Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 環境與職業健康科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90355
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡詩偉zh_TW
dc.contributor.advisorShih-Wei Tsaien
dc.contributor.author陳禾翰zh_TW
dc.contributor.authorHo-Han Chenen
dc.date.accessioned2023-09-27T16:09:23Z-
dc.date.available2023-11-09-
dc.date.copyright2023-09-27-
dc.date.issued2023-
dc.date.submitted2023-08-01-
dc.identifier.citationAlymatiri, Christina M., Kouskoura, Maria G., Markopoulou, Catherine K., 2015. Decoding the signal response of steroids in electrospray ionization mode (ESI-MS). Anal. Methods 7 (24), 10433–10444.

Basiri, B., Murph, M. M., & Bartlett, M. G. (2017). Assessing the Interplay between the Physicochemical Parameters of Ion-Pairing Reagents and the Analyte Sequence on the Electrospray Desorption Process for Oligonucleotides. Journal of the American Society for Mass Spectrometry, 28(8), 1647-1656. doi:10.1007/s13361-017-1671-6

Bergmann, A. J., Points, G. L., Scott, R. P., Wilson, G., Anderson, K. A., Aalizadeh, R., . . . Aalizadeh, R. (2018). Development of quantitative screen for 1550 chemicals with GC-MS. (1618-2650 (Electronic)).

Carpenter, D. O., Arcaro, K., & Spink, D. C. (2002). Understanding the human health effects of chemical mixtures. Environmental Health Perspectives, 110(suppl 1), 25-42. doi:10.1289/ehp.02110s125

Cech, N. B., & Enke, C. G. (2000). Relating electrospray ionization response to nonpolar character of small peptides. (0003-2700 (Print)).

Chalcraft, K. R., Lee, R., Mills, C., & Britz-McKibbin, P. (2009). Virtual Quantification of Metabolites by Capillary Electrophoresis-Electrospray Ionization-Mass Spectrometry: Predicting Ionization Efficiency Without Chemical Standards. Analytical Chemistry, 81(7), 2506-2515. doi:10.1021/ac802272u

Chen, S.-Y. (2022) Passive Sampling of Airborne Fragrances by Silicone Wristbands. [National Taiwan University] DOI: 10.6342/NTU202202631

Cífková, E., Holčapek, M., Lísa, M., Ovčačíková, M., Lyčka, A., Lynen, F., & Sandra, P. (2012). Nontargeted Quantitation of Lipid Classes Using Hydrophilic Interaction Liquid Chromatography–Electrospray Ionization Mass Spectrometry with Single Internal Standard and Response Factor Approach. Analytical Chemistry, 84(22), 10064-10070. doi:10.1021/ac3024476

Cox, F. J., Johnston, M. V., Dasgupta, A., Aalizadeh, R., Aalizadeh, R., Aalizadeh, R., . . . Aalizadeh, R. (2003). Characterization and relative ionization efficiencies of end-functionalized polystyrenes by matrix-assisted laser desorption/ionization mass spectrometry. Journal of the American Society for Mass Spectrometry, 14(6), 648-657. doi:https://doi.org/10.1016/S1044-0305(03)00216-2

Dixon, H. M., Armstrong, G., Barton, M., Bergmann, A. J., Bondy, M., Halbleib, M. L., . . . Anderson, K. A. (2019). Discovery of common chemical exposures across three continents using silicone wristbands. Royal Society Open Science, 6(2), 181836. doi:10.1098/rsos.181836

Du, X., & Zeisel, S. H. (2013). Spectral deconvolution for gas chromatography mass spectrometry-based metabolomics: current status and future perspectives. (2001-0370 (Print)).

Ehrmann, B. M., Henriksen, T., Cech, N. B., Aalizadeh, R., Aalizadeh, R., Aalizadeh, R., . . . Aalizadeh, R. (2008). Relative Importance of Basicity in the Gas Phase and in Solution for Determining Selectivity in Electrospray Ionization Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 19(5), 719-728. doi:https://doi.org/10.1016/j.jasms.2008.01.003

Escher, B. I., Stapleton, H. M., & Schymanski, E. L. (2020). Tracking complex mixtures of chemicals in our changing environment. Science, 367(6476), 388-392. doi:10.1126/science.aay6636

