Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 臨床牙醫學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90335
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor鄭景暉zh_TW
dc.contributor.advisorJiiang-Huei Jengen
dc.contributor.author劉立偉zh_TW
dc.contributor.authorLi-Wei Liuen
dc.date.accessioned2023-09-26T16:19:07Z-
dc.date.available2023-11-10-
dc.date.copyright2023-09-26-
dc.date.issued2023-
dc.date.submitted2023-07-13-
dc.identifier.citation1. Sueyama Y, Kaneko T, Ito T, Kaneko R, Okiji T. Implantation of endothelial cells with mesenchymal stem cells accelerates dental pulp tissue regeneration/healing in pulpotomized rat molars. Journal of Endodontics. 2017;43(6):943-8.
2. Caviedes-Bucheli J, Lopez-Moncayo LF, Muñoz-Alvear HD, Gomez-Sosa JF, Diaz-Barrera LE, Curtidor H, et al. Expression of substance P, calcitonin gene-related peptide and vascular endothelial growth factor in human dental pulp under different clinical stimuli. BMC Oral Health. 2021;21(1):1-8.
3. Oh M, Zhang Z, Mantesso A, Oklejas A, Nör J. Endothelial-initiated crosstalk regulates dental pulp stem cell self-renewal. Journal of Dental Research. 2020;99(9):1102-11.
4. Xu S, Jin T, Weng J. Endothelial cells as a key cell type for innate immunity: A focused review on RIG-I signaling pathway. Frontiers in immunology. 2022;13:951614.
5. Galler KM, Weber M, Korkmaz Y, Widbiller M, Feuerer M. Inflammatory response mechanisms of the dentine–pulp complex and the periapical tissues. International Journal of Molecular Sciences. 2021;22(3):1480.
6. Yuan C, Ni L, Zhang C, Hu X, Wu X. Vascular calcification: New insights into endothelial cells. Microvascular Research. 2021;134:104105.
7. Neubauer K, Zieger B. Endothelial cells and coagulation. Cell and tissue research. 2022;387(3):391-8.
8. Edgell C-J, McDonald CC, Graham JB. Permanent cell line expressing human factor VIII-related antigen established by hybridization. Proceedings of the National Academy of Sciences. 1983;80(12):3734-7.
9. Zhou X, Razmovski-Naumovski V, Kam A, Chang D, Li C, Bensoussan A, et al. Synergistic effects of Danshen (Salvia Miltiorrhizae Radix et Rhizoma) and Sanqi (Notoginseng Radix et Rhizoma) combination in angiogenesis behavior in EAhy 926 cells. Medicines. 2017;4(4):85.
10. Caprani A, Richert A, Guglielmi J-P, Flaud P. Preliminary study of pulsed-electromagnetic fields effects on endothelial (HUVEC) cell secretions—modulation of the thrombo-hemorrhagic balance. Electromagnetic Biology and Medicine. 2008;27(4):386-92.
11. Godo S, Shimokawa H. Endothelial functions. Arteriosclerosis, thrombosis, and vascular biology. 2017;37(9):e108-e14.
12. Incalza MA, D'Oria R, Natalicchio A, Perrini S, Laviola L, Giorgino F. Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vascular pharmacology. 2018;100:1-19.
13. Tseng S-K, Chang M-C, Su C-Y, Chi L-Y, Chang JZ-C, Tseng W-Y, et al. Arecoline induced cell cycle arrest, apoptosis, and cytotoxicity to human endothelial cells. Clinical Oral Investigations. 2012;16:1267-73.
14. Michel L, Touil H, Pikor NB, Gommerman JL, Prat A, Bar-Or A. B cells in the multiple sclerosis central nervous system: trafficking and contribution to CNS-compartmentalized inflammation. Frontiers in Immunology. 2015;6:636.
15. Pober JS, Sessa WC. Evolving functions of endothelial cells in inflammation. Nature Reviews Immunology. 2007;7(10):803-15.
16. Arnout J, Hoylaerts M, Lijnen H. Haemostasis. The Vascular Endothelium II. 2006:1-41.
17. Pober JS, Cotran RS. The role of endothelial cells in inflammation. Transplantation. 1990;50(4):537-44.
18. Sandoo A, Veldhuijzen van Zanten JJ, Metsios GS, Carroll D, Kitas GD. The endothelium and its role in regulating vascular tone. The open cardiovascular medicine journal. 2010;4(1).
