 材料效應 10 2.1.1 正壓電效應 10 2.1.2 逆壓電效應 11 2.2 壓電材料 11 2.2.1 壓電材料種類 11 2.2.2 壓電材料選用 12 2.3 壓電膜製程方式 13 2.3.1 溶膠凝膠法(Sol-gel) 13 2.3.2 濺鍍法(Sputtering) 14 2.3.3 水熱合成法(Hydrothermal) 15 2.3.4 網版印刷法(Screen printing) 16 2.3.5 氣膠沉積法(Aerosol deposition) 16 2.3.6 壓電膜製程方式比較 17 第三章 壓電式超音波感測器之理論 19 3.1 壓電式聲學感測器模型 19 3.2 感測器性能指標 21 3.2.1 共振頻率 21 3.2.2 聲壓位準 22 3.2.3 靈敏度 22 3.2.4 訊噪比 23 第四章 壓電式超音波感測器之元件設計和製作 24 4.1 壓電式超音波感測器元件模擬分析 24 4.1.1 模型設計 24 4.1.2 運算求解 26 4.1.3 結果分析 26 4.2 壓電式超音波感測器之元件製程 31 4.2.1 微機電製程 31 4.2.2 氣膠沉積法 33 4.2.3 壓電元件退火 34 4.2.4 壓電元件組裝極化 34 第五章 實驗結果與討論 37 5.1 介面電路設計和組裝 37 5.1.1 介面電路設計 37 5.1.2 壓電感測器和介面電路之組裝 40 5.1.3 介面電路增益量測 42 5.2 壓電式超音波感測器性能量測 45 5.2.1 量測系統架設 45 5.2.2 輸出性能分析 48 5.3 壓電式超音波感測器指向性量測 53 5.3.1 量測系統架設 53 5.3.2 指向性型態分析 55 5.4 空間感測技術量測 56 5.4.1 飛時測距技術 56 5.4.2 量測系統架設 58 5.4.3 測距結果分析 59 第六章 結論與未來展望 60 6.1 結論 60 6.2 未來展望 61 參考文獻 62 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 壓電式微加工超音波感測器 | zh_TW |
| dc.subject | 空間距離感測 | zh_TW |
| dc.subject | 氣膠沉積法 | zh_TW |
| dc.subject | 壓電材料 | zh_TW |
| dc.subject | 靈敏度 | zh_TW |
| dc.subject | range detection | en |
| dc.subject | aerosol deposition | en |
| dc.subject | piezoelectric material | en |
| dc.subject | piezoelectric micromachined ultrasound sensor | en |
| dc.subject | airborne | en |
| dc.subject | sensitivity | en |
| dc.title | 以壓電式微加工超音波感測器實現之空間距離感測系統 | zh_TW |
| dc.title | Airborne Piezoelectric Micromachined Ultrasound Sensor for Range Detection System | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 王昭男;李世光;田維誠 | zh_TW |
| dc.contributor.oralexamcommittee | Chao-Nan Wang;Chih-Kung Lee;Wei-Cheng Tian | en |
| dc.subject.keyword | 壓電式微加工超音波感測器,氣膠沉積法,壓電材料,空間距離感測,靈敏度, | zh_TW |
| dc.subject.keyword | airborne,piezoelectric micromachined ultrasound sensor,range detection,aerosol deposition,piezoelectric material,sensitivity, | en |
| dc.relation.page | 64 | - |
| dc.identifier.doi | 10.6342/NTU202302169 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-08-11 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 工程科學及海洋工程學系 | - |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 4.53 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