Gago-Ferrero, P., Schymanski, E. L., Bletsou, A. A., Aalizadeh, R., Hollender, J., & Thomaidis, N. S. (2015). Extended Suspect and Non-Target Strategies to Characterize Emerging Polar Organic Contaminants in Raw Wastewater with LC-HRMS/MS. Environmental Science & Technology, 49(20), 12333-12341. doi:10.1021/acs.est.5b03454

Golubović, J., Birkemeyer, C., Protić, A., Otašević, B., Zečević, M., Aalizadeh, R., . . . Aalizadeh, R. (2016). Structure–response relationship in electrospray ionization-mass spectrometry of sartans by artificial neural networks. Journal of Chromatography A, 1438, 123-132. doi:https://doi.org/10.1016/j.chroma.2016.02.021

González-Gaya, B., Lopez-Herguedas, N., Bilbao, D., Mijangos, L., Iker, A. M., Etxebarria, N., . . . Zuloaga, O. (2021). Suspect and non-target screening: the last frontier in environmental analysis. Analytical Methods, 13(16), 1876-1904. doi:10.1039/D1AY00111F

Ghosh, Banibrata, Jones, A. Daniel, 2015. Dependence of negative-mode electrospray ionization response factors on mobile phase composition and molecular structure for newly-authenticated neutral acylsucrose metabolites. Analyst 140 (19), 6522–6531.

Henriksen, T., Juhler, R. K., Svensmark, B., Cech, N. B., Aalizadeh, R., Aalizadeh, R., . . . Aalizadeh, R. (2005). The relative influences of acidity and polarity on responsiveness of small organic molecules to analysis with negative ion electrospray ionization mass spectrometry (ESI-MS). Journal of the American Society for Mass Spectrometry, 16(4), 446-455. doi:https://doi.org/10.1016/j.jasms.2004.11.021

Huo, Y., Guo, Z., Liu, Y., Wu, D., Ding, X., Zhao, Z., . . . Chen, J. (2021). Addressing Unresolved Complex Mixture of I/SVOCs Emitted From Incomplete Combustion of Solid Fuels by Nontarget Analysis. Journal of Geophysical Research: Atmospheres, 126(23), e2021JD035835. doi:https://doi.org/10.1029/2021JD035835

Kim, Y.-H., Kim, K.-H., Szulejko, J. E., Bae, M.-S., Brown, R. J. C., Aalizadeh, R., . . . Aalizadeh, R. (2014). Experimental validation of an effective carbon number-based approach for the gas chromatography–mass spectrometry quantification of ‘compounds lacking authentic standards or surrogates’. Analytica Chimica Acta, 830, 32-41. doi:https://doi.org/10.1016/j.aca.2014.04.052

Kruve, A., Kaupmees, K., Liigand, J., Leito, I., Aalizadeh, R., Aalizadeh, R., . . . Aalizadeh, R. (2014). Negative Electrospray Ionization via Deprotonation: Predicting the Ionization Efficiency. Analytical Chemistry, 86(10), 4822-4830. doi:10.1021/ac404066v

Leito, I., Herodes, K., Huopolainen, M., Virro, K., Künnapas, A., Kruve, A., & Tanner, R. (2008). Towards the electrospray ionization mass spectrometry ionization efficiency scale of organic compounds. Rapid Communications in Mass Spectrometry, 22(3), 379-384. doi:https://doi.org/10.1002/rcm.3371

Liigand, Wang, T. A.-O., Kellogg, J., Smedsgaard, J., Cech, N., & Kruve, A. A.-O. (2020). Quantification for non-targeted LC/MS screening without standard substances. (2045-2322 (Electronic)).

Liigand, P., Liigand, J., Cuyckens, F., Vreeken, R. J., Kruve, A., Aalizadeh, R., . . . Aalizadeh, R. (2018). Ionisation efficiencies can be predicted in complicated biological matrices: A proof of concept. Analytica Chimica Acta, 1032, 68-74. doi:https://doi.org/10.1016/j.aca.2018.05.072

Linkov, I., Ames Mr Fau - Crouch, E. A. C., Crouch Ea Fau - Satterstrom, F. K., & Satterstrom, F. K. (2005). Uncertainty in octanol-water partition coefficient: implications for risk assessment and remedial costs. (0013-936X (Print)).

Manz, K. A.-O., Feerick, A., Braun, J. M., Feng, Y. L., Hall, A., Koelmel, J., . . . Young, J. A. (2023). Non-targeted analysis (NTA) and suspect screening analysis (SSA): a review of examining the chemical exposome. LID - 10.1038/s41370-023-00574-6 [doi]. (1559-064X (Electronic)).