19. Ley K, Reutershan J. Leucocyte-endothelial interactions in health and disease. The vascular endothelium II. 2006:97-133.
20. Munro JM, Pober JS, Cotran RS. Tumor necrosis factor and interferon-gamma induce distinct patterns of endothelial activation and associated leukocyte accumulation in skin of Papio anubis. The American journal of pathology. 1989;135(1):121.
21. Abd-Elmeguid A, Abdeldayem M, Kline LW, Moqbel R, Vliagoftis H, Donald CY. Osteocalcin expression in pulp inflammation. Journal of Endodontics. 2013;39(7):865-72.
22. Goldberg M, Farges J-C, Lacerda-Pinheiro S, Six N, Jegat N, Decup F, et al. Inflammatory and immunological aspects of dental pulp repair. Pharmacological research. 2008;58(2):137-47.
23. Lin X, Ouyang S, Zhi C, Li P, Tan X, Ma W, et al. Focus on ferroptosis, pyroptosis, apoptosis and autophagy of vascular endothelial cells to the strategic targets for the treatment of atherosclerosis. Archives of Biochemistry and Biophysics. 2022;715:109098.
24. Mizushima N. Autophagy: process and function. Genes & development. 2007;21(22):2861-73.
25. Schaaf MB, Houbaert D, Meçe O, Agostinis P. Autophagy in endothelial cells and tumor angiogenesis. Cell Death & Differentiation. 2019;26(4):665-79.
26. Shan R, Liu N, Yan Y, Liu B. Apoptosis, autophagy and atherosclerosis: relationships and the role of Hsp27. Pharmacological Research. 2021;166:105169.
27. Couve E, Schmachtenberg O. Autophagic activity and aging in human odontoblasts. Journal of dental research. 2011;90(4):523-8.
28. Cristofalo VJ, Lorenzini A, Allen R, Torres C, Tresini M. Replicative senescence: a critical review. Mechanisms of ageing and development. 2004;125(10-11):827-48.
29. Yang Y, Huang Y, Li W. Autophagy and its significance in periodontal disease. Journal of periodontal research. 2021;56(1):18-26.
30. Ravanan P, Srikumar IF, Talwar P. Autophagy: The spotlight for cellular stress responses. Life sciences. 2017;188:53-67.
31. Li L, Zhu YQ, Jiang L, Peng W. Increased autophagic activity in senescent human dental pulp cells. International endodontic journal. 2012;45(12):1074-9.
32. Hajishengallis G, Lamont RJ. Beyond the red complex and into more complexity: the polymicrobial synergy and dysbiosis (PSD) model of periodontal disease etiology. Molecular oral microbiology. 2012;27(6):409-19.
33. Boskey AL. Biomineralization: conflicts, challenges, and opportunities. Journal of cellular biochemistry. 1998;72(S30‒31):83-91.
34. Bourne LE, Wheeler-Jones CP, Orriss IR. Regulation of mineralisation in bone and vascular tissue: A comparative review. Journal of Endocrinology. 2021;248(2):R51-R65.
35. Zhu D, Mackenzie NC, Farquharson C, MacRae VE. Mechanisms and clinical consequences of vascular calcification. Frontiers in endocrinology. 2012;3:95.
36. Gisterå A, Hansson GK. The immunology of atherosclerosis. Nature reviews nephrology. 2017;13(6):368-80.
37. Fatkhullina A, Peshkova I, Koltsova E. The role of cytokines in the development of atherosclerosis. Biochemistry (Moscow). 2016;81:1358-70.
38. Yu W, Liu Z, An S, Zhao J, Xiao L, Gou Y, et al. The endothelial-mesenchymal transition (EndMT) and tissue regeneration. Current Stem Cell Research & Therapy. 2014;9(3):196-204.
39. Hahn C-L, Liewehr FR. Relationships between caries bacteria, host responses, and clinical signs and symptoms of pulpitis. Journal of endodontics. 2007;33(3):213-9.
40. Cooper P, McLachlan J, Simon S, Graham L, Smith A. Mediators of inflammation and regeneration. Advances in dental research. 2011;23(3):290-5.
41. Seltzer S, Bender I, Ziontz M. The dynamics of pulp inflammation: correlations between diagnostic data and actual histologic findings in the pulp. Oral Surgery, Oral Medicine, Oral Pathology. 1963;16(7):846-71.
