請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90427完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蘇剛毅 | zh_TW |
| dc.contributor.advisor | Kang-Yi Su | en |
| dc.contributor.author | 王信傑 | zh_TW |
| dc.contributor.author | Hsin-Chieh Wang | en |
| dc.date.accessioned | 2023-10-02T16:10:04Z | - |
| dc.date.available | 2025-08-10 | - |
| dc.date.copyright | 2023-10-02 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-11 | - |
| dc.identifier.citation | 1. Sung, H., et al., Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin, 2021. 71(3): p. 209-249.
2. Rodak, O., et al., Current Landscape of Non-Small Cell Lung Cancer: Epidemiology, Histological Classification, Targeted Therapies, and Immunotherapy. Cancers (Basel), 2021. 13(18). 3. Thandra, K.C., et al., Epidemiology of lung cancer. Contemp Oncol (Pozn), 2021. 25(1): p. 45-52. 4. de Sousa, V.M.L. and L. Carvalho, Heterogeneity in Lung Cancer. Pathobiology, 2018. 85(1-2): p. 96-107. 5. Cersosimo, R.J., Lung cancer: a review. Am J Health Syst Pharm, 2002. 59(7): p. 611-42. 6. Travis, W.D., E. Brambilla, and G.J. Riely, New pathologic classification of lung cancer: relevance for clinical practice and clinical trials. J Clin Oncol, 2013. 31(8): p. 992-1001. 7. Cowherd, S.M., Tumor staging and grading: a primer. Methods Mol Biol, 2012. 823: p. 1-18. 8. Rosen, R.D. and A. Sapra, TNM Classification, in StatPearls. 2023: Treasure Island (FL). 9. Detterbeck, F.C., et al., The Eighth Edition Lung Cancer Stage Classification. Chest, 2017. 151(1): p. 193-203. 10. Chaft, J.E., et al., Evolution of systemic therapy for stages I-III non-metastatic non-small-cell lung cancer. Nat Rev Clin Oncol, 2021. 18(9): p. 547-557. 11. Lemjabbar-Alaoui, H., et al., Lung cancer: Biology and treatment options. Biochim Biophys Acta, 2015. 1856(2): p. 189-210. 12. Ettinger, D.S., et al., Non-Small Cell Lung Cancer, Version 3.2022, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw, 2022. 20(5): p. 497-530. 13. Brahmer, J.R., et al., The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of non-small cell lung cancer (NSCLC). J Immunother Cancer, 2018. 6(1): p. 75. 14. Moriya, T., et al., Epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors as a first-line treatment for postoperative recurrent and EGFR-mutated non-small-cell lung cancer. Interact Cardiovasc Thorac Surg, 2022. 34(3): p. 416-423. 15. Paez, J.G., et al., EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science, 2004. 304(5676): p. 1497-500. 16. Panchal, N.K. and E.P. Sabina, A serine/threonine protein PIM kinase as a biomarker of cancer and a target for anti-tumor therapy. Life Sci, 2020. 255: p. 117866. 17. Brault, L., et al., PIM serine/threonine kinases in the pathogenesis and therapy of hematologic malignancies and solid cancers. Haematologica, 2010. 95(6): p. 1004-15. 18. Bachmann, M. and T. Moroy, The serine/threonine kinase Pim-1. Int J Biochem Cell Biol, 2005. 37(4): p. 726-30. 19. Warfel, N.A. and A.S. Kraft, PIM kinase (and Akt) biology and signaling in tumors. Pharmacol Ther, 2015. 151: p. 41-9. 20. Wang, J., et al., Pim1 kinase synergizes with c-MYC to induce advanced prostate carcinoma. Oncogene, 2010. 29(17): p. 2477-87. 21. Wang, J., et al., Pim1 kinase is required to maintain tumorigenicity in MYC-expressing prostate cancer cells. Oncogene, 2012. 31(14): p. 1794-803. 22. Gurzu, S., et al., Epithelial-mesenchymal, mesenchymal-epithelial, and endothelial-mesenchymal transitions in malignant tumors: An update. World J Clin Cases, 2015. 3(5): p. 393-404. 23. Kalluri, R. and R.A. Weinberg, The basics of epithelial-mesenchymal transition. J Clin Invest, 2009. 119(6): p. 1420-8. 24. Lamouille, S., J. Xu, and R. Derynck, Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol, 2014. 15(3): p. 178-96. 25. Scanlon, C.S., et al., Biomarkers of epithelial-mesenchymal transition in squamous cell carcinoma. J Dent Res, 2013. 92(2): p. 114-21. 26. Dongre, A. and R.A. Weinberg, New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol, 2019. 20(2): p. 69-84. 27. Tulchinsky, E., et al., EMT: A mechanism for escape from EGFR-targeted therapy in lung cancer. Biochim Biophys Acta Rev Cancer, 2019. 1871(1): p. 29-39. 28. Ortiz-Cuaran, S., et al., Epithelial-to-mesenchymal transition promotes immune escape by inducing CD70 in non-small cell lung cancer. Eur J Cancer, 2022. 169: p. 106-122. 29. Yu, H., et al., PD-L1 Expression in Lung Cancer. J Thorac Oncol, 2016. 11(7): p. 964-75. 30. Gibney, G.T., L.M. Weiner, and M.B. Atkins, Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol, 2016. 17(12): p. e542-e551. 31. Yamaguchi, H., et al., Mechanisms regulating PD-L1 expression in cancers and associated opportunities for novel small-molecule therapeutics. Nat Rev Clin Oncol, 2022. 19(5): p. 287-305. 32. Yu, J., et al., Nuclear PD-L1 promotes EGR1-mediated angiogenesis and accelerates tumorigenesis. Cell Discov, 2023. 9(1): p. 33. 33. Gao, Y., et al., Acetylation-dependent regulation of PD-L1 nuclear translocation dictates the efficacy of anti-PD-1 immunotherapy. Nat Cell Biol, 2020. 22(9): p. 1064-1075. 34. Dennis, G., Jr., et al., DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol, 2003. 4(5): p. P3. 35. Kellar, A., C. Egan, and D. Morris, Preclinical Murine Models for Lung Cancer: Clinical Trial Applications. Biomed Res Int, 2015. 2015: p. 621324. 36. Tang, Z., et al., GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res, 2017. 45(W1): p. W98-W102. 37. Tang, Z., et al., GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res, 2019. 47(W1): p. W556-W560. 38. Lanczky, A. and B. Gyorffy, Web-Based Survival Analysis Tool Tailored for Medical Research (KMplot): Development and Implementation. J Med Internet Res, 2021. 23(7): p. e27633. 39. Gao, C., A.Y. Wang, and Y.J. Han, Microwave antigen retrieval blocks endogenous peroxidase activity in immunohistochemistry. Appl Immunohistochem Mol Morphol, 2008. 16(4): p. 393-9. 40. Arjonen, A., R. Kaukonen, and J. Ivaska, Filopodia and adhesion in cancer cell motility. Cell Adh Migr, 2011. 5(5): p. 421-30. 41. Zhang, C., et al., CXCL9/10/11, a regulator of PD-L1 expression in gastric cancer. BMC Cancer, 2018. 18(1): p. 462. 42. Stearman, R.S., et al., Analysis of orthologous gene expression between human pulmonary adenocarcinoma and a carcinogen-induced murine model. Am J Pathol, 2005. 167(6): p. 1763-75. 43. Leung, M.S., et al., Anti-tumour effects of PIM kinase inhibition on progression and chemoresistance of hepatocellular carcinoma. J Pathol, 2020. 252(1): p. 65-76. 44. Burger, M.T., et al., Identification of N-(4-((1R,3S,5S)-3-Amino-5-methylcyclohexyl)pyridin-3-yl)-6-(2,6-difluorophenyl)-5-fluoropicolinamide (PIM447), a Potent and Selective Proviral Insertion Site of Moloney Murine Leukemia (PIM) 1, 2, and 3 Kinase Inhibitor in Clinical Trials for Hematological Malignancies. J Med Chem, 2015. 58(21): p. 8373-86. 45. Paino, T., et al., The Novel Pan-PIM Kinase Inhibitor, PIM447, Displays Dual Antimyeloma and Bone-Protective Effects, and Potently Synergizes with Current Standards of Care. Clin Cancer Res, 2017. 23(1): p. 225-238. 46. Casillas, A.L., et al., Direct phosphorylation and stabilization of HIF-1alpha by PIM1 kinase drives angiogenesis in solid tumors. Oncogene, 2021. 40(32): p. 5142-5152. 47. Zhao, B., et al., PIM1 mediates epithelial-mesenchymal transition by targeting Smads and c-Myc in the nucleus and potentiates clear-cell renal-cell carcinoma oncogenesis. Cell Death Dis, 2018. 9(3): p. 307. 48. Jensen, C.C., et al., PIM1 phosphorylates ABI2 to enhance actin dynamics and promote tumor invasion. J Cell Biol, 2023. 222(6). 49. Liu, Z., et al., The role of Pim kinase in immunomodulation. Am J Cancer Res, 2020. 10(12): p. 4085-4097. 50. Shih, J.Y. and P.C. Yang, The EMT regulator slug and lung carcinogenesis. Carcinogenesis, 2011. 32(9): p. 1299-304. 51. Kunder, R., et al., Synergistic PIM kinase and proteasome inhibition as a therapeutic strategy for MYC-overexpressing triple-negative breast cancer. Cell Chem Biol, 2022. 29(3): p. 358-372 e5. 52. Wadhwani, N., et al., PIM447 inhibits oncogenesis and potentiates cisplatin effects in hepatoblastoma. J Pediatr Surg, 2021. 56(6): p. 1157-1164. 53. Attili, I., et al., SRC and PIM1 as potential co-targets to overcome resistance in MET deregulated non-small cell lung cancer. Transl Lung Cancer Res, 2020. 9(5): p. 1810-1821. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90427 | - |
| dc.description.abstract | 肺腺癌(lung adenocarcinoma, LUAD)是最常見的肺癌類型,同時也是一種致命且惡性的呼吸疾病,涉及大量的腫瘤增生、轉移和不良的預後。瞭解能調節其腫瘤進展的相關機制對制訂有效的治療策略至關重要。絲氨酸/蘇氨酸激酶PIM1已知會頻繁表現在包括肺腺癌在內的各類癌症之中。近期的研究發現PIM1激酶的異常升高與腫瘤的發生有關。透過磷酸化下游許多的蛋白,PIM1能介導細胞內數個重要的功能,例如轉錄、代謝和細胞週期。然而,對於該蛋白在肺腺癌中所扮演的角色以及其相關的信息調控路徑至今仍不甚清楚。因此,為了釐清這個問題,我們首先從數據集GSE2514中下載了20筆人類肺腺癌組織基因表現量資料。接著我們將這些資料分為兩組(PIM1-high和PIM1-low),並利用多種生物信息學工具進行分析。根據得到的結果,我們找到PIM1與腫瘤的血管新生、上皮間質轉化(epithelial–mesenchymal transition, EMT)以及發炎反應呈正相關。而我們也進一步以活體和細胞等方式來驗證上述的發現。從動物實驗中我們證明透過給予抑制劑降低PIM1可以有效減少小鼠腫瘤生長的情形。另一方面,細胞實驗顯示與生物信息學分析的結果相符。利用細胞活性測試我們發現抑制PIM1激酶可以誘導細胞凋亡;利用免疫細胞化學染色我們發現抑制PIM1激酶可以改變癌細胞間質型態的外形;利用傷口癒合試驗我們發現抑制PIM1激酶可以減少細胞遷徙的能力。此外,抑制PIM1還會影響到癌細胞中能調節免疫反應的重要分子──程序性細胞死亡配體1(programmed cell death-ligand 1, PD-L1)的表達。儘管PD-L1因其會表現在細胞膜表面上與PD-1相互作用進而達到免疫抑制的功能而聞名,但該蛋白近期被報導能夠易位到如細胞核等其他部位啟動MAPK及PI3K-AKT路徑進而調控腫瘤生成和上皮間質轉化。於是我們利用免疫組織化學染色來確認PIM1和PD-L1之間的臨床關聯。包含六十四個肺腺癌患者樣本的組織陣列玻片在經過染色後,被送由經專業訓練的病理醫師進行判讀。通過組織學影像數據顯示其結果與細胞實驗一致,即PIM1確實與PD-L1呈正相關。綜上所述,我們的研究證明PIM1對腫瘤發展至關重要。它可能與PD-L1作用進而介導如上皮間質轉化等會促進肺腺癌的事件。而我們也成功發現PIM1激酶所扮演的角色,為肺腺癌提供了具潛力的新治療靶點。 | zh_TW |
| dc.description.abstract | Lung adenocarcinoma (LUAD), the most prevalent type of lung cancer, is a fatal and malignant respiratory disease involving extensive tumor proliferation, metastasis, and poor prognosis. Understanding the mechanisms regulating the progression of LUAD is necessary for developing effective therapeutic strategies. PIM1, serine/threonine kinase-PIM family, has been found frequently expressed in different types of cancer including LUAD. Recent studies revealed that aberrant elevation of PIM1 kinase is associated with oncogenesis. By phosphorylating various downstream substrates, PIM1 mediates several important cellular processes, such as transcription, cell metabolism, and cell cycle. However, the role of PIM1 kinase in LUAD and its associated signaling pathways remain unclear. Therefore, in order to clarify this question, we downloaded twenty human lung adenocarcinoma gene expression profiles from the GSE2514 dataset first. Next, we sorted these profiles into two groups (PIM1-high vs. PIM1-low) and then utilized multiple bioinformatics tools to perform analyses. According to the results, we found that PIM1 positively correlated with angiogenesis, epithelial–mesenchymal transition (EMT), and inflammatory response. Here, we then determined the effects by in vivo as well as in vitro studies. Based on the animal experiment, we demonstrated that blocking PIM1 with a pharmacological inhibitor significantly alleviated tumor growth. On the other hand, cell experiments showed corresponded to the results of bioinformatic analyses. We explored that inhibition of PIM1 kinase could induce apoptosis by cell viability assay, change mesenchymal-form morphology by immunocytochemistry, and reduce cell migration ability by wound healing assay. Moreover, inhibition of PIM1 also affected immune response regulator programmed cell death-ligand 1 (PD-L1) expression in cancer cell. Despite the molecule was known for its immune inhibitory function which is expressed on the cell surface to interact with PD-1, it has been recently reported that PD-L1 could regulate tumorigenesis and EMT through translocating to other subcellular compartments like nucleus to initiate the MAPK (MEK-ERK) and PI3K-AKT signaling pathway. Accordingly, we adopted immunohistochemistry to figure out the clinical relevance between PIM1 and PD-L1. A tissue array containing 64 LUAD patient samples was stained and further assessed by a trained pathologist. Through histological images, the result was consistent with our in vitro data which PIM1 was positively correlated with PD-L1. Taken together, our research proved that PIM1 was crucial for tumor development. It may interact with PD-L1 to mediate events which promote LUAD such as EMT. In conclusion, we discovered a novel role of PIM1 kinase, and provided a potential therapeutic target for LUAD. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-02T16:10:04Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-10-02T16:10:04Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 1
誌謝 2 中文摘要 4 Abstract 6 Chapter 1. Introduction 11 1.1. Lung cancer 11 1.1.1. Epidemiology 11 1.1.2. Risk factors 11 1.1.3. Subtype classification 12 1.1.4. TNM Staging 12 1.1.5. Treatments 13 1.2. PIM1 kinase 13 1.2.1 PIM1 gene and protein 13 1.2.2 Pathological role of PIM1 in cancers 14 1.2.3 Pharmacological inhibitors 14 1.3. Epithelial-mesenchymal transition 15 1.3.1 Overview 15 1.3.2 Key regulators 15 1.3.3 Type III EMT 16 1.4. PD-L1 16 1.4.1 Immune inhibitory function 16 1.4.2 Non-canonical activities of PD-L1 17 Chapter 2. Materials and Methods 18 2.1. Public data source and grouping 18 2.2. Gene set enrichment analysis 18 2.3. Screening of differentially expressed genes 19 2.4. Gene ontology functional annotation analysis 19 2.5. Protein-protein interaction network 20 2.6. Tumor model establishment and in vivo treatments 20 2.7. Cell culture 21 2.8. Cell viability assay 22 2.9. Cell morphology observation 22 2.10. Wound healing assay 23 2.11. Correlation analysis 24 2.12. Protein extraction and Western blotting 24 2.13. Survival analysis 26 2.14. Immunohistochemistry 26 2.15. Statistical analyses 28 Chapter 3. Results 29 3.1. High PIM1 gene expression was related to the events which promoted LUAD such as angiogenesis, inflammatory response, and EMT. 29 3.2. Different bioinformatic tools showed correspondence with GSEA that PIM1 may regulate angiogenesis, inflammatory response, and EMT in LUAD. 30 3.3. Inhibition of PIM1 kinase by a pharmacological inhibitor PIM447 ameliorated in vivo tumor growth of LUAD. 31 3.4. PIM1 was required for the formation of lamellipodia and filopodia structures which led to mesenchymal cell migration. 31 3.5. PIM1 was positively correlated with EMT markers including ZEB1, ZEB2, SNAI1, SNAI2, and TWIST1. 32 3.6. With the help of pro-inflammatory chemokines CXCL9/10/11, PIM1 could regulate the expression of PD-L1 in CL1-0 cells. 32 3.7. Bioinformatic analyses and tissue staining for LUAD tumor sections showed the clinical relevance between PIM1 and PD-L1. 33 Chapter 4. Discussion 35 4.1. Limitation of performing analyses by using the GSE2514 dataset 35 4.2. Potential clinical application of PIM kinase inhibitor 35 4.3. IC50 value of PIM447 inhibitor in CL1-5 cells 36 4.4. Mechanisms from PIM1 to angiogenesis, inflammatory response, and EMT 36 4.5. Hypothesis of the PIM1/SNAI2/PD-L1 signaling cascade 37 Figures 39 Appendix 50 Reference 53 | - |
| dc.language.iso | en | - |
| dc.subject | 肺腺癌 | zh_TW |
| dc.subject | 上皮間質轉化 | zh_TW |
| dc.subject | PIM1激酶 | zh_TW |
| dc.subject | 發炎反應 | zh_TW |
| dc.subject | 程序性細胞死亡配體1 | zh_TW |
| dc.subject | PIM1 kinase | en |
| dc.subject | Epithelial-mesenchymal transition | en |
| dc.subject | Inflammatory response | en |
| dc.subject | Lung adenocarcinoma | en |
| dc.subject | PD-L1 | en |
| dc.title | 探討PIM1激酶在肺腺癌中所扮演的角色 | zh_TW |
| dc.title | Exploring the Role of PIM1 Kinase in Lung Adenocarcinoma | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 楊雅倩;林亮音;郭靜穎;潘思樺 | zh_TW |
| dc.contributor.oralexamcommittee | Ya-Chien Yang;Liang-In Lin;Ching-Ying Kuo;Szu-Hua Pan | en |
| dc.subject.keyword | 肺腺癌,PIM1激酶,上皮間質轉化,發炎反應,程序性細胞死亡配體1, | zh_TW |
| dc.subject.keyword | Lung adenocarcinoma,PIM1 kinase,Epithelial-mesenchymal transition,Inflammatory response,PD-L1, | en |
| dc.relation.page | 60 | - |
| dc.identifier.doi | 10.6342/NTU202304085 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-08-11 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 醫學檢驗暨生物技術學系 | - |
| 顯示於系所單位: | 醫學檢驗暨生物技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 2.47 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