McCord, J. P., Groff, L. C., & Sobus, J. R. (2022). Quantitative non-targeted analysis: Bridging the gap between contaminant discovery and risk characterization. Environment International, 158, 107011. doi:https://doi.org/10.1016/j.envint.2021.107011

Mehta, N., Porterfield, M., Struwe, W. B., Heiss, C., Azadi, P., Rudd, P. M., . . . Aoki, K. (2016). Mass Spectrometric Quantification of N-Linked Glycans by Reference to Exogenous Standards. Journal of Proteome Research, 15(9), 2969-2980. doi:10.1021/acs.jproteome.6b00132

Moschet, C., Wittmer, I., Simovic, J., Junghans, M., Piazzoli, A., Singer, H., . . . Hollender, J. (2014). How a Complete Pesticide Screening Changes the Assessment of Surface Water Quality. Environmental Science & Technology, 48(10), 5423-5432. doi:10.1021/es500371t

Null, A. P., as, svd, cds, dsvfsd, & davcfs. (2003). Implications of hydrophobicity and free energy of solvation for characterization of nucleic acids by electrospray ionization mass spectrometry. (0003-2700 (Print)).

Oss, M., Kruve, A., Herodes, K., & Leito, I. (2010). Electrospray Ionization Efficiency Scale of Organic Compounds. Analytical Chemistry, 82(7), 2865-2872. doi:10.1021/ac902856t

Richter, W. J., & Schwarz, H. (1978). Chemical Ionization—A Mass-Spectrometric Analytical Procedure of Rapidly Increasing Importance. Angewandte Chemie International Edition in English, 17(6), 424-439. doi:https://doi.org/10.1002/anie.197804241

Rockström, J., Steffen, W., Noone, K., Persson, Å., Chapin, F. S., Lambin, E. F., . . . Foley, J. A. (2009). A safe operating space for humanity. Nature, 461(7263), 472-475. doi:10.1038/461472a

Sunner, J., Nicol, G., Kebarle, P., Aalizadeh, R., Aalizadeh, R., Aalizadeh, R., . . . Aalizadeh, R. (1988). Factors determining relative sensitivity of analytes in positive mode atmospheric pressure ionization mass spectrometry. Analytical Chemistry, 60(13), 1300-1307. doi:10.1021/ac00164a012

Szulejko, J. E., Kim, Y.-H., Kim, K.-H., Aalizadeh, R., Aalizadeh, R., Aalizadeh, R., & Aalizadeh, R. (2013). Method to predict gas chromatographic response factors for the trace-level analysis of volatile organic compounds based on the effective carbon number concept. Journal of Separation Science, 36(20), 3356-3365. doi:https://doi.org/10.1002/jssc.201300543

USEPA. (2011). Exposure Factors Handbook 2011 Edition (Final Report).

Vermeulen, R. A.-O., Schymanski, E. A.-O., Barabási, A. A.-O., & Miller, G. A.-O. (2020). The exposome and health: Where chemistry meets biology. (1095-9203 (Electronic)).

Walker, S. H., Lilley, L. M., Enamorado, M. F., Comins, D. L., Muddiman, D. C., Aalizadeh, R., . . . Aalizadeh, R. (2011). Hydrophobic Derivatization of N-linked Glycans for Increased Ion Abundance in Electrospray Ionization Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 22(8), 1309-1317. doi:10.1007/s13361-011-0140-x

Wang, A., Gerona Roy, R., Schwartz Jackie, M., Lin, T., Sirota, M., Morello-Frosch, R., & Woodruff Tracey, J. (2018). A Suspect Screening Method for Characterizing Multiple Chemical Exposures among a Demographically Diverse Population of Pregnant Women in San Francisco. Environmental Health Perspectives, 126(7), 077009. doi:10.1289/EHP2920

Wild, C. P. (2005). Complementing the Genome with an “Exposome”: The Outstanding Challenge of Environmental Exposure Measurement in Molecular Epidemiology. Cancer Epidemiology, Biomarkers & Prevention, 14(8), 1847-1850. doi:10.1158/1055-9965.EPI-05-0456
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90355-
dc.description.abstract在環境和職業健康科學領域中,傳統上習慣使用目標物分析方法來了解樣本中的特定化合物;然而,現實生活中的個人暴露通常同時接觸多種化學混合物而不是單一化學物質。為了解決這個限制,過去文獻中已開發出一種稱為疑似物篩查分析(suspect screening analysis, SSA)的方法,以偵測更廣泛範圍的化學物質。不過儘管此方法具有優勢,疑似物篩查分析的一個主要挑戰是其缺乏提供定量資訊的能力。因此,近年來有研究開始根據化合物的物化性質開發反應建模方法(response modeling),以彌補疑似物篩查分析的不足。