42. Mehta D, Malik AB. Signaling mechanisms regulating endothelial permeability. Physiological reviews. 2006.
43. Radomski M, Palmer R, Moncada S. Endogenous nitric oxide inhibits human platelet adhesion to vascular endothelium. The Lancet. 1987;330(8567):1057-8.
44. Palmer RM, Ashton D, Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature. 1988;333(6174):664-6.
45. Wu KK, Liou J-Y. Cellular and molecular biology of prostacyclin synthase. Biochemical and biophysical research communications. 2005;338(1):45-52.
46. Broze Jr GJ. Tissue factor pathway inhibitor. Thrombosis and haemostasis. 1995;74(07):090-3.
47. Mann KG, Butenas S, Brummel K. The dynamics of thrombin formation. Arteriosclerosis, thrombosis, and vascular biology. 2003;23(1):17-25.
48. Loskutoff DJ, Edgington TS. An inhibitor of plasminogen activator in rabbit endothelial cells. Journal of Biological Chemistry. 1981;256(9):4142-5.
49. Takata T. Oral wound healing concepts in periodontology. Current opinion in periodontology. 1994:119-27.
50. Colvin R. Wound healing processes in hemostasis and thrombosis. Vascular Endothelium in Hemostasis and Thrombosis: Churchill Livingstone Edinburgh; 1986. p. 220-41.
51. Taweewattanapaisan P, Jantarat J, Ounjai P, Janebodin K. The effects of EDTA on blood clot in regenerative endodontic procedures. Journal of endodontics. 2019;45(3):281-6.
52. Chang MC, Wang TM, Chien HH, Pan YH, Tsai YL, Jeng PY, et al. Effect of butyrate, a bacterial by‐product, on the viability and ICAM‐1 expression/production of human vascular endothelial cells: Role in infectious pulpal/periapical diseases. International Endodontic Journal. 2022;55(1):38-53.
53. Pöllänen M, Overman D, Salonen J. Bacterial metabolites sodium butyrate and propionate inhibit epithelial cell growth in vitro. Journal of periodontal research. 1997;32(3):326-34.
54. Kurita-Ochiai T, Hashizume T, Yonezawa H, Ochiai K, Yamamoto M. Characterization of the effects of butyric acid on cell proliferation, cell cycle distribution and apoptosis. FEMS Immunology & Medical Microbiology. 2006;47(1):67-74.
55. Breuer R, Soergel K, Lashner B, Christ M, Hanauer S, Vanagunas A, et al. Short chain fatty acid rectal irrigation for left-sided ulcerative colitis: a randomised, placebo controlled trial. Gut. 1997;40(4):485-91.
56. Van Immerseel F, Ducatelle R, De Vos M, Boon N, Van De Wiele T, Verbeke K, et al. Butyric acid-producing anaerobic bacteria as a novel probiotic treatment approach for inflammatory bowel disease. Microbiology Society; 2010. p. 141-3.
57. Slots J. The predominant cultivable microflora of advanced periodontitis. European Journal of Oral Sciences. 1977;85(2):114-21.
58. Niederman R, Zhang J, Kashket S. Short-chain carboxylic-acid-stimulated, PMN-mediated gingival inflammation. Critical Reviews in Oral Biology & Medicine. 1997;8(3):269-90.
59. Tonetti M, Eftimiadi C, Damiani G, Buffa P, Buffa D, Botta G. Short chain fatty acids present in periodontal pockets may play a role in human periodontal diseases. Journal of Periodontal Research. 1987;22(3):190-1.
60. Jeng JH, Chan CP, Ho YS, Lan WH, Hsieh CC, Chang MC. Effects of butyrate and propionate on the adhesion, growth, cell cycle kinetics, and protein synthesis of cultured human gingival fibroblasts. Journal of periodontology. 1999;70(12):1435-42.
61. Cueno ME, Ochiai K. Re-discovering periodontal butyric acid: New insights on an old metabolite. Microbial pathogenesis. 2016;94:48-53.
62. Siqueira Jr JF, Rôças IN. Bacterial pathogenesis and mediators in apical periodontitis. Brazilian dental journal. 2007;18:267-80.
63. Ho Y-C, Chang Y-C. Effects of a bacterial lipid byproduct on human pulp fibroblasts in vitro. Journal of Endodontics. 2007;33(4):437-41.
