請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90457
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳昆峯 | zh_TW |
dc.contributor.advisor | Kuen-Phon Wu | en |
dc.contributor.author | 陳沛慈 | zh_TW |
dc.contributor.author | Pei-Tzu Chen | en |
dc.date.accessioned | 2023-10-03T16:09:52Z | - |
dc.date.available | 2023-11-10 | - |
dc.date.copyright | 2023-10-03 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-06-26 | - |
dc.identifier.citation | 1. Ivashkiv, L.B. and L.T. Donlin, Regulation of type I interferon responses. Nat Rev Immunol, 2014. 14(1): p. 36-49.
2. Farrell, P.J., R.J. Broeze, and P. Lengyel, Accumulation of an mRNA and protein in interferon-treated Ehrlich ascites tumour cells. Nature, 1979. 279(5713): p. 523-5. 3. Haas, A.L., et al., Interferon induces a 15-kilodalton protein exhibiting marked homology to ubiquitin. J Biol Chem, 1987. 262(23): p. 11315-23. 4. Lenschow, D.J., et al., Identification of interferon-stimulated gene 15 as an antiviral molecule during Sindbis virus infection in vivo. J Virol, 2005. 79(22): p. 13974-83. 5. Skaug, B. and Z.J. Chen, Emerging role of ISG15 in antiviral immunity. Cell, 2010. 143(2): p. 187-90. 6. Malakhova, O., et al., Lipopolysaccharide activates the expression of ISG15-specific protease UBP43 via interferon regulatory factor 3. J Biol Chem, 2002. 277(17): p. 14703-11. 7. Dao, C.T., J.K. Luo, and D.E. Zhang, Retinoic acid-induced protein ISGylation is dependent on interferon signal transduction. Blood Cells Mol Dis, 2006. 36(3): p. 406-13. 8. Liu, M., et al., Camptothecin induces the ubiquitin-like protein, ISG15, and enhances ISG15 conjugation in response to interferon. J Interferon Cytokine Res, 2004. 24(11): p. 647-54. 9. Radoshevich, L., et al., ISG15 counteracts Listeria monocytogenes infection. Elife, 2015. 4. 10. Potter, J.L., et al., Precursor processing of pro-ISG15/UCRP, an interferon-beta-induced ubiquitin-like protein. J Biol Chem, 1999. 274(35): p. 25061-8. 11. Dzimianski, J.V., et al., ISG15: It's Complicated. J Mol Biol, 2019. 431(21): p. 4203-4216. 12. Perng, Y.C. and D.J. Lenschow, ISG15 in antiviral immunity and beyond. Nat Rev Microbiol, 2018. 16(7): p. 423-439. 13. Sun, L., et al., Exosomes contribute to the transmission of anti-HIV activity from TLR3-activated brain microvascular endothelial cells to macrophages. Antiviral Res, 2016. 134: p. 167-171. 14. Dos Santos, P.F. and D.S. Mansur, Beyond ISGlylation: Functions of Free Intracellular and Extracellular ISG15. J Interferon Cytokine Res, 2017. 37(6): p. 246-253. 15. D'Cunha, J., et al., Immunoregulatory properties of ISG15, an interferon-induced cytokine. Proc Natl Acad Sci U S A, 1996. 93(1): p. 211-5. 16. Padovan, E., et al., Interferon stimulated gene 15 constitutively produced by melanoma cells induces e-cadherin expression on human dendritic cells. Cancer Res, 2002. 62(12): p. 3453-8. 17. Recht, M., E.C. Borden, and E. Knight, Jr., A human 15-kDa IFN-induced protein induces the secretion of IFN-gamma. J Immunol, 1991. 147(8): p. 2617-23. 18. Nakashima, H., et al., Interferon-stimulated gene 15 (ISG15) and ISG15-linked proteins can associate with members of the selective autophagic process, histone deacetylase 6 (HDAC6) and SQSTM1/p62. J Biol Chem, 2015. 290(3): p. 1485-95. 19. Yeh, Y.H., et al., A negative feedback of the HIF-1alpha pathway via interferon-stimulated gene 15 and ISGylation. Clin Cancer Res, 2013. 19(21): p. 5927-39. 20. Malakhova, O.A., et al., UBP43 is a novel regulator of interferon signaling independent of its ISG15 isopeptidase activity. EMBO J, 2006. 25(11): p. 2358-67. 21. Meuwissen, M.E., et al., Human USP18 deficiency underlies type 1 interferonopathy leading to severe pseudo-TORCH syndrome. J Exp Med, 2016. 213(7): p. 1163-74. 22. Zhang, X., et al., Human intracellular ISG15 prevents interferon-alpha/beta over-amplification and auto-inflammation. Nature, 2015. 517(7532): p. 89-93. 23. Speer, S.D., et al., ISG15 deficiency and increased viral resistance in humans but not mice. Nat Commun, 2016. 7: p. 11496. 24. Okumura, F., W. Zou, and D.E. Zhang, ISG15 modification of the eIF4E cognate 4EHP enhances cap structure-binding activity of 4EHP. Genes Dev, 2007. 21(3): p. 255-60. 25. Bergmann, M., et al., Influenza virus NS1 protein counteracts PKR-mediated inhibition of replication. J Virol, 2000. 74(13): p. 6203-6. 26. Ashkenazy, H., et al., ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res, 2016. 44(W1): p. W344-50. 27. Schulman, B.A. and J.W. Harper, Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways. Nat Rev Mol Cell Biol, 2009. 10(5): p. 319-31. 28. Zhang, D. and D.E. Zhang, Interferon-stimulated gene 15 and the protein ISGylation system. J Interferon Cytokine Res, 2011. 31(1): p. 119-30. 29. Zou, W. and D.E. Zhang, The interferon-inducible ubiquitin-protein isopeptide ligase (E3) EFP also functions as an ISG15 E3 ligase. J Biol Chem, 2006. 281(7): p. 3989-94. 30. Liu, S., et al., Insights into the evolution of the ISG15 and UBA7 system. Genomics, 2022. 114(2): p. 110302. 31. Tan, N.G., et al., Human homologue of ariadne promotes the ubiquitylation of translation initiation factor 4E homologous protein, 4EHP. FEBS Lett, 2003. 554(3): p. 501-4. 32. Wong, J.J., et al., HERC5 is an IFN-induced HECT-type E3 protein ligase that mediates type I IFN-induced ISGylation of protein targets. Proc Natl Acad Sci U S A, 2006. 103(28): p. 10735-40. 33. Lee, T.V., et al., The E1 ubiquitin-activating enzyme Uba1 in Drosophila controls apoptosis autonomously and tissue growth non-autonomously. Development, 2008. 135(1): p. 43-52. 34. Lois, L.M. and C.D. Lima, Structures of the SUMO E1 provide mechanistic insights into SUMO activation and E2 recruitment to E1. EMBO J, 2005. 24(3): p. 439-51. 35. Olsen, S.K. and C.D. Lima, Structure of a ubiquitin E1-E2 complex: insights to E1-E2 thioester transfer. Mol Cell, 2013. 49(5): p. 884-96. 36. Yuan, L., et al., Crystal structures of an E1-E2-ubiquitin thioester mimetic reveal molecular mechanisms of transthioesterification. Nat Commun, 2021. 12(1): p. 2370. 37. Chiu, Y.H., Q. Sun, and Z.J. Chen, E1-L2 activates both ubiquitin and FAT10. Mol Cell, 2007. 27(6): p. 1014-23. 38. Jin, J., et al., Dual E1 activation systems for ubiquitin differentially regulate E2 enzyme charging. Nature, 2007. 447(7148): p. 1135-8. 39. Truongvan, N., et al., Structures of UBA6 explain its dual specificity for ubiquitin and FAT10. Nat Commun, 2022. 13(1): p. 4789. 40. Groettrup, M., et al., Activating the ubiquitin family: UBA6 challenges the field. Trends Biochem Sci, 2008. 33(5): p. 230-7. 41. Schindelin, J., et al., Fiji: an open-source platform for biological-image analysis. Nat Methods, 2012. 9(7): p. 676-82. 42. Michaelis, L., et al., The original Michaelis constant: translation of the 1913 Michaelis-Menten paper. Biochemistry, 2011. 50(39): p. 8264-9. 43. Jez, J.M. and J.P. Noel, Mechanism of chalcone synthase. pKa of the catalytic cysteine and the role of the conserved histidine in a plant polyketide synthase. J Biol Chem, 2000. 275(50): p. 39640-6. 44. Po, H.N. and N.M. Senozan, The Henderson-Hasselbalch equation: Its history and limitations. Journal of Chemical Education, 2001. 78(11): p. 1499-1503. 45. Tajc, S.G., et al., Direct determination of thiol pKa by isothermal titration microcalorimetry. J Am Chem Soc, 2004. 126(34): p. 10508-9. 46. Masson, G.R., et al., Recommendations for performing, interpreting and reporting hydrogen deuterium exchange mass spectrometry (HDX-MS) experiments. Nat Methods, 2019. 16(7): p. 595-602. 47. Jumper, J., et al., Highly accurate protein structure prediction with AlphaFold. Nature, 2021. 596(7873): p. 583-589. 48. Mirdita, M., et al., ColabFold: making protein folding accessible to all. Nat Methods, 2022. 19(6): p. 679-682. 49. Punjani, A., et al., cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat Methods, 2017. 14(3): p. 290-296. 50. Stankovic-Valentin, N. and F. Melchior, Control of SUMO and Ubiquitin by ROS: Signaling and disease implications. Mol Aspects Med, 2018. 63: p. 3-17. 51. Lee, I. and H. Schindelin, Structural insights into E1-catalyzed ubiquitin activation and transfer to conjugating enzymes. Cell, 2008. 134(2): p. 268-78. 52. Schafer, A., M. Kuhn, and H. Schindelin, Structure of the ubiquitin-activating enzyme loaded with two ubiquitin molecules. Acta Crystallogr D Biol Crystallogr, 2014. 70(Pt 5): p. 1311-20. 53. Williams, K.M., et al., Structural insights into E1 recognition and the ubiquitin-conjugating activity of the E2 enzyme Cdc34. Nat Commun, 2019. 10(1): p. 3296. 54. Wallace, I., et al., Insights into the ISG15 transfer cascade by the UBE1L activating enzyme. bioRxiv, 2023: p. 2023.04.06.535837. 55. Hann, Z.S., et al., Structural basis for adenylation and thioester bond formation in the ubiquitin E1. Proc Natl Acad Sci U S A, 2019. 116(31): p. 15475-15484. 56. Wang, L., M. Zhang, and E. Alexov, DelPhiPKa web server: predicting pKa of proteins, RNAs and DNAs. Bioinformatics, 2016. 32(4): p. 614-5. 57. Robert, X. and P. Gouet, Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res, 2014. 42(Web Server issue): p. W320-4. 58. Huang, D.T., et al., Basis for a ubiquitin-like protein thioester switch toggling E1-E2 affinity. Nature, 2007. 445(7126): p. 394-8. 59. Reiter, K., et al., Identification of biochemically distinct properties of the small ubiquitin-related modifier (SUMO) conjugation pathway in Plasmodium falciparum. J Biol Chem, 2013. 288(39): p. 27724-36. 60. Kumar, M., et al., Structural basis for UFM1 transfer from UBA5 to UFC1. Nat Commun, 2021. 12(1): p. 5708. 61. Soudah, N., et al., An N-Terminal Extension to UBA5 Adenylation Domain Boosts UFM1 Activation: Isoform-Specific Differences in Ubiquitin-like Protein Activation. J Mol Biol, 2019. 431(3): p. 463-478. 62. Taherbhoy, A.M., et al., Atg8 transfer from Atg7 to Atg3: a distinctive E1-E2 architecture and mechanism in the autophagy pathway. Mol Cell, 2011. 44(3): p. 451-61. 63. Tolbert, B.S., et al., The active site cysteine of ubiquitin-conjugating enzymes has a significantly elevated pKa: functional implications. Biochemistry, 2005. 44(50): p. 16385-91. 64. Alcock, L.J., M.V. Perkins, and J.M. Chalker, Chemical methods for mapping cysteine oxidation. Chem Soc Rev, 2018. 47(1): p. 231-268. 65. Awoonor-Williams, E. and C.N. Rowley, Evaluation of Methods for the Calculation of the pKa of Cysteine Residues in Proteins. J Chem Theory Comput, 2016. 12(9): p. 4662-73. 66. Roos, G., N. Foloppe, and J. Messens, Understanding the pK(a) of redox cysteines: the key role of hydrogen bonding. Antioxid Redox Signal, 2013. 18(1): p. 94-127. 67. Davies, M.N., et al., Benchmarking pK(a) prediction. BMC Biochem, 2006. 7: p. 18. 68. Stankovic-Valentin, N., et al., Redox regulation of SUMO enzymes is required for ATM activity and survival in oxidative stress. EMBO J, 2016. 35(12): p. 1312-29. 69. Bossis, G. and F. Melchior, Regulation of SUMOylation by reversible oxidation of SUMO conjugating enzymes. Mol Cell, 2006. 21(3): p. 349-57. 70. Doris, K.S., E.L. Rumsby, and B.A. Morgan, Oxidative stress responses involve oxidation of a conserved ubiquitin pathway enzyme. Mol Cell Biol, 2012. 32(21): p. 4472-81. 71. Simoes, V., et al., Redox-sensitive E2 Rad6 controls cellular response to oxidative stress via K63-linked ubiquitination of ribosomes. Cell Rep, 2022. 39(8): p. 110860. 72. Frudd, K., T. Burgoyne, and J.R. Burgoyne, Oxidation of Atg3 and Atg7 mediates inhibition of autophagy. Nat Commun, 2018. 9(1): p. 95. 73. Felsenstein, J., Confidence Limits on Phylogenies: An Approach Using the Bootstrap. Evolution, 1985. 39(4): p. 783-791. 74. Tamura, K., G. Stecher, and S. Kumar, MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol Biol Evol, 2021. 38(7): p. 3022-3027. 75. Han, H.G., H.W. Moon, and Y.J. Jeon, ISG15 in cancer: Beyond ubiquitin-like protein. Cancer Lett, 2018. 438: p. 52-62. 76. Hermann, M. and D. Bogunovic, ISG15: In Sickness and in Health. Trends Immunol, 2017. 38(2): p. 79-93. 77. Alsohime, F., et al., JAK Inhibitor Therapy in a Child with Inherited USP18 Deficiency. N Engl J Med, 2020. 382(3): p. 256-265. 78. Desai, S.D., et al., Elevated expression of ISG15 in tumor cells interferes with the ubiquitin/26S proteasome pathway. Cancer Res, 2006. 66(2): p. 921-8. 79. Desai, S.D., ISG15: A double edged sword in cancer. Oncoimmunology, 2015. 4(12): p. e1052935. 80. Forys, J.T., et al., ARF and p53 coordinate tumor suppression of an oncogenic IFN-beta-STAT1-ISG15 signaling axis. Cell Rep, 2014. 7(2): p. 514-526. 81. Bektas, N., et al., The ubiquitin-like molecule interferon-stimulated gene 15 (ISG15) is a potential prognostic marker in human breast cancer. Breast Cancer Res, 2008. 10(4): p. R58. 82. Feng, Q., et al., UBE1L causes lung cancer growth suppression by targeting cyclin D1. Mol Cancer Ther, 2008. 7(12): p. 3780-8. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90457 | - |
dc.description.abstract | 泛素化(Ubiquitination)作為其中一項蛋白質後轉譯修飾途徑,對於細胞功能調節上影響甚鉅。ISG15是一種類泛素蛋白質(Ubiquitin-like protein),與其特定的相關修飾酵素E1 (UBA7)、 E2 (UBE2L6)、E3 (HERC5)皆受到第一類干擾素(Type I Interferon)、病毒和細菌感染的強烈誘導,而ISG15既可以做為獨立蛋白通過與其他蛋白交互作用以影響其功能,也可以作為標記直接與目標蛋白產生鍵結(ISGylation),並且通常與抗病毒等免疫反應相關。然而,不同於ubiquitin修飾途徑上各個相關酵素的作用與機制上的豐富研究,ISG15與其專屬修飾系統尚未被完整理解。在此,除了設法得知UBA7的蛋白結構資訊外,我們還進一步發現 UBA7 與UBE2L6兩者之間的催化中心半胱氨酸,非常容易產生雙硫鍵鍵結,且該鍵結負向面影響二者的酵素活性,因而阻礙了 ISGylation。但是相比於其他不同修飾途徑中同功能的蛋白酵素,這並不是一個常見的情況。通常需要在一定氧化劑添加,才能產生E1及E2之間的雙硫鍵鍵結,而這被認為是細胞面臨氧化壓力下的調控手段之一。目前還尚未有與之相關的文獻闡述,而本篇研究目的目的是去了解UBA7、UBE2L6與不同種類E1,E2之間的結構、物性、及化性等差異,找出導致兩者極容易產生雙硫鍵鍵結的機制與原因,以便更全面的認識該修飾途徑的調控方式。在此,我們發現E1與E2之間的結合親和力與酵素自身催化中心的微環境特性為非常關鍵的決定因素,影響了E1及E2之間雙硫鍵的產生的速率以及對於所需環境、蛋白濃度的要求。有鑑於先前的研究報導指出,目標蛋白質受到ISG15修飾可以造成功能上的獲得或喪失,因此只需一小部分的蛋白質被進行ISGylation,即可發揮強大的作用。故我們推測雙硫鍵的產生可能是一種對於ISG15修飾途徑中負回饋調節型式,以避免造成過量非預期的ISG15修飾。 | zh_TW |
dc.description.abstract | The expression of the ubiquitin-like molecule ISG15 and its associated E1, E2, and E3 enzymes is induced by type I interferons, highlighting their role in antiviral defense. However, the precise mechanism of ISG15 activation, conjugation, and ISGylation remains unknown. In this study, we identified a unique disulfide-covalent form between the catalytic cysteines of UBA7 and UBE2L6. This disulfide bond inhibits UBA7 and downstream catalytic activity, rendering the ISGylation process inactive. Interestingly, we found that the oxidation of the catalytic cysteines of E1 and E2 in response to environmental ROS factors is crucial for stress response. This novel finding suggests an additional regulatory mechanism for ISGylation. Through enzymatic kinetics and biophysical analysis, we unraveled the intricate interactions between UBA7 and UBE2L6, proposing a mechanism for the formation of the UBA7-UBE2L6 disulfide bond. Firstly, UBA1 possesses a longer cysteine capping loop that shields the catalytic cysteine, facilitating thioester bond formation with ubiquitin. In contrast, UBA7's shorter capping loop exposes its active site, making it more prone to solvent exposure and higher deprotonation potential. Secondly, the presence of acidic residues in UBA1's loop increases the active site's pKa value, reducing its reactivity. Thirdly, UBA7 exhibits a significantly stronger binding affinity for UBE2L6 compared to UBA1 and its respective E2s. The findings shed light on the structural factors governing UBA7 activity through E1-E2 disulfide formation and reveal an autoinhibitory regulatory mechanism in the ISG15-mediated pathway. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:09:52Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-10-03T16:09:52Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 摘要 i
Abstract ii Abbreviations iv 1. Introduction 1 1.1. ISG15 signaling and IFN response 1 1.1.1. The innate antiviral immunity 1 1.1.2. ISG15 and its conjugation 4 1.2. Modification pathway for ISG15 8 1.3. Ubiquitin-like modifier-activating enzyme and thioester transfer reaction 11 1.3.1. Ubiquitin-like modifier-activating enzymes (E1) 11 1.3.2. UBA7, UBA1, and UBA6 13 1.4. What is unknown? 17 2. Materials and Methods 20 2.1. DNA Constructs 20 2.2. Protein expression and purification 26 2.3. Fluorescent probe labeling ISG15 29 2.4. Biochemical assays 31 2.4.1. Transthioesterification kinetic 31 2.4.2. E1-E2 disulfide formation rate 32 2.4.3. bUBA7~bISG15 thioester formation rate 32 2.4.4. Data analysis with ImageJ and pro Fit 7 32 2.5. Biolayer Interferometry (BLI) assay for measuring protein binding affinity 34 2.6. Determination of the pKa value of E1 or E2 catalytic cysteine 36 2.6.1. pH Dependence inactivation of the active site of E1s[43] 36 2.6.2. Determination of thiol pKa by isothermal titration microcalorimetry[45] 39 2.7. Hydrogen exchange mass spectrometry (HDX-MS) 41 2.7.1. Brief introduction of HDX-MS[46] 41 2.7.2. Procedure 42 2.8. AlphaFold structure prediction 45 2.9. Size exclusion chromatography with multi-angle light scatter (SEC-MALS) 46 2.10. Cryo-EM sample preparation and data collection 47 3. Results 49 3.1. Disulfide formation between the catalytic cysteines of UBA7 and UBE2L6 49 3.1.1. A cryptic and atypical disulfide-bonded form 49 3.2. UBA7 structure and E1-E2 complex prediction with AlphaFold 54 3.2.1. The overall structure of UBA7 54 3.2.2. E1-E2 complex models 55 3.3. Insight into ubiquitin-like E1 and E2 interaction using HDX-MS 62 3.3.1. Deuterium uptake for bUBA7, bUBA7-UbcB8, hUBA1, and hUBA1-UbcH7 62 3.3.2. UBA7 Catalytic mechanism and active site remodeling 66 3.4. Chimeric proteins for the E1 functional study 74 3.5. The UFD and SCCH domains of E1s 78 3.5.1. UFD, while necessary, is not the most critical determinant for bUBA7 78 3.6. E2 specificity 81 3.7. High binding affinity and E1- E2 disulfide formation 87 3.7.1. High binding affinity between bUBA7 and UbcB8 87 3.7.2. The correlation between binding affinity and disulfide formation 89 3.7.3. E2~ISG15 production 91 3.8. The deprotonation potential of E1 & E2 catalytic cysteine 98 3.8.1. From deprotonation to oxidation state (S-S) 98 3.8.2. The cysteine capping loop and the pKa of UBA7’s catalytic cysteine 99 3.8.3. UbcB8 / UbcH8 / UbcH7 have lower pKa compared to other E2s 101 4. Discussion and conclusion 110 4.1. ROS and PTM 110 4.1.1. SUMO E1~E2 disulfide 111 4.1.2. Ubiquitin E1~E2 disulfide 114 4.1.3. Atg8 E1-E2 disulfide 117 4.1.4. What about the ISGylation pathway 118 4.2. UBA7~UBE2L6 formation and UBA7 evolution 120 4.3. Different viewpoints for ISGylation 124 4.4. Conclusion 128 5. References 130 | - |
dc.language.iso | en | - |
dc.title | 深入解析ISG15調控途徑中UBA7與UBE2L6之間雙硫鍵形成機制 | zh_TW |
dc.title | Insight into the switch-off mechanism of disulfide-bonded UBA7- UBE2L6 in the ISG15-regulated pathway | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 陳瑞華;徐尚德;張語曲 | zh_TW |
dc.contributor.oralexamcommittee | Ruey-Hwa Chen;Shang-Te Hsu;Yu-Chu Chang | en |
dc.subject.keyword | 泛素,類泛素蛋白質,E1-E2雙硫鍵結,ISG15, | zh_TW |
dc.subject.keyword | Ubiquitin,ubiquitin-like protein,ISG15,ISGylation,E1-E2 disulfide-bonded, | en |
dc.relation.page | 137 | - |
dc.identifier.doi | 10.6342/NTU202301154 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2023-06-28 | - |
dc.contributor.author-college | 生命科學院 | - |
dc.contributor.author-dept | 生化科學研究所 | - |
dc.date.embargo-lift | 2028-06-25 | - |
顯示於系所單位: | 生化科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 此日期後於網路公開 2028-06-25 | 6.71 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。