本研究旨在基於化學物質的物化性質開發一個預測模型,同時減少預測的誤差。研究中首先建立一個包含259種常在環境中出現的化學物質(包括:鄰苯二甲酸酯、農藥、香氛物質、多環芳烴類和抗紫外線劑等)的化學物質庫,之後從資料庫中選擇53種化學物質進行建模,並將這些化學物質隨機分配到訓練集和測試集中;而為了分析這些化合物,本研究建立一個氣相層析質譜儀(gas chromatography-mass spectrometry, GC-MS)的分析方法與條件。本研究的資料庫中包含以不同物化特性作為參數的潛在自變量,而應變量則為氣相層析串聯質譜儀之反應訊號,本研究發現大多數化學物質呈現良好的線性關係(R2 > 0.98);另外,本研究同時也建立了儀器穩定性的標準。

本研究使用多元線性迴歸、Ridge迴歸、Lasso迴歸、Elastic Net迴歸和隨機森林迴歸等各種演算法進行建模,並使用5折交叉驗證法進行模型調整和評估。本研究最終選擇並開發了一個隨機森林迴歸模型(R2 = 0.71),其使用沸點、分子量、極化性、蒸氣壓、碰撞截面、LogKow、LogKoa和亨利常數作為預測因子,而預測模型的平均預測誤差(prediction error)為1.19。

本研究將所開發的方法應用於矽膠手環的分析,一共檢測出22種化學物質,並估計其濃度:如樣本檢測出camphor,其在矽膠手環上的濃度為4.33μg/g wristband呈現。透過本研究所建立的預測模型,未來於分析環境樣本時將可同步提供疑似物之定性及定量資訊。
zh_TW
dc.description.abstractIn the field of environmental and occupational health sciences, targeted analyses have traditionally been used to identify specific compounds in collected samples. However, real-life exposures often involve simultaneous exposure to multiple chemical mixtures rather than individual chemicals. To address this limitation, a method called suspect screening analysis (SSA) has been developed to identify a broader range of compounds. However, despite the advantages of this method, a major challenge of suspect screening analysis is its lack of quantitative information. Therefore, in recent years, research has begun to develop response modeling methods based on the physicochemical properties of compounds to make up for the drawback of SSA.

This study aimed to develop a predictive model based on the physicochemical properties of chemicals while reducing the error in prediction. A library of 259 chemicals (including phthalates, pesticides, fragrances, polycyclic aromatic hydrocarbons, UV filters, etc.) commonly found in the environment was established. A subset of 53 chemicals from this library was selected for modeling purposes. These chemicals were randomly assigned to either a training or test set. A gas chromatography-mass spectrometry (GC-MS) analytical method was developed to analyze these compounds. Several physical-chemical parameters were selected as potential independent variables, while the responses of gas chromatography-tandem mass spectrometry (GC-MS/MS) from triplicate injections served as the dependent variable. Most of the chemicals in the modeling set exhibited good linearity (R2>0.98). Criteria for instrument stability were also established.

This study used various algorithms such as multiple linear regression, ridge regression, lasso regression, elastic net regression, and random forest regression for modeling and performed a 5-fold cross-validation method for model tuning and evaluation. Ultimately, a random forest regression model (R2=0.71) was selected and developed, using boiling point, molecular weight, polarizability, vapor pressure, collision cross-section, LogKow, LogKoa, and Henry's law constant as predictors to estimate chemical responses within a prediction error of 1.19. To the best of our knowledge, it is better than any similar study reported previously.

Applying the developed method to the analysis of silicone wristbands, a total of 22 chemical substances were detected and their concentrations were estimated. For example, camphor was detected in a sample, and the estimated concentration was 4.33 μg/g wristband. Through the prediction model established in this study, the qualitative and quantitative information of suspected substances can be simultaneously provided when analyzing environmental samples in the future.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-27T16:09:23Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-27T16:09:23Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsContents
口試委員會審定書 ii
致謝 iii
中文摘要 iv
Abstract v
List of Figures ix
List of Tables x
Chapter 1 Introduction 1
1.1 Research Background 1
1.2 Suspect Screening Analysis 2
1.3 Current approaches for quantitative predictions in SSA 3
1.4 Objective 7

Chapter 2 Materials and Methods 8
2.1 Study flow chart 8
2.2 Reagents and Standards 9
2.3 GC-MS parameters 9
2.4 Deconvolution and Library Search 10
2.4.1 Deconvolution 10
2.4.2 Library search 10
2.5 Method Validation 11
2.5.1 Linearity 11
2.5.2 Quality control 11
2.6 Model development 12
2.6.1 Chemicals in the Library 12
2.6.2 Data pre-processing 12
2.6.3 Algorithm selection 13
2.6.4 Cross validation 15
2.6.5 Model selection 17
2.7 Real sample concentration estimate 18

Chapter 3 Results and Discussions 19
3.1 GC-MS analysis 19
3.2 Method Validation 19
3.3.1 Linearity 19
3.3.2 Quality control 19
3.3 Initial model building 20
3.4 Model Prediction 20
3.4.1 Training set and testing set 20
3.4.2 Selection of the Algorithm for the final model 21
3.4.3 Optimized parameters of random forest regression in the final model 24
3.5 Sample Tests 27
3.6 Limitations 28

Chapter 4 Conclusions 30
References 32
Supplementary 36
Python code for training the model 61



 
List of Figures
Figure 1. Diagram of the 5-fold cross-validation method (blocks in pink represent the testing folds at each step). 16
Figure 2. Model building procedure in the study 17
Figure 3. Actual vs. predicted values of 53 chemicals used in modeling GC-MS response at 1000 pg/μL. 23
Figure 4. The variable importance of each variable in the final model. 26
Figure S1. The example of performing deconvolution and library search. 36
Figure S2. Chromatogram of modeling chemicals in the study. 36
Figure S3. Goodness of fit for concentration series of chemicals used in the model. R square for 53 chemicals present in at least 5 of the 8 concentration levels evaluated with this method. 37
Figure S4. Histograms of physico-chemical properties for the complete list of target analytes and the set used to model response. 38
Figure S5. Visualization of one tree in random forest model (take one as an example out of 100 trees ) 39

 
List of Tables
Table 1. Summary of each algorithm 21
Table 2. Prediction error and percentage error of each chemical in the testing set in the final model 23
Table 3. Optimal parameters of random forest regression model in the final model 24
Table S1. Chemicals used in model building (modeling set) 40
Table S2. Experimental GC-MS parameters of model chemicals. 46
Table S3. Acceptable response of chemicals used for quality control 47
Table S4. Summary of detected chemicals, score, mass collected in sample 1 48
Table S5. Summary of detected chemicals, score, mass collected in sample 2 48
Table S6. Summary of detected chemicals, score, mass collected in sample 3 48
Table S7. Summary of detected chemicals, score, mass collected in sample 4 49
Table S8. Summary of detected chemicals, score, mass collected in sample 5 49
Table S9. List of all chemicals in the method with physical chemical properties 50
-
dc.language.isoen-
dc.subject隨機森林zh_TW
dc.subject個人暴露zh_TW
dc.subject交叉驗證zh_TW
dc.subject反應模型zh_TW
dc.subject疑似物分析zh_TW
dc.subjectcross validationen
dc.subjectsuspect screening analysisen
dc.subjectresponse modelingen
dc.subjectpersonal exposureen
dc.subjectrandom foresten
dc.title以疑似物分析結合預測模型評估個人於 環境汙染物之暴露zh_TW
dc.titleIntegrating Suspect Screening Analysis with Response Modeling to Assess Personal Exposure to a Wide Range of Chemical Mixturesen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee吳俊德;林澤聖;彭瓊瑜zh_TW
dc.contributor.oralexamcommitteeJyun-De Wu;Tser-Sheng Lin;Chiung-Yu Pengen
dc.subject.keyword疑似物分析,反應模型,隨機森林,交叉驗證,個人暴露,zh_TW
dc.subject.keywordsuspect screening analysis,response modeling,random forest,personal exposure,cross validation,en
dc.relation.page66-
dc.identifier.doi10.6342/NTU202302456-
dc.rights.note未授權-
dc.date.accepted2023-08-01-
dc.contributor.author-college公共衛生學院-
dc.contributor.author-dept環境與職業健康科學研究所-
顯示於系所單位:環境與職業健康科學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
1.26 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved