請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90406完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡坤憲 | zh_TW |
| dc.contributor.advisor | Kun-Hsien Tsai | en |
| dc.contributor.author | 劉尼克 | zh_TW |
| dc.contributor.author | Nicholas Thomas Minahan | en |
| dc.date.accessioned | 2023-09-28T16:15:14Z | - |
| dc.date.available | 2025-01-01 | - |
| dc.date.copyright | 2023-09-28 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-08 | - |
| dc.identifier.citation | ABARCA, K., MARTÍNEZ-VALDEBENITO, C., ANGULO, J., JIANG, J., FARRIS, C., RICHARDS, A., ACOSTA-JAMETT, G. & WEITZEL, T. 2020. Molecular description of a novel Orientia species causing scrub typhus in South America. Emerg Infect Dis, 26.
ADCOX, H. E., HATKE, A. L., ANDERSEN, S. E., GUPTA, S., OTTO, N. B., WEBER, M. M., MARCONI, R. T. & CARLYON, J. A. 2021. Orientia tsutsugamushi nucleomodulin Ank13 exploits the RaDAR nuclear import pathway to modulate host cell transcription. mBio, 12, e0181621-e0181621. ALKATHIRY, H., ALGHAMDI, S., MORGAN, H. E. J., NOLL, M., KHOO, J., ALAGAILI, A. & MAKEPEACE, B. 2023. Molecular detection of Candidatus Orientia chuto in wildlife, Saudi Arabia. Emerg Infect Dis, 29, 402. ARA, T. 2022. brunnermunzel: (permuted) Brunner-Munzel test. ASHER, R. J. & SMITH, M. R. 2022. Phylogenetic Signal and Bias in Paleontology. Systematic Biology, 71, 986-1008. ASTRUP, E., JANARDHANAN, J., OTTERDAL, K., UELAND, T., PRAKASH, J. A. J., LEKVA, T., STRAND, Ø. A., ABRAHAM, O. C., THOMAS, K., DAMÅS, J. K., MATHEWS, P., MATHAI, D., AUKRUST, P. & VARGHESE, G. M. 2014. Cytokine network in scrub typhus: high levels of interleukin-8 are associated with disease severity and mortality. PLoS Negl Trop Dis, 8, e2648. AVRAM, O., RAPOPORT, D., PORTUGEZ, S. & PUPKO, T. 2019. M1CR0B1AL1Z3R—a user-friendly web server for the analysis of large-scale microbial genomics data. Nucleic Acids Res, 47, W88–92. BANG, S., MIN, C. K., HA, N. Y., CHOI, M. S., KIM, I. S., KIM, Y. S. & CHO, N. H. 2016. Inhibition of eukaryotic translation by tetratricopeptide-repeat proteins of Orientia tsutsugamushi. J Microbiol, 54, 136–44. BATTY, E. M., CHAEMCHUEN, S., BLACKSELL, S., RICHARDS, A. L., PARIS, D., BOWDEN, R., CHAN, C., LACHUMANAN, R., DAY, N., DONNELLY, P., CHEN, S. & SALJE, J. 2018. Long-read whole genome sequencing and comparative analysis of six strains of the human pathogen Orientia tsutsugamushi. PLoS Negl Trop Dis, 12, e0006566. BEYER, A. R., RODINO, K. G., VIEBROCK, L., GREEN, R. S., TEGELS, B. K., OLIVER JR, L. D., MARCONI, R. T. & CARLYON, J. A. 2017. Orientia tsutsugamushi Ank9 is a multifunctional effector that utilizes a novel GRIP-like Golgi localization domain for Golgi-to-endoplasmic reticulum trafficking and interacts with host COPB2. Cell Microbiol, 19, e12727. BEYER, A. R., VIEBROCK, L., RODINO, K. G., MILLER, D. P., TEGELS, B. K., MARCONI, R. T. & CARLYON, J. A. 2015. Orientia tsutsugamushi strain Ikeda ankyrin repeat-containing proteins recruit SCF1 ubiquitin ligase machinery via poxvirus-like F-Box motifs. J Bacteriol, 197, 3097–109. BLACKSELL, S. D., BRYANT, N. J., PARIS, D. H., DOUST, J. A., SAKODA, Y. & DAY, N. P. J. 2007. Scrub typhus serologic testing with the indirect immunofluorescence method as a diagnostic gold standard: a lack of consensus leads to a lot of confusion. Clin Infect Dis, 44, 391–401. BLACKSELL, S. D., LUKSAMEETANASAN, R., KALAMBAHETI, T., AUKKANIT, N., PARIS, D. H., MCGREADY, R., NOSTEN, F., PEACOCK, S. J. & DAY, N. P. J. 2008. Genetic typing of the 56-kDa type-specific antigen gene of contemporary Orientia tsutsugamushi isolates causing human scrub typhus at two sites in north-eastern and western Thailand. FEMS Immunol Med Microbiol, 52, 335–42. BONELL, A., LUBELL, Y., NEWTON, P. N., CRUMP, J. A. & PARIS, D. H. 2017. Estimating the burden of scrub typhus: a systematic review. PLoS Negl Trop Dis, 11, e0005838. BOZEMAN, F. M. & ELISBERG, B. L. 1963. Serological diagnosis of scrub typhus by indirect immunofluorescence. Proc Soc Exp Biol Med, 112, 568–73. CALLAHAN, B. J., MCMURDIE, P. J., ROSEN, M. J., HAN, A. W., JOHNSON, A. J. A. & HOLMES, S. P. 2016. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods, 13, 581–3. CAMACHO, C., COULOURIS, G., AVAGYAN, V., MA, N., PAPADOPOULOS, J., BEALER, K. & MADDEN, T. L. 2009. BLAST+: architecture and applications. BMC Bioinform, 10, 421. CAPELLA-GUTIÉRREZ, S., SILLA-MARTÍNEZ, J. M. & GABALDÓN, T. 2009. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics, 25, 1972–3. CERVENY, L., STRASKOVA, A., DANKOVA, V., HARTLOVA, A., CECKOVA, M., STAUD, F. & STULIK, J. 2013. Tetratricopeptide repeat motifs in the world of bacterial pathogens: role in virulence mechanisms. Infect Immun, 81, 629–35. CHANG, K., LEE, N. Y., KO, W. C., LIN, W. R., CHEN, Y. H., TSAI, J. J., CHEN, T. C., LIN, C. Y., CHANG, Y. T. & LU, P. L. 2017. Characteristics of scrub typhus, murine typhus, and Q fever among elderly patients: prolonged prothrombin time as a predictor for severity. J Microbiol Immunol Infect. CHANG, W. H., KANG, J. S., LEE, W. K., CHOI, M. S. & LEE, J. H. 1990. Serological classification by monoclonal antibodies of Rickettsia tsutsugamushi isolated in Korea. J Clin Microbiol, 28, 685–8. CHANG, Y. C., KUO, K. C., SUN, W., LIN, J. N., LAI, C. H. & LEE, C. H. 2019. Clinicoepidemiologic characteristics of scrub typhus and murine typhus: a multi-center study in southern Taiwan. J Microbiol Immunol Infect, 52, 769–78. CHAO, C. C., BELINSKAYA, T., ZHANG, Z., JIANG, L. & CHING, W. M. 2019. Assessment of a sensitive qPCR assay targeting a multiple-copy gene to detect Orientia tsutsugamushi DNA. Trop Med Infect Dis, 4. CHEN, H. F., PENG, S. H., TSAI, K. H., YANG, C. F., CHANG, M. C., HSUEH, Y. L., SU, C. L., WANG, R. Y., SHU, P. Y. & YANG, S. L. 2022. Molecular epidemiology of scrub typhus in Taiwan during 2006–2016. PLoS Negl Trop Dis, 16, e0010369. CHEN, H. L., CHIU, S. C., CHEN, H. Y. & WANG, G. R. 1999. Molecular typing of Taiwanese Orientia tsutsugamushi isolates by restriction fragment profile [in Chinese]. J Microbiol Immunol Infect, 32, 68–72. CHEN, H. W., ZHANG, Z., HUBER, E., CHAO, C. C., WANG, H., DASCH, G. A. & CHING, W. M. 2009. Identification of cross-reactive epitopes on the conserved 47-kilodalton antigen of Orientia tsutsugamushi and human serine protease. Infect Immun, 77, 2311–9. CHENG, H., CONCEPCION, G. T., FENG, X., ZHANG, H. & LI, H. 2021. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat Methods, 18, 170–5. CHING, W. M. & CHAO, C. C. 2005. Cloning and expression of the full length 110 kDa antigen of Orientia tsutsugamushi to be used as a vaccine component against scrub typhus. United States patent application. CHO, B. A., CHO, N. H., SEONG, S. Y., CHOI, M. S. & KIM, I. S. 2010. Intracellular invasion by Orientia tsutsugamushi is mediated by integrin signaling and actin cytoskeleton rearrangements. Infect Immun, 78, 1915–23. CHO, N. H., KIM, H. R., LEE, J. H., KIM, S. Y., KIM, J., CHA, S., KIM, S. Y., DARBY, A. C., FUXELIUS, H. H., YIN, J., KIM, J. H., KIM, J., LEE, S. J., KOH, Y. S., JANG, W. J., PARK, K. H., ANDERSSON, S. G., CHOI, M. S. & KIM, I. S. 2007. The Orientia tsutsugamushi genome reveals massive proliferation of conjugative type IV secretion system and host-cell interaction genes. Proc Natl Acad Sci USA, 104, 7981–6. CHOI, M. S., SEONG, S. Y., KANG, J. S., KIM, Y. W., HUH, M. S. & KIM, I. S. 1999. Homotypic and heterotypic antibody responses to a 56-kilodalton protein of Orientia tsutsugamushi. Infect Immun, 67, 6194. CHOI, S., JEONG, H. J., HWANG, K. J., GILL, B., JU, Y. R., LEE, Y. S. & LEE, J. 2017. A recombinant 47-kDa outer membrane protein induces an immune response against Orientia tsutsugamushi strain Boryong. Am J Trop Med Hyg, 97, 30–7. CHU, H., LEE, J. H., HAN, S. H., KIM, S. Y., CHO, N. H., KIM, I. S. & CHOI, M. S. 2006. Exploitation of the endocytic pathway by Orientia tsutsugamushi in nonprofessional phagocytes. Infect Immun, 74, 4246–53. CHUNG, L. H., WU, W. J. & WANG, H. C. 2015. Chigger Mite Fauna of Taiwan (Acari: Trombiculidae and Leeuwenhökiidae). CHUNG, M. H. & KANG, J. S. 2020. Erythematous patch in tsutsugamushi disease: an atypical form of eschar. Infect Chemother. COCK, P. J., ANTAO, T., CHANG, J. T., CHAPMAN, B. A., COX, C. J., DALKE, A., FRIEDBERG, I., HAMELRYCK, T., KAUFF, F., WILCZYNSKI, B. & DE HOON, M. J. 2009. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics, 25, 1422–3. DARRIBA, D., POSADA, D., KOZLOV, A. M., STAMATAKIS, A., MOREL, B. & FLOURI, T. 2020. ModelTest-NG: a new and scalable tool for the selection of DNA and protein evolutionary models. Mol Biol Evol, 37, 291–4. DAY, N. P. J. & NEWTON, P. N. 2017. Scrub typhus and other tropical rickettsioses. In: COHEN, J., POWDERLY, W. G. & OPAL, S. M. (eds.) Infectious Diseases. 4th ed. Amsterdam: Elsevier. DEVASAGAYAM, E., DAYANAND, D., KUNDU, D., KAMATH, M. S., KIRUBAKARAN, R. & VARGHESE, G. M. 2021. The burden of scrub typhus in India: a systematic review. PLoS Negl Trop Dis, 15, e0009619. DÍAZ, F. E., ABARCA, K. & KALERGIS, A. M. 2018. An update on host-pathogen interplay and modulation of immune responses during Orientia tsutsugamushi infection. Clin Microbiol Rev, 31, e00076-17. DIOP, A., RAOULT, D. & FOURNIER, P. E. 2018. Rickettsial genomics and the paradigm of genome reduction associated with increased virulence. Microbes Infect, 20, 401–9. DUMLER, J. S., BARBET, A. F., BEKKER, C. P., DASCH, G. A., PALMER, G. H., RAY, S. C., RIKIHISA, Y. & RURANGIRWA, F. R. 2001. Reorganization of genera in the families Rickettsiaceae and Anaplasmataceae in the order Rickettsiales: unification of some species of Ehrlichia with Anaplasma, Cowdria with Ehrlichia and Ehrlichia with Neorickettsia, descriptions of six new species combinations and designation of Ehrlichia equi and 'HGE agent' as subjective synonyms of Ehrlichia phagocytophila. Int J Syst Evol Microbiol, 51, 2145–65. DUONG, V., MAI, T. T. X., BLASDELL, K., LO, L. V., MORVAN, C., LAY, S., ANUKOOL, W., WONGPROMPITAK, P., SUPUTTAMONGKOL, Y., LAURENT, D., RICHNER, B., RA, C., CHIEN, B. T., FRUTOS, R. & BUCHY, P. 2013. Molecular epidemiology of Orientia tsutsugamushi in Cambodia and Central Vietnam reveals a broad region-wide genetic diversity. Infect Genet Evol, 15, 35–42. EISENBERG, G. H., JR. & OSTERMAN, J. V. 1979. Gamma-irradiated scrub typhus immunogens: broad-spectrum immunity with combinations of rickettsial strains. Infect Immun, 26, 131–6. EL KARKOURI, K., PONTAROTTI, P., RAOULT, D. & FOURNIER, P. E. 2016. Origin and evolution of rickettsial plasmids. PLoS One, 11, e0147492. EL SAYED, I., LIU, Q., WEE, I. & HINE, P. 2018. Antibiotics for treating scrub typhus. Cochrane Database Syst Rev, 9, Cd002150. ELLIOTT, I., PEARSON, I., DAHAL, P., THOMAS, N. V., ROBERTS, T. & NEWTON, P. N. 2019. Scrub typhus ecology: a systematic review of Orientia in vectors and hosts. Parasit Vectors, 12, 513. ENATSU, T., URAKAMI, H. & TAMURA, A. 1999. Phylogenetic analysis of Orientia tsutsugamushi strains based on the sequence homologies of 56-kDa type-specific antigen genes. FEMS Microbiol Lett, 180, 163–9. EVANS, S. M., RODINO, K. G., ADCOX, H. E. & CARLYON, J. A. 2018. Orientia tsutsugamushi uses two Ank effectors to modulate NF-κB p65 nuclear transport and inhibit NF-κB transcriptional activation. PLoS Pathog, 14, e1007023. FANG, C. T., FERNG, W. F., HWANG, J. J., YU, C. J., CHEN, Y. C., WANG, M. H., CHANG, S. C. & HSIEH, W. C. 1997. Life-threatening scrub typhus with meningoencephalitis and acute respiratory distress syndrome. J Formos Med Assoc, 96, 213–6. FELSENSTEIN, J. 1973. Maximum likelihood and minimum-steps methods for estimating evolutionary trees from data on discrete characters. Syst Zool, 22, 240–9. FELSENSTEIN, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39, 783–91. FITCH, W. M. 1971. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool, 20, 406–16. FLESHMAN, A., MULLINS, K., SAHL, J., HEPP, C., NIETO, N., WIGGINS, K., HORNSTRA, H., KELLY, D., CHAN, T. C., PHETSOUVANH, R., DITTRICH, S., PANYANIVONG, P., PARIS, D., NEWTON, P., RICHARDS, A. & PEARSON, T. 2018. Comparative pan-genomic analyses of Orientia tsutsugamushi reveal an exceptional model of bacterial evolution driving genomic diversity. Microb Genom, 4. FRANCES, S. P., WATCHARAPICHAT, P. & PHULSUKSOMBATI, D. 2001. Vertical transmission of Orientia tsutsugamushi in two lines of naturally infected Leptotrombidium deliense (Acari: Trombiculidae). J Med Entomol, 38, 17–21. GE, H., TONG, M., LI, A., MEHTA, R. & CHING, W. M. 2005. Cloning and sequence analysis of the 22-kDa antigen genes of Orientia tsutsugamushi strains Kato, TA763, AFSC 7, 18-032460, TH1814, and MAK 119. Ann N Y Acad Sci, 1063, 231–8. GE, Y. & RIKIHISA, Y. 2011. Subversion of host cell signaling by Orientia tsutsugamushi. Microbes Infect 13, 638–48. GIENGKAM, S., BLAKES, A., UTSAHAJIT, P., CHAEMCHUEN, S., ATWAL, S., BLACKSELL, S. D., PARIS, D. H., DAY, N. P. J. & SALJE, J. 2015. Improved quantification, propagation, purification and storage of the obligate intracellular human pathogen Orientia tsutsugamushi. PLoS Negl Trop Dis, 9, e0004009. GIENGKAM, S., KULLAPANICH, C., WONGSANTICHON, J., ADCOX, H. E., GILLESPIE, J. J. & SALJE, J. 2023. Orientia tsutsugamushi analysis of the mobilome of a highly fragmented and repetitive genome reveals ongoing lateral gene transfer in an obligate intracellular bacterium. bioRxiv, 2023.05.11.540415. GILLESPIE, J. J., KAUR, S. J., RAHMAN, M. S., RENNOLL-BANKERT, K., SEARS, K. T., BEIER-SEXTON, M. & AZAD, A. F. 2015. Secretome of obligate intracellular Rickettsia. FEMS Microbiol Rev, 39, 47–80. GILLESPIE, J. J. & SALJE, J. 2023. Orientia and Rickettsia: different flowers from the same garden. Curr Opin Microbiol, 74, 102318. GRANT, J. R., ENNS, E., MARINIER, E., MANDAL, A., HERMAN, E. K., CHEN, C. Y., GRAHAM, M., VAN DOMSELAAR, G. & STOTHARD, P. 2023. Proksee: in-depth characterization and visualization of bacterial genomes. Nucleic Acids Res. GROVES, M. G. & OSTERMAN, J. V. 1978. Host defenses in experimental scrub typhus: genetics of natural resistance to infection. Infect Immun, 19, 583–8. HA, N. Y., CHO, N. H., KIM, Y. S., CHOI, M. S. & KIM, I. S. 2011. An autotransporter protein from Orientia tsutsugamushi mediates adherence to nonphagocytic host cells. Infect Immun, 79, 1718–27. HA, N. Y., SHARMA, P., KIM, G., KIM, Y., MIN, C. K., CHOI, M. S., KIM, I. S. & CHO, N. H. 2015. Immunization with an autotransporter protein of Orientia tsutsugamushi provides protective immunity against scrub typhus. PLoS Negl Trop Dis, 9, e0003585. HAFT, D. H., DICUCCIO, M., BADRETDIN, A., BROVER, V., CHETVERNIN, V., O'NEILL, K., LI, W., CHITSAZ, F., DERBYSHIRE, M. K., GONZALES, N. R., GWADZ, M., LU, F., MARCHLER, G. H., SONG, J. S., THANKI, N., YAMASHITA, R. A., ZHENG, C., THIBAUD-NISSEN, F., GEER, L. Y., MARCHLER-BAUER, A. & PRUITT, K. D. 2018. RefSeq: an update on prokaryotic genome annotation and curation. Nucleic Acids Res, 46, D851–60. HALL, T. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser, 41, 95–8. HAN, Y. H., HWANG, J. H. & LEE, C. S. 2019. Dissemination of Orientia tsutsugamushi in a case of scrub typhus. Am J Trop Med Hyg, 100, 235–6. HANSON, B. 1985. Identification and partial characterization of Rickettsia tsutsugamushi major protein immunogens. Infect Immun, 50, 603–9. HICKMAN, C. J., STOVER, C. K., JOSEPH, S. W. & OAKS, E. V. 1991. Molecular cloning and sequence analysis of a Rickettsia tsutsugamushi 22 kDa antigen containing B- and T-cell epitopes. Microb Pathog, 11, 19–31. HUNT, M., SILVA, N. D., OTTO, T. D., PARKHILL, J., KEANE, J. A. & HARRIS, S. R. 2015. Circlator: automated circularization of genome assemblies using long sequencing reads. Genome Biol, 16, 294. HYATT, D., CHEN, G. L., LOCASCIO, P. F., LAND, M. L., LARIMER, F. W. & HAUSER, L. J. 2010. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform, 11, 119. INNAN, H. & KONDRASHOV, F. 2010. The evolution of gene duplications: classifying and distinguishing between models. Nat Rev Genet, 11, 97–108. INTHAWONG, M., SUNYAKUMTHORN, P., WONGWAIROT, S., ANANTATAT, T., DUNACHIE, S. J., IM-ERBSIN, R., JONES, J. W., MASON, C. J., LUGO, L. A., BLACKSELL, S. D., DAY, N. P. J., SONTHAYANON, P., RICHARDS, A. L. & PARIS, D. H. 2022. A time-course comparative clinical and immune response evaluation study between the human pathogenic Orientia tsutsugamushi strains: Karp and Gilliam in a rhesus macaque (Macaca mulatta) model. PLoS Negl Trop Dis, 16, e0010611. IZZARD, L., FULLER, A., BLACKSELL, S. D., PARIS, D. H., RICHARDS, A. L., AUKKANIT, N., NGUYEN, C., JIANG, J., FENWICK, S., DAY, N. P. J., GRAVES, S. & STENOS, J. 2010. Isolation of a novel Orientia species (O. chuto sp. nov.) from a patient infected in Dubai. J Clin Microbiol, 48, 4404–9. JAMES, S. L., BLACKSELL, S. D., NAWTAISONG, P., TANGANUCHITCHARNCHAI, A., SMITH, D. J., DAY, N. P. J. & PARIS, D. H. 2016. Antigenic relationships among human pathogenic Orientia tsutsugamushi isolates from Thailand. PLoS Negl Trop Dis, 10, e0004723. JEONG, H. W., CHOI, Y. K., BAEK, Y. H. & SEONG, M. H. 2012. Phylogenetic analysis of the 56-kDa type-specific protein genes of Orientia tsutsugamushi in central Korea. J Korean Med Sci, 27, 1315–9. JIANG, L., MORRIS, E. K., AGUILERA-OLVERA, R., ZHANG, Z., CHAN, T. C., SHASHIKUMAR, S., CHAO, C. C., CASARES, S. A. & CHING, W. M. 2018. Dissemination of Orientia tsutsugamushi, a causative agent of scrub typhus, and immunological responses in the humanized DRAGA mouse. Front Immunol, 9. JIM, W. T., CHIU, N. C., CHAN, W. T., HO, C. S., CHANG, J. H., HUANG, S. Y. & WU, S. 2009. Clinical manifestations, laboratory findings and complications of pediatric scrub typhus in eastern Taiwan. Pediatr Neonatol, 50, 96–101. JONES, D. T., TAYLOR, W. R. & THORNTON, J. M. 1992. The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci, 8, 275–82. KADOSAKA, T. & KIMURA, E. 2003. Electron microscopic observations of Orientia tsutsugamushi in salivary gland cells of naturally infected Leptotrombidium pallidum larvae during feeding. Microbiol Immunol, 47, 727–33. KASSAMBARA, A. 2023. ggpubr: 'ggplot2' based publication ready plots. KATOH, K. & STANDLEY, D. M. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol, 30, 772–80. KELLY, D. J., FUERST, P. A., CHING, W. M. & RICHARDS, A. L. 2009. Scrub typhus: the geographic distribution of phenotypic and genotypic variants of Orientia tsutsugamushi. Clin Infect Dis, 48 Suppl 3, S203–30. KELLY, D. J., FUERST, P. A. & RICHARDS, A. L. 2019. Origins, importance and genetic stability of the prototype strains Gilliam, Karp and Kato of Orientia tsutsugamushi. Trop Med Infect Dis, 4. KIM, D. M., PARK, G., KIM, H. S., LEE, J. Y., NEUPANE, G. P., GRAVES, S. & STENOS, J. 2011a. Comparison of conventional, nested, and real-time quantitative PCR for diagnosis of scrub typhus. J Clin Microbiol, 49, 607–12. KIM, D. M., WON, K. J., PARK, C. Y., YU, K. D., KIM, H. S., YANG, T. Y., LEE, J. H., KIM, H. K., SONG, H. J., LEE, S. H. & SHIN, H. 2007. Distribution of eschars on the body of scrub typhus patients: a prospective study. Am J Trop Med Hyg, 76, 806–9. KIM, D. M., YUN, N. R., NEUPANE, G. P., SHIN, S. H., RYU, S. Y., YOON, H. J., WIE, S. H., KIM, W. J., LEE, C. Y., CHOI, J. S. & YANG, T. Y. 2011b. Differences in clinical features according to Boryoung and Karp genotypes of Orientia tsutsugamushi. PLoS One, 6, e22731. KIM, G., HA, N. Y., MIN, C. K., KIM, H. I., YEN, N. T. H., LEE, K. H., OH, I., KANG, J. S., CHOI, M. S., KIM, I. S. & CHO, N. H. 2017. Diversification of Orientia tsutsugamushi genotypes by intragenic recombination and their potential expansion in endemic areas. PLoS Negl Trop Dis, 11, e0005408. KIM, H. I., HA, N. Y., KIM, G., MIN, C. K., KIM, Y., YEN, N. T. H., CHOI, M. S. & CHO, N. H. 2019. Immunization with a recombinant antigen composed of conserved blocks from TSA56 provides broad genotype protection against scrub typhus. Emerg Microbes Infect, 8, 946–58. KIM, H. R., CHOI, M. S. & KIM, I. S. 2004. Role of Syndecan-4 in the cellular invasion of Orientia tsutsugamushi. Microb Pathog, 36, 219–25. KIM, M. J., KIM, M. K. & KANG, J. S. 2013. Involvement of lipid rafts in the budding-like exit of Orientia tsutsugamushi. Microb Pathog, 63, 37–43. KIM, S. W., IHN, K. S., HAN, S. H., SEONG, S. Y., KIM, I. S. & CHOI, M. S. 2001. Microtubule- and dynein-mediated movement of Orientia tsutsugamushi to the microtubule organizing center. Infect Immun, 69, 494. KORALUR, M. C., RAMAIAH, A. & DASCH, G. A. 2018. Detection and distribution of Sca autotransporter protein antigens in diverse isolates of Orientia tsutsugamushi. PLoS Negl Trop Dis, 12, e0006784. KOREN, S., WALENZ, B. P., BERLIN, K., MILLER, J. R., BERGMAN, N. H. & PHILLIPPY, A. M. 2017. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res, 27, 722–36. KOZLOV, A. M., DARRIBA, D., FLOURI, T., MOREL, B. & STAMATAKIS, A. 2019. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics, 35, 4453–5. KUO, C. C., HUANG, J. L., KO, C. Y., LEE, P. F. & WANG, H. C. 2011. Spatial analysis of scrub typhus infection and its association with environmental and socioeconomic factors in Taiwan. Acta Trop, 120, 52–8. KUO, C. C., LEE, P. L., CHEN, C. H. & WANG, H. C. 2015. Surveillance of potential hosts and vectors of scrub typhus in Taiwan. Parasit Vectors, 8. LAI, C. H., HUANG, C. K., WENG, H. C., CHUNG, H. C., LIANG, S. H., LIN, J. N., LIN, C. W., HSU, C. Y. & LIN, H. H. 2008. Clinical characteristics of acute Q fever, scrub typhus, and murine typhus with delayed defervescence despite doxycycline treatment. Am J Trop Med Hyg, 79, 441–6. LAI, C. H., SUN, W., LEE, C. H., LIN, J. N., LIAO, M. H., LIU, S. S., CHANG, T. Y., TSAI, K. F., CHANG, Y. C., LIN, H. H. & CHEN, Y. H. 2016. The epidemiology and characteristics of Q fever and co-infections with scrub typhus, murine typhus or leptospirosis in Taiwan: a nationwide database study. Zoonoses Public Health. LEE, H. C., KO, W. C., LEE, H. L. & CHEN, H. Y. 2002. Clinical manifestations and complications of rickettsiosis in southern Taiwan. J Formos Med Assoc, 101, 385–92. LEE, J. H., CHO, N. H., KIM, S. Y., BANG, S. Y., CHU, H., CHOI, M. S. & KIM, I. S. 2008. Fibronectin facilitates the invasion of Orientia tsutsugamushi into host cells through interaction with a 56-kDa type-specific antigen. J Infect Dis, 198, 250–7. LEE, S. M., KIM, M. K., KIM, M. J. & KANG, J. S. 2009. Novel polysaccharide antigen of Orientia tsutsugamushi revealed by a monoclonal antibody. FEMS Microbiol Lett, 297, 95–100. LETUNIC, I., KHEDKAR, S. & BORK, P. 2021. SMART: recent updates, new developments and status in 2020. Nucleic Acids Res, 49, D458–60. LI, H. 2018. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics, 34, 3094–100. LI, H. & DURBIN, R. 2009. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics, 25, 1754–60. LI, H., HANDSAKER, B., WYSOKER, A., FENNELL, T., RUAN, J., HOMER, N., MARTH, G., ABECASIS, G. & DURBIN, R. 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics, 25, 2078–9. LIN, I. F., LIN, J. N., TSAI, C. T., WU, Y. Y., CHEN, Y. H. & LAI, C. H. 2020. Serum C-reactive protein and procalcitonin values in acute Q fever, scrub typhus, and murine typhus. BMC Infect Dis, 20, 334. LIN, P. R., TSAI, H. P., TSUI, P. Y., WENG, M. H., KUO, M. D., LIN, H. C., CHEN, K. C., JI, D. D., CHU, D. M. & LIU, W. T. 2011. Genetic typing, based on the 56-kilodalton type-specific antigen gene, of Orientia tsutsugamushi strains isolated from chiggers collected from wild-caught rodents in Taiwan. Appl Environ Microbiol, 77, 3398–405. LIU, T., ZHANG, L., JOO, D. & SUN, S.-C. 2017. NF-κB signaling in inflammation. Signal Transduct Target Ther, 2, 17023. LU, H. Y., TSAI, K. H., YU, S. K., CHENG, C. H., YANG, J. S., SU, C. L., HU, H. C., WANG, H. C., HUANG, J. H. & SHU, P. Y. 2010. Phylogenetic analysis of 56-kDa type-specific antigen gene of Orientia tsutsugamushi isolates in Taiwan. Am J Trop Med Hyg, 83, 658–63. MANSUETO, P., VITALE, G., CASCIO, A., SEIDITA, A., PEPE, I., CARROCCIO, A., ROSA, S. D., RINI, G. B., CILLARI, E. & WALKER, D. H. 2012. New insight into immunity and immunopathology of rickettsial diseases. Clin Dev Immunol, 2012. MARTIN, M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet, 17. MCCLURE, E. E., CHÁVEZ, A. S. O., SHAW, D. K., CARLYON, J. A., GANTA, R. R., NOH, S. M., WOOD, D. O., BAVOIL, P. M., BRAYTON, K. A., MARTINEZ, J. J., MCBRIDE, J. W., VALDIVIA, R. H., MUNDERLOH, U. G. & PEDRA, J. H. F. 2017. Engineering of obligate intracellular bacteria: progress, challenges and paradigms. Nat Rev Microbiol, 15, 544–58. MIKA-GOSPODORZ, B., GIENGKAM, S., WESTERMANN, A. J., WONGSANTICHON, J., KION-CROSBY, W., CHUENKLIN, S., WANG, L. C., SUNYAKUMTHORN, P., SOBOTA, R. M., SUBBIAN, S., VOGEL, J., BARQUIST, L. & SALJE, J. 2020. Dual RNA-seq of Orientia tsutsugamushi informs on host-pathogen interactions for this neglected intracellular human pathogen. Nat Commun, 11, 3363. MIN, C. K., KWON, Y. J., HA, N. Y., CHO, B. A., KIM, J. M., KWON, E. K., KIM, Y. S., CHOI, M. S., KIM, I. S. & CHO, N. H. 2014. Multiple Orientia tsutsugamushi ankyrin repeat proteins interact with SCF1 ubiquitin ligase complex and eukaryotic elongation factor 1 α. PLoS One, 9, e105652. MINAHAN, N. T., CHAO, C. C. & TSAI, K. H. 2018. The re-emergence and emergence of vector-borne rickettsioses in Taiwan. Trop Med Infect Dis, 3, 1. MINAHAN, N. T., DAVIS, R. J., GRAVES, S. R. & TSAI, K. H. 2020. Australian case of scrub typhus contracted while hiking in northern Taiwan. J Formos Med Assoc, 119, 662–3. MORGAN, M., ANDERS, S., LAWRENCE, M., ABOYOUN, P., PAGÈS, H. & GENTLEMAN, R. 2009. ShortRead: a bioconductor package for input, quality assessment and exploration of high-throughput sequence data. Bioinformatics, 25, 2607–8. NAGANO, I., KASUYA, S., NODA, N. & YAMASHITA, T. 1996. Virulence in mice of Orientia tsutsugamushi isolated from patients in a new endemic area in Japan. Microbiol Immunol, 40, 743–7. NAKAYAMA, K., YAMASHITA, A., KUROKAWA, K., MORIMOTO, T., OGAWA, M., FUKUHARA, M., URAKAMI, H., OHNISHI, M., UCHIYAMA, I., OGURA, Y., OOKA, T., OSHIMA, K., TAMURA, A., HATTORI, M. & HAYASHI, T. 2008. The whole-genome sequencing of the obligate intracellular bacterium Orientia tsutsugamushi revealed massive gene amplification during reductive genome evolution. DNA Res, 15, 185–99. NEI, M. & KUMAR, S. 2000. Molecular Evolution and Phylogenetics. NGUYEN, Y. T. H., KIM, C., KIM, H. I., KIM, Y., LEE, S. E., CHANG, S., HA, N. Y. & CHO, N. H. 2023. An alternative splicing variant of the Mixed-Lineage Leukemia 5 protein is a cellular adhesion receptor for ScaA of Orientia tsutsugamushi. mBio, 14, e0154322. NGUYEN, Y. T. H., KIM, C., KIM, Y., JEON, K., KIM, H. I., HA, N. Y. & CHO, N. H. 2021. The Orientia tsutsugamushi ScaB Autotransporter Protein Is Required for Adhesion and Invasion of Mammalian Cells. Front Microbiol, 12, 626298. OAKS, E. V., RICE, R. M., KELLY, D. J. & STOVER, C. K. 1989. Antigenic and genetic relatedness of eight Rickettsia tsutsugamushi antigens. Infect Immun, 57, 3116–22. OHASHI, N., FUKUHARA, M., SHIMADA, M. & TAMURA, A. 1995. Phylogenetic position of Rickettsia tsutsugamushi and the relationship among its antigenic variants by analyses of 16S rRNA gene sequences. FEMS Microbiol Lett, 125, 299–304. OHASHI, N., KOYAMA, Y., URAKAMI, H., FUKUHARA, M., TAMURA, A., KAWAMORI, F., YAMAMOTO, S., KASUYA, S. & YOSHIMURA, K. 1996. Demonstration of antigenic and genotypic variation in Orientia tsutsugamushi which were isolated in Japan, and their classification into type and subtype. Microbiol Immunol, 40, 627–38. OHASHI, N., NASHIMOTO, H., IKEDA, H. & TAMURA, A. 1992. Diversity of immunodominant 56-kDa type-specific antigen (TSA) of Rickettsia tsutsugamushi. Sequence and comparative analyses of the genes encoding TSA homologues from four antigenic variants. J Biol Chem, 267, 12728–35. OHASHI, N., TAMURA, A., SAKURAI, H. & YAMAMOTO, S. 1990. Characterization of a new antigenic type, Kuroki, of Rickettsia tsutsugamushi isolated from a patient in Japan. J Clin Microbiol, 28, 2111–3. OLSON, J. G., BOURGEOIS, A. L., FANG, R. C., COOLBAUGH, J. C. & DENNIS, D. T. 1980. Prevention of scrub typhus. Prophylactic administration of doxycycline in a randomized double blind trial. Am J Trop Med Hyg, 29, 989–97. PAGÈS, H., ABOYOUN, P., GENTLEMAN, R. & DEBROY, S. 2023. Biostrings: efficient manipulation of biological strings. PARIS, D. H. & DUMLER, J. S. 2016. State of the art of diagnosis of rickettsial diseases: the use of blood specimens for diagnosis of scrub typhus, spotted fever group rickettsiosis, and murine typhus. Curr Opin Infect Dis, 29, 433–9. PARIS, D. H., PHETSOUVANH, R., TANGANUCHITCHARNCHAI, A., JONES, M., JENJAROEN, K., VONGSOUVATH, M., FERGUSON, D. P. J., BLACKSELL, S. D., NEWTON, P. N., DAY, N. P. J. & TURNER, G. D. H. 2012. Orientia tsutsugamushi in human scrub typhus eschars shows tropism for dendritic cells and monocytes rather than endothelium. PLoS Negl Trop Dis, 6, e1466. PARK, S. W., LEE, C. S., LEE, C. K., KWAK, Y. G., MOON, C., KIM, B. N., KIM, E. S., KANG, J. M. & OH, M. D. 2011. Severity predictors in eschar-positive scrub typhus and role of serum osteopontin. Am J Trop Med Hyg, 85, 924–30. PHUKLIA, W., PANYANIVONG, P., SENGDETKA, D., SONTHAYANON, P., NEWTON, P. N., PARIS, D. H., DAY, N. P. J. & DITTRICH, S. 2019. Novel high-throughput screening method using quantitative PCR to determine the antimicrobial susceptibility of Orientia tsutsugamushi clinical isolates. J Antimicrob Chemother, 74, 74–81. QIANG, Y., TAMURA, A., URAKAMI, H., MAKISAKA, Y., KOYAMA, S., FUKUHARA, M. & KADOSAKA, T. 2003. Phylogenetic characterization of Orientia tsutsugamushi isolated in Taiwan according to the sequence homologies of 56-kDa type-specific antigen genes. Microbiol Immunol, 47, 577–83. RAMAIAH, A., KORALUR, M. C. & DASCH, G. A. 2018. Complexity of type-specific 56 kDa antigen CD4 T-cell epitopes of Orientia tsutsugamushi strains causing scrub typhus in India. PLoS One, 13, e0196240. REVELL, L. J. 2012. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol, 3, 217–23. RICHARDS, A. L. & JIANG, J. 2020. Scrub typhus: historic perspective and current status of the worldwide presence of Orientia species. Trop Med Infect Dis, 5. ROBINSON, J. T., THORVALDSDÓTTIR, H., WINCKLER, W., GUTTMAN, M., LANDER, E. S., GETZ, G. & MESIROV, J. P. 2011. Integrative genomics viewer. Nat Biotechnol, 29, 24–6. SAHNI, A., FANG, R., SAHNI, S. K. & WALKER, D. H. 2019. Pathogenesis of rickettsial diseases: pathogenic and immune mechanisms of an endotheliotropic infection. Annu Rev Pathol, 14, 127–52. SAITOU, N. & NEI, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol, 4, 406–25. SARASWATI, K., PHANICHKRIVALKOSIL, M., DAY, N. P. J. & BLACKSELL, S. D. 2019. The validity of diagnostic cut-offs for commercial and in-house scrub typhus IgM and IgG ELISAs: a review of the evidence. PLoS Negl Trop Dis, 13, e0007158. SAYERS, E. W., CAVANAUGH, M., CLARK, K., OSTELL, J., PRUITT, K. D. & KARSCH-MIZRACHI, I. 2020. GenBank. Nucleic Acids Res, 48, D84–6. SEONG, S. Y., CHOI, M. S. & KIM, I. S. 2001. Orientia tsutsugamushi infection: overview and immune responses. Microbes Infect, 3, 11–21. SHARMA, D., SHARMA, A., SINGH, B. & VERMA, S. K. 2019. Bioinformatic exploration of metal-binding proteome of zoonotic pathogen Orientia tsutsugamushi. Front Gen, 10. SILVA DE LA FUENTE, M. C., PÉREZ, C., MARTÍNEZ-VALDEBENITO, C., PÉREZ, R., VIAL, C., STEKOLNIKOV, A., ABARCA, K., WEITZEL, T. & ACOSTA-JAMETT, G. 2023. Eco-epidemiology of rodent-associated trombiculid mites and infection with Orientia spp. in Southern Chile. PLoS Negl Trop Dis, 17, e0011051. SMITH, M. 2019. Quartet: comparison of phylogenetic trees using quartet and split measures. SONTHAYANON, P., CHIERAKUL, W., WUTHIEKANUN, V., PHIMDA, K., PUKRITTAYAKAMEE, S., DAY, N. P. & PEACOCK, S. J. 2009. Association of high Orientia tsutsugamushi DNA loads with disease of greater severity in adults with scrub typhus. J Clin Microbiol, 47, 430–4. SOONG, L. 2018. Dysregulated Th1 immune and vascular responses in scrub typhus pathogenesis. J Immunol, 200, 1233. STEINEGGER, M. & SÖDING, J. 2017. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat Biotechnol, 35, 1026–8. STRICKMAN, D., SHEER, T., SALATA, K., HERSHEY, J., DASCH, G., KELLY, D. & KUSCHNER, R. 1995. In vitro effectiveness of azithromycin against doxycycline-resistant and -susceptible strains of Rickettsia tsutsugamushi, etiologic agent of scrub typhus. Antimicrob Agents Chemother, 39, 2406–10. SU, T. T., LIU, C. J., CHEN, D. S. & KAO, J. H. 2013. Milder clinical manifestation of scrub typhus in Kinmen, Taiwan. J Formos Med Assoc, 112, 201–7. SUNYAKUMTHORN, P., PARIS, D. H., CHAN, T. C., JONES, M., LUCE-FEDROW, A., CHATTOPADHYAY, S., JIANG, J., ANANTATAT, T., TURNER, G. D. H., DAY, N. P. J. & RICHARDS, A. L. 2013. An intradermal inoculation model of scrub typhus in Swiss CD-1 mice demonstrates more rapid dissemination of virulent strains of Orientia tsutsugamushi. PLoS One, 8, e54570. TAKHAMPUNYA, R., TIPPAYACHAI, B., KORKUSOL, A., PROMSATHAPORN, S., LEEPITAKRAT, S., SINWAT, W., SCHUSTER, A. L. & RICHARDS, A. L. 2016. Transovarial transmission of co-existing Orientia tsutsugamushi genotypes in laboratory-reared Leptotrombidium imphalum. Vector Borne Zoonotic Dis, 16, 33–41. TAMURA, A., OHASHI, N., KOYAMA, Y., FUKUHARA, M., KAWAMORI, F., OTSURU, M., WU, P. F. & LIN, S. Y. 1997. Characterization of Orientia tsutsugamushi isolated in Taiwan by immunofluorescence and restriction fragment length polymorphism analyses. FEMS Microbiol Lett, 150, 225–31. TAMURA, A., OHASHI, N., URAKAMI, H. & MIYAMURA, S. 1995. Classification of Rickettsia tsutsugamushi in a new genus, Orientia gen. nov., as Orientia tsutsugamushi comb. nov. Int J Syst Bacteriol, 45, 589–91. TAMURA, A., TAKAHASHI, K., TSURUHARA, T., URAKAMI, H., MIYAMURA, S., SEKIKAWA, H., KENMOTSU, M., SHIBATA, M., ABE, S. & NEZU, H. 1984. Isolation of Rickettsia tsutsugamushi antigenically different from Kato, Karp, and Gilliam strains from patients. Microbiol Immunol, 28, 873–82. TAMURA, K., STECHER, G. & KUMAR, S. 2021. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol Biol Evol, 38, 3022–7. TANG, C., ZHANG, L., HUANG, Y., MAI, W., XUE, L., WANG, G., WEN, S., PENG, R., WU, K., TIAN, X., PEI, H., DU, J., YUEN, K. Y., CHAN, J. F. W., DU, Y. & YIN, F. 2022. Mixed genotypes of Orientia tsutsugamushi in conserved genes and a single immune-dominant tsa56 genotype discovered from a patient with scrub typhus in Hainan Island, China: a case report. BMC Infect Dis, 22, 698. TATUSOVA, T., DICUCCIO, M., BADRETDIN, A., CHETVERNIN, V., NAWROCKI, E. P., ZASLAVSKY, L., LOMSADZE, A., PRUITT, K. D., BORODOVSKY, M. & OSTELL, J. 2016. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res, 44, 6614–24. TRAUB, R. & WISSEMAN, C. L., JR. 1968. Ecological considerations in scrub typhus. 2. Vector species. Bull World Health Organ, 39, 219–30. TRAUB, R. & WISSEMAN, C. L., JR. 1974. The ecology of chigger-borne rickettsiosis (scrub typhus). J Med Entomol, 11, 237–303. TRENT, B., FISHER, J. & SOONG, L. 2019. Scrub typhus pathogenesis: innate immune response and lung injury during Orientia tsutsugamushi infection. Front Microbiol, 10, 2065. TSAI, K. H., WANG, H. C., CHEN, C. H., HUANG, J. H., LU, H. Y., SU, C. L. & SHU, P. Y. 2008. Isolation and identification of a novel spotted fever group rickettsia, strain IG-1, from Ixodes granulatus ticks collected on Orchid Island (Lanyu), Taiwan. Am J Trop Med Hyg, 79, 256–61. TSAI, P. J. & YEH, H. C. 2013. Scrub typhus islands in the Taiwan area and the association between scrub typhus disease and forest land use and farmer population density: geographically weighted regression. BMC Infect Dis, 13, 191. TSAY, R. W. & CHANG, F. Y. 1998. Serious complications in scrub typhus. J Microbiol Immunol Infect, 31, 240–4. URAKAMI, H., TSURUHARA, T. & TAMURA, A. 1984. Electron microscopic studies on intracellular multiplication of Rickettsia tsutsugamushi in L cells. Microbiol Immunol, 28, 1191–201. VALBUENA, G. & WALKER, D. H. 2012. Approaches to vaccines against Orientia tsutsugamushi. Front Cell Infect Microbiol, 2, 170. VARGHESE, G. M., DAYANAND, D., GUNASEKARAN, K., KUNDU, D., WYAWAHARE, M., SHARMA, N., CHAUDHRY, D., MAHAJAN, S. K., SARAVU, K., ARULDHAS, B. W., MATHEW, B. S., NAIR, R. G., NEWBIGGING, N., MATHEW, A., ABHILASH, K. P. P., BISWAL, M., PRASAD, A. H., ZACHARIAH, A., IYADURAI, R., HANSDAK, S. G., SATHYENDRA, S., SUDARSANAM, T. D., PRAKASH, J. A. J., MANESH, A., MOHAN, A., TARNING, J., BLACKSELL, S. D., PEERAWARANUN, P., WAITHIRA, N., MUKAKA, M., CHEAH, P. Y., PETER, J. V., ABRAHAM, O. C. & DAY, N. P. J. 2023. Intravenous doxycycline, azithromycin, or both for severe scrub typhus. N Engl J Med, 388, 792–803. VOTH, D. E. 2011. ThANKs for the repeat: intracellular pathogens exploit a common eukaryotic domain. Cell Logist, 1, 128–32. WALKER, B. J., ABEEL, T., SHEA, T., PRIEST, M., ABOUELLIEL, A., SAKTHIKUMAR, S., CUOMO, C. A., ZENG, Q., WORTMAN, J., YOUNG, S. K. & EARL, A. M. 2014. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PloS One, 9, e112963. WALKER, D. H. & MENDELL, N. L. 2023. A scrub typhus vaccine presents a challenging unmet need. NPJ Vaccines, 8, 11. WANG, C. C., LIN, G. L., LIN, Y. J., CHEN, W. L. & WU, W. T. 2023. Occupational health surveillance and detection of emerging occupational diseases among Taiwan farmers, through analysis of national-based farmers' and medico-administrative databases. Am J Ind Med, 66, 85–93. WANG, C. C., LIU, S. F., LIU, J. W., CHUNG, Y. H., SU, M. C. & LIN, M. C. 2007. Acute respiratory distress syndrome in scrub typhus. Am J Trop Med Hyg, 76, 1148–52. WANGRANGSIMAKUL, T., PHUKLIA, W., NEWTON, P. N., RICHARDS, A. L. & DAY, N. P. J. 2019. Scrub typhus and the misconception of doxycycline resistance. Clin Infect Dis, 70, 2444–9. WATERHOUSE, A. M., PROCTER, J. B., MARTIN, D. M. A., CLAMP, M. & BARTON, G. J. 2009. Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics, 25, 1189–91. WATT, G., CHOURIYAGUNE, C., RUANGWEERAYUD, R., WATCHARAPICHAT, P., PHULSUKSOMBATI, D., JONGSAKUL, K., TEJA-ISAVADHARM, P., BHODHIDATTA, D., CORCORAN, K. D., DASCH, G. A. & STRICKMAN, D. 1996. Scrub typhus infections poorly responsive to antibiotics in northern Thailand. Lancet, 348, 86–9. WATT, G. & PAROLA, P. 2003. Scrub typhus and tropical rickettsioses. Curr Opin Infect Dis, 16, 429–36. WEI, Y., MA, Y., LUO, L., WU, X., HUANG, Y., LI, X. & YANG, Z. 2017. Differences in clinical and laboratory features for different genotypes of Orientia tsutsugamushi in Guangzhou, Southern China. Vector Borne Zoonotic Dis, 17, 260–7. WENGER, A. M., PELUSO, P., ROWELL, W. J., CHANG, P. C., HALL, R. J., CONCEPCION, G. T., EBLER, J., FUNGTAMMASAN, A., KOLESNIKOV, A., OLSON, N. D., TÖPFER, A., ALONGE, M., MAHMOUD, M., QIAN, Y., CHIN, C. S., PHILLIPPY, A. M., SCHATZ, M. C., MYERS, G., DEPRISTO, M. A., RUAN, J., MARSCHALL, T., SEDLAZECK, F. J., ZOOK, J. M., LI, H., KOREN, S., CARROLL, A., RANK, D. R. & HUNKAPILLER, M. W. 2019. Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nat Biotechnol, 37, 1155–62. WU, K. M., WU, Z. W., PENG, G. Q., WU, J. L. & LEE, S. Y. 2009. Radiologic pulmonary findings, clinical manifestations and serious complications in scrub typhus: experiences from a teaching hospital in eastern Taiwan. Int J Gerontol, 3, 223–32. XING, W. & GUANG, A. 2023. qckitfastq: FASTQ quality control. YAMAMOTO, S., KAWABATA, N., TAMURA, A., URAKAMI, H., OHASHI, N., MURATA, M., YOSHIDA, Y. & KAWAMURA, A., JR. 1986. Immunological properties of Rickettsia tsutsugamushi, Kawasaki strain, isolated from a patient in Kyushu. Microbiol Immunol, 30, 611–20. YANG, H. H., HUANG, I. T., LIN, C. H., CHEN, T. Y. & CHEN, L. K. 2012. New genotypes of Orientia tsutsugamushi isolated from humans in eastern Taiwan. PLoS One, 7, e46997. YANG, S. L., TSAI, K. H., CHEN, H. F., LUO, J. Y. & SHU, P. Y. 2019. Evaluation of enzyme-linked immunosorbent assay using recombinant 56-kDa type-specific antigens derived from multiple Orientia tsutsugamushi strains for detection of scrub typhus infection. Am J Trop Med Hyg, 100, 532–9. YANG, Z. 2006. Computational Molecular Evolution. Oxford University Press. YEN, T. Y., ZHANG, Z., CHAO, C. C., CHING, W. M., SHU, P. Y., TSENG, L. F., CARVALHO, A. V. A. & TSAI, K. H. 2019. Serologic evidence for Orientia exposure in the Democratic Republic of Sao Tome and Principe. Vector Borne Zoonotic Dis, 19, 821–27. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90406 | - |
| dc.description.abstract | 背景:恙蟲病的病原體是恙蟲立克次體 (Orientia tsutsugamushi, OT),是一類專性細胞內共生的細菌,主要透過恙蟎來傳播。臺灣全島皆有恙蟲病個案,嚴重時會致死,由於每年確認的病例數高,長年來被視為最普遍、最嚴重的蟲媒傳染病之一。現今 OT 的菌株分型主要根據表面抗原 56-kDa 特異性抗原 (TSA56) 的基因序列多型性,近年來臺灣臨床上的 OT 分離菌株序列亦呈現其多樣性。由於缺乏其全基因組序列的資訊,目前亦不清楚 TSA56 的變異是否能反應整個基因組序列的差異,包括其他表面抗原和毒力因子的差異。此外,臺灣恙蟲病病例的臨床表現呈現極大差異,是否與 OT 菌株差異所表現之毒力有關則仍不清楚。
目標:本文研究臺灣最常見的 OT 菌株 TW-1和 TW-22,期能 (1) 構築兩者之全基因組序列後,分別進行潛在毒力因子的比較性研究;(2) 鑑別代表性的抗原蛋白標的基因,使其具備與OT菌株基因組層級親緣關係有相同解析力; (3) 透過研究具感染性的OT 菌株探討臺灣恙蟲病的早期臨床表現。 方法: 將 OT 菌株 TW-1 和 TW-22 培養於小鼠 L929 細胞中。建構OT 基因組之前,首先過濾純化菌體並去除小鼠細胞 DNA,然後以 PacBio Sequel 高精準長讀取定序系統進行全基因組定序,再使用 hifiasm、circlator、pilon 等常用的開源軟體進行 de novo 組裝,最後使用 Illumina MiSeq 平台讀取進行校正並拼裝。以 NCBI 原核基因組註釋流程(PGAP)進行基因組註解,並使用 BLAST+ 演算工具和 SMART web 伺服器比較 TW-1 和 TW-22 基因組中潛在的毒力因子。鑑定 OT 全基因組的核心氨基酸序列後,以鄰近連接法 (NJ)、最大簡約法 (MP) 和最大似然法 (ML) 分析基於基因組核心和個體抗原蛋白序列建立的親緣關係樹。另一項研究則使用邏輯回歸分析了與臺灣疾病管制署 10 年間 OT 分離株相關之早期臨床表現,以及各地區感染 OT 菌株類型的關係。 結果:使用覆蓋率超過 100倍的 PacBio HiFi 短序列 (reads)、組裝並獲得 OT TW-1 和TW-22 菌株的環形全基因組序列,並且使用 Illumina MiSeq 平台讀取檢視下沒有被進行糾正。TW-1的長度為 2,008,429 bp,包含 2067 個註釋基因,其中包括 1627 個完整的編碼序列和 400 個偽基因,而 TW-22 的長度為 2,044,475 bp,含有 2192 個註釋基因,其中包括 1738 個完整的編碼序列和 414 個偽基因。相較於 TW-1,TW-22 含有更多重復的蛋白質,包括含有 ankyrin repeat (Ank) 結構和tetratricopeptide repeat (TPR) 結構的蛋白質。在親緣關係上,對 691 個核心氨基酸序列進行分析,在 NJ 和 ML 模型中得到相同的拓撲結構。在 TSA56 和 Sca 蛋白 (ScaA、ScaC、ScaD 和 ScaE) 中,僅使用 TSA56 進行的 NJ 和 ML 樹的拓撲結構與核心基因組的親緣關係樹形相比大致相似,但仍然存在不一致性。然而將 TSA56 和 ScaA 的氨基酸序列連結後的親緣關係樹形,則與核心基因組的親緣關係樹形有高度相似的拓墣結構,而 TSA56 和 ScaD、ScaE 序列連結使用的拓墣結構也比單獨使用 TSA56 時更似於核心基因組的親緣關係樹形。臺灣南部地區,臨床上相較於其他菌株,TW-22 的患者出現焦痂的幾率更高。 重要性:本研究首次提供臺灣 OT 的全基因組序列,有助於解釋全球 OT 菌株的多樣性。一些證據呈現恙蟲病臨床表現與 OT 毒力基因或菌株層級有相關聯,如體外培養實驗之生長動力學和潛在的分泌效應基因上的數量差異,因此需要進一步研究是否與菌株的毒力有關。與全基因組的親緣關係相比,特性化 OT 菌株並使用串聯 TSA56 和 ScaA 的序列分析,在親緣關係建立上得到顯著的突破,這可能對 OT 分離株的特性具有臨床價值。儘管在臺灣恙蟲病早期臨床表現的差異上,從分離株層級中找到有限的證據,但與疾病嚴重程度相關的焦痂在分離株層級上仍需要進一步研究。 | zh_TW |
| dc.description.abstract | Background: Orientia tsutsugamushi (OT) is an obligate intracellular bacterium associated with trombiculid mites. OT is the causative agent of scrub typhus, a life-threatening disease with an expanding range of endemicity and the most prevalent vector-borne disease endemic to Taiwan. 56-kDa type-specific antigen (TSA56) sequence-based strain typing of OT has revealed remarkable strain diversity, especially among clinical isolates in Taiwan. However, genome-wide variation among OT strains remains poorly characterized, including for diverse sets of secreted protein effectors that represent putative virulence factors and other antigenic proteins that have yet to be evaluated for their ability to reflect core genome-based phylogeny. Furthermore, it remains unclear whether OT strains vary in clinical presentation and disease severity.
Aims: This dissertation aimed to (1) obtain complete genomes for two common OT strains in Taiwan, TW-1 and TW-22, for comparative study of their predicted secretomes, (2) identify antigenic protein sequences that reflect core genome-based phylogeny, and (3) investigate early clinical manifestations of scrub typhus in Taiwan by infecting OT strain type. Methods: OT strains TW-1 and TW-22 were cultivated in mouse L929 cells, and DNA extracted from purified OT was used for whole genome sequencing using PacBio Sequel for de novo assembly and Illumina MiSeq for polishing, performed using widely-accepted open-source software, including hifiasm, circlator, and pilon. Assemblies were annotated using the NCBI Prokaryotic Genome Annotation Pipeline, and amino acid sequences in TW-1 and TW-22 genomes were compared using BLAST+ and the SMART web server. Core amino acid sequences were identified for complete OT genomes. Neighbor-joining (NJ), maximum parsimony (MP), and maximum likelihood (ML) models were used to examine core genome-based phylogeny and phylogeny of individual antigenic proteins. A retrospective study examined early clinical manifestations associated with OT isolates at the Taiwan Centers for Disease Control over a 10-year period in relation to infecting OT strain type in each region using logistic regression. Results: Complete circular genome sequences were obtained OT strains TW-1 and TW-22 with >100 coverage using PacBio HiFi reads and no corrections with Illumina MiSeq reads. TW-1 was 2,008,429 bp and 2067 annotated genes, including 1627 intact CDSs and 400 pseudogenes, and TW-22 was 2,044,475 bp with 2192 annotated genes, including 1738 intact CDSs and 414 pseudogenes. TW-22 had more duplicated ankyrin repeat-containing (Ank) proteins and tetratricopeptide repeat-containing (TPR) proteins than TW-1. Phylogenetically, analysis of 691 core amino acid sequences produced identical topologies for NJ and ML models. Among TSA56 and Sca proteins (ScaA, ScaC, ScaD, and ScaE), NJ and ML tree topologies using TSA56 were comparatively most similar to the core genome phylogeny, though incongruent. Use of concatenated TSA56 and ScaA amino acid sequences resulted in highly similar tree topologies with the core genome phylogeny, while TSA56 and ScaD or ScaE also produced more similar tree topologies than TSA56 alone. Clinically, in southern Taiwan, TW-22 was associated with higher odds of presenting with an eschar compared to other strains. Significance: This work contributes the first complete genome sequences of OT in Taiwan, addressing a critical geographic gap. Strain-level differences were observed in the number of intact duplicated secreted effectors, necessitating further studies to determine correlation with strain virulence. Compared to genome-wide phylogeny, OT strain characterization was markedly improved using concatenated TSA56 and ScaA sequences and may be useful to characterize OT isolates. Limited evidence was found for strain-level differences of OT in early clinical manifestations of scrub typhus in Taiwan, but strain-level differences in eschar development should be further studied in relation to disease severity. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-28T16:15:14Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-28T16:15:14Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgments i
摘要 ii Abstract iv Table of contents vii List of figures ix List of tables x Background and goals 1 1.1. Background 1 1.1.1. Eco-epidemiology of scrub typhus 1 1.1.2. Serotypic and genotypic diversity of Orientia tsutsugamushi 4 1.1.3. Genomic diversity of Orientia tsutsugamushi 6 1.1.4. Pathogenesis and virulence factors of Orientia tsutsugamushi 9 1.1.5. Diagnostics and vaccines 12 1.1.6. Clinical presentation and disease 13 1.2. Research gaps 16 1.2.1. Specific aims 16 Methods and procedures 17 2.1. Materials and methods 17 2.1.1. Cultivation, purification, and genomic DNA isolation 17 2.1.2. Quantitative PCR 19 2.1.3. Whole genome sequencing 19 2.1.4. Genome assembly and annotation 20 2.1.5. Comparative and phylogenetic analysis 23 2.1.6. Epidemiological study 24 Results and discussion 26 3.1. Results 26 3.1.1. Recovery and in vitro growth of Orientia tsutsugamushi 26 3.1.2. Complete genomes of Orientia tsutsugamushi strains TW-1 and TW-22 26 3.1.3. Strain-level differences in secreted effectors 30 3.1.4. Variation in antigenic proteins 38 3.1.5. Phylogenetic analysis 41 3.1.6. Strain-level differences in clinical manifestations 50 3.2. Discussion and future work 53 3.2.1. Complete genomes of Orientia tsutsugamushi strains TW-1 and TW-22 53 3.2.2. Strain-level differences in secreted effectors 55 3.2.3. Variation in antigenic proteins 58 3.2.4. Core genome phylogeny 59 3.2.5. TSA56 and ScaA as targets for strain characterization 61 3.2.6. Strain-level difference in eschar 62 Conclusions 67 References 68 List of publications 95 Appendix 96 | - |
| dc.language.iso | en | - |
| dc.subject | 恙蟲病 | zh_TW |
| dc.subject | 分泌效應因子 | zh_TW |
| dc.subject | 親緣關係學 | zh_TW |
| dc.subject | 比較基因組學 | zh_TW |
| dc.subject | comparative genomics | en |
| dc.subject | scrub typhus | en |
| dc.subject | phylogenetics | en |
| dc.subject | secreted effectors | en |
| dc.title | 恙蟲病立克次體 Orientia tsutsugamushi 菌株 TW-1 和 TW-22 之全基因組: 以潛在毒力因子與標的基因來進行菌株的鑑定和定性 | zh_TW |
| dc.title | Complete genomes of Orientia tsutsugamushi strains TW-1 and TW-22: identification of putative virulence factors and targets for improved strain characterization | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.coadvisor | 郭育良 | zh_TW |
| dc.contributor.coadvisor | Yue-Liang Guo | en |
| dc.contributor.oralexamcommittee | 方啓泰;盧子彬;舒佩芸;徐唯哲 | zh_TW |
| dc.contributor.oralexamcommittee | Chi-Tai Fang;Tzu-Pin Lu;Pei-Yun Shu;Wei-Che Hsu | en |
| dc.subject.keyword | 比較基因組學,親緣關係學,恙蟲病,分泌效應因子, | zh_TW |
| dc.subject.keyword | comparative genomics,phylogenetics,scrub typhus,secreted effectors, | en |
| dc.relation.page | 118 | - |
| dc.identifier.doi | 10.6342/NTU202303718 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-08-09 | - |
| dc.contributor.author-college | 公共衛生學院 | - |
| dc.contributor.author-dept | 環境與職業健康科學研究所 | - |
| dc.date.embargo-lift | 2025-01-01 | - |
| 顯示於系所單位: | 環境與職業健康科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 6.05 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