64. Provenzano JC, Rôças IN, Tavares LFD, Neves BC, Siqueira Jr JF. Short-chain fatty acids in infected root canals of teeth with apical periodontitis before and after treatment. Journal of Endodontics. 2015;41(6):831-5.
65. Colombo JS, Moore AN, Hartgerink JD, D’Souza RN. Scaffolds to control inflammation and facilitate dental pulp regeneration. Journal of endodontics. 2014;40(4):S6-S12.
66. Goldberg M, Njeh A, Uzunoglu E. Is pulp inflammation a prerequisite for pulp healing and regeneration? Mediators of inflammation. 2015;2015.
67. Schröder U. Effects of calcium hydroxide-containing pulp-capping agents on pulp cell migration, proliferation, and differentiation. Journal of dental research. 1985;64(4):541-8.
68. Sharma J, Al-Omran A, Parvathy S. Role of nitric oxide in inflammatory diseases. Inflammopharmacology. 2007;15:252-9.
69. Lund N, Henrion D, Tiede P, Ziche M, Schunkert H, Ito WD. Vimentin expression influences flow dependent VASP phosphorylation and regulates cell migration and proliferation. Biochemical and biophysical research communications. 2010;395(3):401-6.
70. Lazarova DL, Bordonaro M. Vimentin, colon cancer progression and resistance to butyrate and other HDAC is. Journal of cellular and molecular medicine. 2016;20(6):989-93.
71. Rius C, Cabañas C, Aller P. The induction of vimentin gene expression by sodium butyrate in human promonocytic leukemia U937 cells. Experimental cell research. 1990;188(1):129-34.
72. Parfenova H, Leffler CW. Cerebroprotective functions of HO-2. Current pharmaceutical design. 2008;14(5):443-53.
73. Kassan M, Kwon Y, Munkhsaikhan U, Sahyoun AM, Ishrat T, Galán M, et al. Protective Role of Short-Chain Fatty Acids against Ang-II-Induced Mitochondrial Dysfunction in Brain Endothelial Cells: A Potential Role of Heme Oxygenase 2. Antioxidants. 2023;12(1):160.
74. Blais M, Seidman EG, Asselin C. Dual Effect of Butyrate on IL–1 β–Mediated Intestinal Epithelial Cell Inflammatory Response. DNA and cell biology. 2007;26(3):133-47.
75. Huang N, Katz JP, Martin DR, Wu GD. Inhibition of IL-8 gene expression in Caco-2 cells by compounds which induce histone hyperacetylation. Cytokine. 1997;9(1):27-36.
76. Blais M, Désilets A, Asselin C. Synergy between deacetylase inhibitors and IL-1β in activation of the serum amyloid A2 gene promoter. DNA and cell biology. 2005;24(4):209-17.
77. Wang X, Yan G, Wang L, Hao X, Zhang K, Xue H. The mediating role of cPLA2 in IL‐1 β and IL‐6 release in LPS‐induced HeLa cells. Cell biochemistry and function. 2004;22(1):41-4.
78. Wang S, Zhou W, Wei M, Zhang G. Effects of lead on NO, NOS, SOD, MDA in rat cerebral cortex. Wei Sheng yan jiu= Journal of Hygiene Research. 2002;31(4):226-8.
79. Madesh M, Benard O, Balasubramanian K. Decreased phospholipase A2 activity in butyrate differentiated HT29 cells. Indian journal of biochemistry & biophysics. 1998;35(6):372-6.
80. Toriseva M, Kähäri V-M. Proteinases in cutaneous wound healing. Cellular and Molecular Life Sciences. 2009;66:203-24.
81. Castellino FJ, Ploplis VA. Structure and function of the plasminogen/plasmin system. Thrombosis and haemostasis. 2005;93(04):647-54.
82. Bronckaers A, Hilkens P, Fanton Y, Struys T, Gervois P, Politis C, et al. Angiogenic properties of human dental pulp stem cells. PloS one. 2013;8(8):e71104.
83. Hosoya S, Ohbayashi E, Matsushima K, Takeuchi H, Yamazaki M, Shibata Y, et al. Stimulatory effect of interleukin-6 on plasminogen activator activity from human dental pulp cells. Journal of Endodontics. 1998;24(5):331-4.
84. Narita T, Muromachi K, Kamio N, Nakao S, Matsushima K, Hashizume H. Tumor necrosis factor α stimulates expression and secretion of urokinase plasminogen activator in human dental pulp cells. Journal of Oral Science. 2012;54(4):329-36.
85. Iwaki T, Urano T, Umemura K. PAI‐1, progress in understanding the clinical problem and its aetiology. British journal of haematology. 2012;157(3):291-8.
86. Huang F-M, Yang S-F, Chang Y-C. Up-regulation of gelatinases and tissue type plasminogen activator by root canal sealers in human osteoblastic cells. Journal of Endodontics. 2008;34(3):291-4.
87. Tsai CH, Weng SF, Yang LC, Huang FM, Chen YJ, Chang YC. Immunohistochemical localization of tissue‐type plasminogen activator and type I plasminogen activator inhibitor in radicular cysts. Journal of oral pathology & medicine. 2004;33(3):156-61.
88. Dang J, Wang Y, Doe WF. Sodium butyrate inhibits expression of urokinase and its receptor mRNAs at both transcription and post-transcription levels in colon cancer cells. FEBS letters. 1995;359(2-3):147-50.
89. Chang Y-C, Yang S-F, Huang F-M, Tai K-W, Hsieh Y-S. Induction of tissue plasminogen activator gene expression by proinflammatory cytokines in human pulp and gingival fibroblasts. Journal of Endodontics. 2003;29(2):114-7.
90. Kooistra T, Van den Berg J, Töns A, Platenburg G, Rijken D, Van den Berg E. Butyrate stimulates tissue-type plasminogen-activator synthesis in cultured human endothelial cells. Biochemical Journal. 1987;247(3):605-12.
91. Yatsenko T, Skrypnyk M, Troyanovska O, Tobita M, Osada T, Takahashi S, et al. The Role of the Plasminogen/Plasmin System in Inflammation of the Oral Cavity. Cells. 2023;12(3):445.
92. Zapolska-Downar D, Siennicka A, Kaczmarczyk M, Kołodziej B, Naruszewicz M. Butyrate inhibits cytokine-induced VCAM-1 and ICAM-1 expression in cultured endothelial cells: the role of NF-κB and PPARα. The Journal of nutritional biochemistry. 2004;15(4):220-8.
93. Rudini N, Felici A, Giampietro C, Lampugnani M, Corada M, Swirsding K, et al. VE‐cadherin is a critical endothelial regulator of TGF‐β signalling. The EMBO journal. 2008;27(7):993-1004.
94. An Y, Liu W, Xue P, Zhang Y, Wang Q, Jin Y. Increased autophagy is required to protect periodontal ligament stem cells from apoptosis in inflammatory microenvironment. Journal of Clinical Periodontology. 2016;43(7):618-25.
95. Merenlender-Wagner A, Malishkevich A, Shemer Z, Udawela M, Gibbons A, Scarr E, et al. Autophagy has a key role in the pathophysiology of schizophrenia. Molecular psychiatry. 2015;20(1):126-32.
96. Hoffman M, editor The tissue factor pathway and wound healing. Seminars in thrombosis and hemostasis; 2018: Thieme Medical Publishers.
97. Mannucci PM, Levi M. Prevention and treatment of major blood loss. New England Journal of Medicine. 2007;356(22):2301-11.
98. Sochaj-Gregorczyk A, Ksiazek M, Waligorska I, Straczek A, Benedyk M, Mizgalska D, et al. Plasmin inhibition by bacterial serpin: Implications in gum disease. FASEB journal: official publication of the Federation of American Societies for Experimental Biology. 2020;34(1):619.
99. Rivera LB, Bradshaw AD, Brekken RA. The regulatory function of SPARC in vascular biology. Cellular and Molecular Life Sciences. 2011;68:3165-73.
100. Reichert T, Störkel S, Becker K, Fisher L. The role of osteonectin in human tooth development: an immunohistological study. Calcified tissue international. 1992;50:468-72.
101. Vallet S, Pozzi S, Patel K, Vaghela N, Fulciniti M, Veiby P, et al. A novel role for CCL3 (MIP-1α) in myeloma-induced bone disease via osteocalcin downregulation and inhibition of osteoblast function. Leukemia. 2011;25(7):1174-81.
102. Drees J, Felthaus O, Gosau M, Morsczeck C. Butyrate stimulates the early process of the osteogenic differentiation but inhibits the biomineralization in dental follicle cells (DFCs). Odontology. 2014;102:154-9.
103. Sinha KM, Zhou X. Genetic and molecular control of osterix in skeletal formation. Journal of cellular biochemistry. 2013;114(5):975-84.
104. Baek W-Y, Park S-Y, Kim YH, Lee M-A, Kwon T-H, Park K-M, et al. Persistent low level of osterix accelerates interleukin-6 production and impairs regeneration after tissue injury. Plos one. 2013;8(7):e69859.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90335-
dc.description.abstract丁酸 (Butyric acid)屬於短鏈脂肪酸(Short Chain Fatty Acids)的一種,是牙髓以及牙周致病菌代謝纖維食物後之產物,且已經被文獻提出會在受感染的牙髓及根管系統及牙齦溝液中被測得相當之濃度,且證實與牙髓炎/牙根尖炎及牙周炎的發生與進行有相當之關聯;人類血管內皮細胞(human vascular endothelial cell)被視為與血管新生、牙髓及牙周組織的發炎和癒合扮演重要角色;然而丁酸是否會誘發血管內皮細胞的發炎反應、細胞自噬、凝血反應以及血管鈣化,進而在牙髓炎與牙周炎致病機轉之角色,到目前為止鮮少有研究與討論,也是本研究之重要目的。zh_TW
dc.description.abstractButyric acid, as one kind of short chain fatty acids (SCFAs) and is mainly secreted as a metabolic product of fibrous food by the bacteria in the periodontal pocket/pulpal-root canal. It has been reported to be elevated to significant concentrations in the contaminated root canal systems, as well as in the gingival crevicular fluid. Higher SCFAs are confirmed to be significantly associated with the occurrence and progression of pulpitis/apical periodontitis and periodontitis. Human vascular endothelial cells are considered to play an important role in angiogenesis, inflammation, and healing of dental pulp and periodontal tissue. However, whether butyrate induces inflammatory responses, autophagy, coagulation, and vascular calcification in endothelial cells and its role in the pathogenesis of pulpitis and periodontitis has been rarely studied and discussed, and is also an important objective of this study.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-26T16:19:07Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-26T16:19:07Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents中文摘要 i
Abstract iii
Table of Contents vi
List of Tables xiii
Chapter I Literature Review 1
1.1 The relationship between dental pulp and vascular endothelia cell 1
1.2 EA.hy926 endothelial cell 2
1.2.1 Mechanism of inflammatory response of vascular endothelial cell 3
1.2.2 Mechanism of autophagy- response of vascular endothelial cell 4
1.2.3 Mechanism of mineralization response of vascular endothelial cell 5
1.2.4 Mechanism of coagulation response of vascular endothelial cell 7
1.3 Butyrate (Butyric acid) 8
1.3.1The effects of butyrate on dental pulp tissue and periodontal/periapical area 10
1.4 The relationship between dental pulp inflammation and regeneration/repair 11
Chapter II Research Purposes and Hypothesis 12
Chapter III Materials and Methods 13
3.1 Materials preparation 13
3.2 Observation of cell morphology 14
3.3 MTT assay 14
3.4 Culture of EA.hy926 endothelial cells 15
3.5 Real-time quantitative polymerase chain reaction (rt-qpcr) 17
3.5.1 RNA extraction 17
3.5.2 RNA quantification 18
3.5.3 Reverse transcription 19
3.6 Immunofluorescent (IF) staining 21
3.7 Data analysis 22
Chapter IV Results 23
4.1 EA.hy926 endothelial cell morphological observation 23
4.2 Effects of butyrate on cell viability of EA.hy926 endothelial cell - MTT assay 23
4.3 Effects of butyrate on inflammation-related genes and proteins of EA.hy926 endothelial cells – RT-PCR and immunofluorescence 24
4.4 Effects of butyrate on autophagy-related genes and proteins of the EA.hy926 endothelial cells–RT-PCR and immunofluorescence 27
4.5 Effects of butyrate on coagulation-related genes and proteins of the EA.hy926 endothelial cells–RT-PCR and immunofluorescence 28
4.6 Effects of butyrate on mineralization-related genes and proteins of the EA.hy926 endothelial cells–RT-PCR and immunofluorescence 29
Chapter V Discussion 31
5.1 Effect of butyrate on inflammation related genes of EA.hy926 endothelial cells 31
5.2 Effect of butyrate on autophagy related genes of EA.hy926 endothelial cells 38
5.3 Effect of butyrate on coagulation related genes of EA.hy926 endothelial cells 39
5.4 Effect of butyrate on mineralization related genes of EA.hy926 endothelial cells 40
Chapter VI Conclusion 43
References 44
Figures 50
Figure 1. The chemical structure of butyrate 50
Figure 2. MTT assay of EA.hy926 endothelial cells with various concentrations of butyrate (NC, 1, 2, 4, 8, 16 mM) for 3 days, n=55 50
Figure 3. Morphological observation of EA.hy926 cells with butyrate at various concentrations for 1 day- Real-time PCR data 51
Figure 4. Expression of IL-1 alpha in EA.hy926 cells with butyrate at various concentrations for 1 day- Real-time PCR data 52
Figure 5. Expression of IL-1 beta in EA.hy926 cells with butyrate at various concentrations for 1 day- Real-time PCR data 53
Figure 6. Expression of IL-18 in EA.hy926 cells with butyrate at various concentrations for 1 day- Real-time PCR data 54
Figure 7. Expression of COX-2 in EA.hy926 cells with butyrate at various concentrations for 1 day- Real-time PCR data 55
Figure 8. Expression of cPLA-2 in EA.hy926 cells with butyrate at various concentrations for 1 day- Real-time PCR data 56
Figure 9. Expression of sPLA-2 in EA.hy926 cells with butyrate at various concentrations for 1 day- Real-time PCR data 57
Figure 10. Expression of uPA in EA.hy926 cells with butyrate at various concentrations for 1 day- Real-time PCR data 58
Figure 11. Expression of uPAR in EA.hy926 cells with butyrate at various concentrations for 1 day- Real-time PCR data 59
Figure 12. Expression of HO-2 in EA.hy926 cells with butyrate at various concentrations for 1 day- Real-time PCR data 60
Figure 13. Expression of N-cadherin in EA.hy926 cells with butyrate at various concentrations for 1 day- Real-time PCR data 61
Figure 14. Expression of iNOS in EA.hy926 cells with butyrate at various concentrations for 1 day- Real-time PCR data 62
Figure 15. Expression of SPARC in EA.hy926 cells with butyrate at various concentrations for 1 day- Real-time PCR data 63
Figure 16. Expression of Vimentin in EA.hy926 cells with butyrate at various concentrations for 1 day- Real-time PCR data 64
Figure 17. Expression of ATG12 in EA.hy926 cells with butyrate at various concentrations for 1 day- Real-time PCR data 65
Figure 18. Expression of LC3B in EA.hy926 cells with butyrate at various concentrations for 1 day- Real-time PCR data 66
Figure 19. Expression of Beclin-1 in EA.hy926 cells with butyrate at various concentrations for 1 day- Real-time PCR data 67
Figure 20. Expression of TF in EA.hy926 cells with butyrate at various concentrations for 1 day- Real-time PCR data 68
Figure 21. Expression of alpha2 antiplasmin in EA.hy926 cells with butyrate at various concentrations for 1 day- Real-time PCR data 69
Figure 22. Expression of PAI-1 in EA.hy926 cells with butyrate at various concentrations for 1 day- Real-time PCR data 70
Figure 23. Expression of osteocalcin in EA.hy926 cells with butyrate at various concentrations for 1 day- Real-time PCR data 71
Figure 24. Expression of osteoactivin in EA.hy926 cells with butyrate at various concentrations for 1 day- Real-time PCR data 72
Figure 25. Expression of tPA in EA.hy926 cells with butyrate at various concentrations for 1 day- Real-time PCR data 73
Figure 26. Expression of VE-cadherin in EA.hy926 cells with butyrate at various concentrations for 1 day- Real-time PCR data 74
Figure 27. Immunofluorescent staining of IL-1 alpha treated with various concentrations of butyrate on EA.hy926 cells for 24 hrs (400x magnification) 75
Figure 28. Immunofluorescent staining of IL-1 beta treated with various concentrations of butyrate on EA.hy926 cells for 24 hrs (400x magnification) 76
Figure 29. Immunofluorescent staining of IL-18 treated with various concentrations of butyrate on EA.hy926 cells for 24 hrs (400x magnification) 77
Figure 30. Immunofluorescent staining of COX-2 treated with various concentrations of butyrate on EA.hy926 cells for 24 hrs (400x magnification) 78
Figure 31. Immunofluorescent staining of p-cPLA-2 treated with various concentrations of butyrate on EA.hy926 cells for 24 hrs (400x magnification) 79
Figure 32. Immunofluorescent staining of sPLA-2 treated with various concentrations of butyrate on EA.hy926 cells for 24 hrs (400x magnification) 80
Figure 33. Immunofluorescent staining of uPAR treated with various concentrations of butyrate on EA.hy926 cells for 24 hrs (400x magnification) 81
Figure 34. Immunofluorescent staining of HO-1 treated with various concentrations of butyrate on EA.hy926 cells for 24 hrs (400x magnification) 82
Figure 35. Immunofluorescent staining of VE-cadherin treated with various concentrations of butyrate on EA.hy926 cells for 24 hrs (400x magnification) 83
Figure 36. Immunofluorescent staining of VCAM-1 treated with various concentrations of butyrate on EA.hy926 cells for 24 hrs (400x magnification) 84
Figure 37. Immunofluorescent staining of SPARC treated with various concentrations of butyrate on EA.hy926 cells for 24 hrs (400x magnification) 85
Figure 38. Immunofluorescent staining of vimentin treated with various concentrations of butyrate on EA.hy926 cells for 24 hrs (400x magnification) 86
Figure 39. Immunofluorescent staining of ATG12 treated with various concentrations of butyrate on EA.hy926 cells for 24 hrs (400x magnification) 87
Figure 40. Immunofluorescent staining of LC3Btreated with various concentrations of butyrate on EA.hy926 cells for 24 hrs (400x magnification) 88
Figure 41. Immunofluorescent staining of Beclin-1 treated with various concentrations of butyrate on EA.hy926 cells for 24 hrs (400x magnification) 89
Figure 42. Immunofluorescent staining of TF treated with various concentrations of butyrate on EA.hy926 cells for 24 hrs (400x magnification) ) 90
Figure 43. Immunofluorescent staining of alpha2 antiplasmintreated with various concentrations of butyrate on EA.hy926 cells for 24 hrs (400x magnification) 91
Figure 44. Immunofluorescent staining of PAI-1 treated with various concentrations of butyrate on EA.hy926 cells for 24 hrs (400x magnification) 92
Figure 45. Immunofluorescent staining of OSX treated with various concentrations of butyrate on EA.hy926 cells for 24 hrs (400x magnification) 93
Figure 46. Immunofluorescent staining of osteoactivin treated with various concentrations of butyrate on EA.hy926 cells for 24 hrs (400x magnification) 94
Tables 95
-
dc.language.isoen-
dc.subject丁酸zh_TW
dc.subject基因表現zh_TW
dc.subject鈣化zh_TW
dc.subject凝血zh_TW
dc.subject細胞自噬zh_TW
dc.subject發炎介質zh_TW
dc.subject人類血管內皮細胞zh_TW
dc.subjectEA.hy926 endothelial cellsen
dc.subjectButyrate (Butyric acid)en
dc.subjectgene expressionen
dc.subjectmineralizationen
dc.subjectcell autophagyen
dc.subjectcoagulationen
dc.subjectinflammation mediatoren
dc.title丁酸對血管內皮細胞發炎介質、細胞自噬、凝血與鈣化相關基因與蛋白表現之影響zh_TW
dc.titleEffect of butyrate on the expression of various inflammatory mediators, autophagy-, coagulation- and mineralization-related genes and proteins in vascular endothelial cellsen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee何元順;張美姬;陳莉菁;蔡宜玲zh_TW
dc.contributor.oralexamcommitteeYuan-Soon Ho;Mei-Chi Chang;Li-Ching Chen;Yi-Ling Tsaien
dc.subject.keyword丁酸,人類血管內皮細胞,發炎介質,細胞自噬,凝血,鈣化,基因表現,zh_TW
dc.subject.keywordButyrate (Butyric acid),EA.hy926 endothelial cells,inflammation mediator,cell autophagy,coagulation,mineralization,gene expression,en
dc.relation.page97-
dc.identifier.doi10.6342/NTU202301551-
dc.rights.note未授權-
dc.date.accepted2023-07-13-
dc.contributor.author-college醫學院-
dc.contributor.author-dept臨床牙醫學研究所-
Appears in Collections:臨床牙醫學研究所

Files in This Item:
File SizeFormat 
ntu-111-2.pdf
  Restricted Access
81.1 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved