Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 公共衛生碩士學位學程
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90327
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor鄭尊仁zh_TW
dc.contributor.advisorTsun-Jen Chengen
dc.contributor.author陳吟怡zh_TW
dc.contributor.authorYin-Yi Chenen
dc.date.accessioned2023-09-26T16:17:05Z-
dc.date.available2023-11-10-
dc.date.copyright2023-09-26-
dc.date.issued2023-
dc.date.submitted2023-07-18-
dc.identifier.citation李柏翰.(2021). 塑膠類食品容器釋放微米以及次微米塑膠微粒之評估https://doi:10.6342/NTU202101393
郭子瑄.(2021). 次微米塑膠微粒在小鼠經由腸胃道的吸收分佈及毒性研究. https://doi.org/10.6342/NTU202101281
林庭安.(2022). 亞慢性暴露微米與次微米聚苯乙烯塑膠微粒對小鼠肝毒性與腎毒性研究. https://doi:10.6342/NTU202202669
Alperet, D. J., Rebello, S. A., Khoo, E. Y., Tay, Z., Seah, S. S., Tai, B. C., Tai, E. S., Emady-Azar, S., Chou, C. J., Darimont, C., & van Dam, R. M. (2020). The effect of coffee consumption on insulin sensitivity and other biological risk factors for type 2 diabetes: a randomized placebo-controlled trial. Am J Clin Nutr, 111(2), 448-458. https://doi.org/10.1093/ajcn/nqz306
Anderson, A. G., Grose, J., Pahl, S., Thompson, R. C., & Wyles, K. J. (2016). Microplastics in personal care products: Exploring perceptions of environmentalists, beauticians and students. Mar Pollut Bull, 113(1-2), 454-460. https://doi.org/10.1016/j.marpolbul.2016.10.048
Arthur, C. B., J.; Bamford, H. (2009, Sept 9–11, 2008). Proceedings of the International Research Workshop on the Occurrence, Effects, and Fate of Microplastic Marine Debris National Oceanic and Atmospheric Administration,
Bouwmeester, H., Hollman, P. C., & Peters, R. J. (2015). Potential Health Impact of Environmentally Released Micro- and Nanoplastics in the Human Food Production Chain: Experiences from Nanotoxicology. Environ Sci Technol, 49(15), 8932-8947. https://doi.org/10.1021/acs.est.5b01090
Browne, M. A., Dissanayake, A., Galloway, T. S., Lowe, D. M., & Thompson, R. C. (2008). Ingested Microscopic Plastic Translocates to the Circulatory System of the Mussel, <i>Mytilus edulis</i> (L.). Environmental Science & Technology, 42(13), 5026-5031. https://doi.org/10.1021/es800249a
Bruni, G. O., & Klasson, K. T. (2022). Aconitic Acid Recovery from Renewable Feedstock and Review of Chemical and Biological Applications. Foods, 11(4), 573. https://www.mdpi.com/2304-8158/11/4/573
Chain, E. Panel o. C. i. t. F. (2016). Presence of microplastics and nanoplastics in food, with particular focus on seafood. EFSA Journal, 14(6), e04501. https://doi.org/https://doi.org/10.2903/j.efsa.2016.4501
Chen, J., Qian, D., Wang, Z., Sun, Y., Sun, B., Zhou, X., Hu, L., Shan, A., & Ma, Q. (2022). Threonine supplementation prevents the development of fat deposition in mice fed a high-fat diet [10.1039/D2FO01201D]. Food & Function, 13(14), 7772-7780. https://doi.org/10.1039/D2FO01201D
Cheng, T. W., Yang, J. F., Chen, Y. Y., Wu, K. T., Lee, M. S., Kuo, H. J., Lin, T. C., Wang, C. L., Hsieh, M. H., Lin, C. Y., Batsaikhan, B., Ho, C. K., & Dai, C. Y. (2023). Epidemiology of Chronic Hepatitis B Infection in the Cohort of College Students with Vaccination in Taiwan. Vaccines (Basel), 11(2). https://doi.org/10.3390/vaccines11020348
Choi, Y.-J., Yoon, Y., Lee, K.-Y., Kang, Y.-P., Lim, D. K., Kwon, S. W., Kang, K.-W., Lee, S.-M., & Lee, B.-H. (2015). Orotic Acid Induces Hypertension Associated with Impaired Endothelial Nitric Oxide Synthesis. Toxicological Sciences, 144(2), 307-317. https://doi.org/10.1093/toxsci/kfv003
Chung, H.-H., Lee, K. S., & Cheng, J.-T. (2013). Decrease of Obesity by Allantoin via Imidazoline I1-Receptor Activation in High Fat Diet-Fed Mice. Evidence-Based Complementary and Alternative Medicine, 2013, 1-7. https://doi.org/10.1155/2013/589309
Consitt, L. A., Koves, T. R., Muoio, D. M., Nakazawa, M., Newton, C. A., & Houmard, J. A. (2016). Plasma acylcarnitines during insulin stimulation in humans are reflective of age-related metabolic dysfunction. Biochemical and Biophysical Research Communications, 479(4), 868-874. https://doi.org/https://doi.org/10.1016/j.bbrc.2016.09.116
da Silva Brito, W. A., Mutter, F., Wende, K., Cecchini, A. L., Schmidt, A., & Bekeschus, S. (2022). Consequences of nano and microplastic exposure in rodent models: the known and unknown. Particle and Fibre Toxicology, 19(1), 28. https://doi.org/10.1186/s12989-022-00473-y
Dai, X.-P., Liu, Z.-Q., Xu, L.-Y., Gong, Z.-C., Huang, Q., Dong, M., & Huang, X. (2012). Association of plasma epinephrine level with insulin sensitivity in metabolically healthy but obese individuals. Autonomic Neuroscience, 167(1), 66-69. https://doi.org/https://doi.org/10.1016/j.autneu.2011.10.006
Dambrova, M., Makrecka-Kuka, M., Kuka, J., Vilskersts, R., Nordberg, D., Attwood, M. M., Smesny, S., Sen, Z. D., Guo, A. C., Oler, E., Tian, S., Zheng, J., Wishart, D. S., Liepinsh, E., & Schiöth, H. B. (2022). Acylcarnitines: Nomenclature, Biomarkers, Therapeutic Potential, Drug Targets, and Clinical Trials. Pharmacological Reviews, 74(3), 506-551. https://doi.org/10.1124/pharmrev.121.000408
Dana, M., Luliński, P., & Maciejewska, D. (2011). Synthesis of Homoveratric Acid-Imprinted Polymers and Their Evaluation as Selective Separation Materials. Molecules, 16(5), 3826-3844. https://www.mdpi.com/1420-3049/16/5/3826
Deibert, D. C., & DeFronzo, R. A. (1980). Epinephrine-induced insulin resistance in man. J Clin Invest, 65(3), 717-721. https://doi.org/10.1172/jci109718
Deng, Y., Zhang, Y., Lemos, B., & Ren, H. (2017). Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure. Sci Rep, 7, 46687. https://doi.org/10.1038/srep46687
Deng, Y., Zhang, Y., Lemos, B., & Ren, H. (2017). Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure. Scientific Reports, 7(1), 46687. https://doi.org/10.1038/srep46687
Ding, Y., Zhang, R., Li, B., Du, Y., Li, J., Tong, X., Wu, Y., Ji, X., & Zhang, Y. (2021). Tissue distribution of polystyrene nanoplastics in mice and their entry, transport, and cytotoxicity to GES-1 cells. Environmental Pollution, 280, 116974. https://doi.org/https://doi.org/10.1016/j.envpol.2021.116974
Du, F., Cai, H., Zhang, Q., Chen, Q., & Shi, H. (2020). Microplastics in take-out food containers. Journal of Hazardous Materials, 399, 122969. https://doi.org/https://doi.org/10.1016/j.jhazmat.2020.122969
Enyoh, C. E., Shafea, L., Verla, A. W., Verla, E. N., Qingyue, W., Chowdhury, T., & Paredes, M. (2020). Microplastics Exposure Routes and Toxicity Studies to Ecosystems: An Overview. Environ Anal Health Toxicol, 35(1), e2020004. https://doi.org/10.5620/eaht.e2020004
Fan, X., Wei, X., Hu, H., Zhang, B., Yang, D., Du, H., Zhu, R., Sun, X., Oh, Y., & Gu, N. (2022). Effects of oral administration of polystyrene nanoplastics on plasma glucose metabolism in mice. Chemosphere, 288(Pt 3), 132607. https://doi.org/10.1016/j.chemosphere.2021.132607
Fushimura, Y., Hoshino, A., Furukawa, S., Nakagawa, T., Hino, T., Taminishi, S., Minami, Y., Urata, R., Iwai-Kanai, E., & Matoba, S. (2021). Orotic acid protects pancreatic β cell by p53 inactivation in diabetic mouse model. Biochem Biophys Res Commun, 585, 191-195. https://doi.org/10.1016/j.bbrc.2021.10.060
Garcia Ede, F., de Oliveira, M. A., Dourado, L. P., de Souza, D. G., Teixeira, M. M., & Braga, F. C. (2016). In Vitro TNF-α Inhibition Elicited by Extracts from Echinodorus grandiflorus Leaves and Correlation with Their Phytochemical Composition. Planta Med, 82(4), 337-343. https://doi.org/10.1055/s-0035-1558290
Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. SCIENCE ADVANCES, 3(7), e1700782. https://doi.org/doi:10.1126/sciadv.1700782
Greco, A. V., Mingrone, G., Capristo, E., Benedetti, G., De Gaetano, A., & Gasbarrini, G. (1998). The Metabolic Effect of Dodecanedioic Acid Infusion in Non–Insulin-Dependent Diabetic Patients. Nutrition, 14(4), 351-357. https://doi.org/https://doi.org/10.1016/S0899-9007(97)00502-9
Hamidi-Zad, Z., Moslehi, A., & Rastegarpanah, M. (2021). Attenuating effects of allantoin on oxidative stress in a mouse model of nonalcoholic steatohepatitis: role of SIRT1/Nrf2 pathway. Res Pharm Sci, 16(6), 651-659. https://doi.org/10.4103/1735-5362.327511
Han, X., Liu, C., Xue, Y., Wang, J., Xue, C., Yanagita, T., Gao, X., & Wang, Y. (2016). Long-term fatty liver-induced insulin resistance in orotic acid-induced nonalcoholic fatty liver rats. Biosci Biotechnol Biochem, 80(4), 735-743. https://doi.org/10.1080/09168451.2015.1123608
Hartmann, N. B., Huffer, T., Thompson, R. C., Hassellov, M., Verschoor, A., Daugaard, A. E., Rist, S., Karlsson, T., Brennholt, N., Cole, M., Herrling, M. P., Hess, M. C., Ivleva, N. P., Lusher, A. L., & Wagner, M. (2019). Are We Speaking the Same Language? Recommendations for a Definition and Categorization Framework for Plastic Debris. Environ Sci Technol, 53(3), 1039-1047. https://doi.org/10.1021/acs.est.8b05297
Hetzler, R. K., Knowlton, R. G., Somani, S. M., Brown, D. D., & Perkins, R. M., 3rd. (1990). Effect of paraxanthine on FFA mobilization after intravenous caffeine administration in humans. J Appl Physiol (1985), 68(1), 44-47. https://doi.org/10.1152/jappl.1990.68.1.44
Horvatits, T., Tamminga, M., Liu, B., Sebode, M., Carambia, A., Fischer, L., Puschel, K., Huber, S., & Fischer, E. K. (2022). Microplastics detected in cirrhotic liver tissue. EBioMedicine, 82, 104147. https://doi.org/10.1016/j.ebiom.2022.104147
Hu, Y. C., Yeh, C. C., Chen, R. Y., Su, C. T., Wang, W. C., Bai, C. H., Chan, C. F., & Su, F. H. (2018). Seroprevalence of hepatitis B virus in Taiwan 30 years after the commencement of the national vaccination program. PeerJ, 6, e4297. https://doi.org/10.7717/peerj.4297
Huang, D., Zhang, Y., Long, J., Yang, X., Bao, L., Yang, Z., Wu, B., Si, R., Zhao, W., Peng, C., Wang, A., & Yan, D. (2022). Polystyrene microplastic exposure induces insulin resistance in mice via dysbacteriosis and pro-inflammation. Sci Total Environ, 838(Pt 1), 155937. https://doi.org/10.1016/j.scitotenv.2022.155937
Hussain, N., Jaitley, V., & Florence, A. T. (2001). Recent advances in the understanding of uptake of microparticulates across the gastrointestinal lymphatics. Advanced Drug Delivery Reviews, 50(1), 107-142. https://doi.org/https://doi.org/10.1016/S0169-409X(01)00152-1
Iacobazzi, V., & Infantino, V. (2014). Citrate – new functions for an old metabolite. Biological Chemistry, 395(4), 387-399. https://doi.org/doi:10.1515/hsz-2013-0271
Jäger, R., Purpura, M., Wells, S. D., Liao, K., & Godavarthi, A. (2022). Paraxanthine Supplementation Increases Muscle Mass, Strength, and Endurance in Mice. Nutrients, 14(4), 893. https://www.mdpi.com/2072-6643/14/4/893
Jiang, Y., Ma, X.-y., Xie, M., Zhou, Z.-k., Tang, J., Chang, G.-b., Chen, G.-h., & Hou, S.-s. (2022). Dietary threonine deficiency affects expression of genes involved in lipid metabolism in adipose tissues of Pekin ducks in a genotype-dependent manner. Journal of Integrative Agriculture, 21(9), 2691-2699. https://doi.org/https://doi.org/10.1016/j.jia.2022.07.011
Jiang, Y., Zhuang, Z., Jia, W., Wen, Z., Xie, M., Bai, H., Bi, Y., Wang, Z., Chang, G., Hou, S., & Chen, G. (2023). Proteomic and phosphoproteomic analysis reveal threonine deficiency increases hepatic lipid deposition in Pekin ducks via reducing STAT phosphorylation. Animal Nutrition, 13, 249-260. https://doi.org/https://doi.org/10.1016/j.aninu.2023.01.008
Jin, Y., Lu, L., Tu, W., Luo, T., & Fu, Z. (2019). Impacts of polystyrene microplastic on the gut barrier, microbiota and metabolism of mice. Sci Total Environ, 649, 308-317. https://doi.org/10.1016/j.scitotenv.2018.08.353
Joint, F. A. O. W. H. O. U. N. U. E. C. o. P., Amino Acid Requirements in Human, N., Food, Agriculture Organization of the United, N., World Health, O., & United Nations, U. (2007). Protein and amino acid requirements in human nutrition : report of a joint FAO/WHO/UNU expert consultation. In. Geneva: World Health Organization.
Kalcikova, G., Alic, B., Skalar, T., Bundschuh, M., & Gotvajn, A. Z. (2017). Wastewater treatment plant effluents as source of cosmetic polyethylene microbeads to freshwater. Chemosphere, 188, 25-31. https://doi.org/10.1016/j.chemosphere.2017.08.131
Khan, A., & Jia, Z. (2023). Recent insights into uptake, toxicity, and molecular targets of microplastics and nanoplastics relevant to human health impacts. iScience, 26(2). https://doi.org/10.1016/j.isci.2023.106061
Kutralam-Muniasamy, G., Shruti, V. C., Perez-Guevara, F., & Roy, P. D. (2023). Microplastic diagnostics in humans: "The 3Ps" Progress, problems, and prospects. Sci Total Environ, 856(Pt 2), 159164. https://doi.org/10.1016/j.scitotenv.2022.159164
Lee, C.-W., Hsu, L.-F., Wu, I. L., Wang, Y.-L., Chen, W.-C., Liu, Y.-J., Yang, L.-T., Tan, C.-L., Luo, Y.-H., Wang, C.-C., Chiu, H.-W., Yang, T. C.-K., Lin, Y.-Y., Chang, H.-A., Chiang, Y.-C., Chen, C.-H., Lee, M.-H., Peng, K.-T., & Huang, C. C.-Y. (2022). Exposure to polystyrene microplastics impairs hippocampus-dependent learning and memory in mice. Journal of Hazardous Materials, 430, 128431. https://doi.org/https://doi.org/10.1016/j.jhazmat.2022.128431
Lee, C. H., Shih, A. Z. L., Woo, Y. C., Fong, C. H. Y., Leung, O. Y., Janus, E., Cheung, B. M. Y., & Lam, K. S. L. (2016). Optimal Cut-Offs of Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) to Identify Dysglycemia and Type 2 Diabetes Mellitus: A 15-Year Prospective Study in Chinese. PLoS One, 11(9), e0163424. https://doi.org/10.1371/journal.pone.0163424
Lee, S., Kang, K.-K., Sung, S.-E., Choi, J.-H., Sung, M., Seong, K.-Y., Lee, S., Yang, S. Y., Seo, M.-S., & Kim, K. (2022). Toxicity Study and Quantitative Evaluation of Polyethylene Microplastics in ICR Mice. Polymers, 14(3), 402. https://www.mdpi.com/2073-4360/14/3/402
Lee, S., Min, J. Y., & Min, K. B. (2020). Caffeine and Caffeine Metabolites in Relation to Insulin Resistance and Beta Cell Function in U.S. Adults. Nutrients, 12(6). https://doi.org/10.3390/nu12061783
Li, B., Ding, Y., Cheng, X., Sheng, D., Xu, Z., Rong, Q., Wu, Y., Zhao, H., Ji, X., & Zhang, Y. (2020). Polyethylene microplastics affect the distribution of gut microbiota and inflammation development in mice. Chemosphere, 244, 125492. https://doi.org/10.1016/j.chemosphere.2019.125492
Li, J., Zhang, H., & Wang, H. (2022). N(1)-methyladenosine modification in cancer biology: Current status and future perspectives. Comput Struct Biotechnol J, 20, 6578-6585. https://doi.org/10.1016/j.csbj.2022.11.045
Li, L., Zhao, X., Li, Z., & Song, K. (2021). COVID-19: Performance study of microplastic inhalation risk posed by wearing masks. J Hazard Mater, 411, 124955. https://doi.org/10.1016/j.jhazmat.2020.124955
Liang, B., Zhong, Y., Huang, Y., Lin, X., Liu, J., Lin, L., Hu, M., Jiang, J., Dai, M., Wang, B., Zhang, B., Meng, H., Lelaka, J. J. J., Sui, H., Yang, X., & Huang, Z. (2021). Underestimated health risks: polystyrene micro- and nanoplastics jointly induce intestinal barrier dysfunction by ROS-mediated epithelial cell apoptosis. Particle and Fibre Toxicology, 18(1), 20. https://doi.org/10.1186/s12989-021-00414-1
Liepinsh, E., Makrecka-Kuka, M., Makarova, E., Volska, K., Vilks, K., Sevostjanovs, E., Antone, U., Kuka, J., Vilskersts, R., Lola, D., Loza, E., Grinberga, S., & Dambrova, M. (2017). Acute and long-term administration of palmitoylcarnitine induces muscle-specific insulin resistance in mice. BioFactors, 43(5), 718-730. https://doi.org/https://doi.org/10.1002/biof.1378
Liu, S., Wang, Z., Xiang, Q., Wu, B., Lv, W., & Xu, S. (2022). A comparative study in healthy and diabetic mice followed the exposure of polystyrene microplastics: Differential lipid metabolism and inflammation reaction. Ecotoxicol Environ Saf, 244, 114031. https://doi.org/10.1016/j.ecoenv.2022.114031
Lu, L., Wan, Z., Luo, T., Fu, Z., & Jin, Y. (2018). Polystyrene microplastics induce gut microbiota dysbiosis and hepatic lipid metabolism disorder in mice. Sci Total Environ, 631-632, 449-458. https://doi.org/10.1016/j.scitotenv.2018.03.051
Luo, T., Wang, C., Pan, Z., Jin, C., Fu, Z., & Jin, Y. (2019). Maternal Polystyrene Microplastic Exposure during Gestation and Lactation Altered Metabolic Homeostasis in the Dams and Their F1 and F2 Offspring. Environ Sci Technol, 53(18), 10978-10992. https://doi.org/10.1021/acs.est.9b03191
Ma, Q., Zhou, X., Sun, Y., Hu, L., Zhu, J., Shao, C., Meng, Q., & Shan, A. (2020). Threonine, but Not Lysine and Methionine, Reduces Fat Accumulation by Regulating Lipid Metabolism in Obese Mice. Journal of Agricultural and Food Chemistry, 68(17), 4876-4883. https://doi.org/10.1021/acs.jafc.0c01023
Mason, S. A., Welch, V. G., & Neratko, J. (2018). Synthetic Polymer Contamination in Bottled Water [Original Research]. Frontiers in Chemistry, 6. https://doi.org/10.3389/fchem.2018.00407
Matilainen, J., Mustonen, A.-M., Rilla, K., Käkelä, R., Sihvo, S. P., & Nieminen, P. (2020). Orotic acid-treated hepatocellular carcinoma cells resist steatosis by modification of fatty acid metabolism. Lipids in Health and Disease, 19(1), 70. https://doi.org/10.1186/s12944-020-01243-5
Matthews, D. R., Hosker, J. P., Rudenski, A. S., Naylor, B. A., Treacher, D. F., & Turner, R. C. (1985). Homeostasis model assessment: insulin resistance and ?-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia, 28(7), 412-419. https://doi.org/10.1007/bf00280883
Meaza, I., Toyoda, J. H., & Wise, J. P., Sr. (2020). Microplastics in Sea Turtles, Marine Mammals and Humans: A One Environmental Health Perspective. Front Environ Sci, 8. https://doi.org/10.3389/fenvs.2020.575614
Meng, X., Zhang, J., Wang, W., Gonzalez-Gil, G., Vrouwenvelder, J. S., & Li, Z. (2022). Effects of nano- and microplastics on kidney: Physicochemical properties, bioaccumulation, oxidative stress and immunoreaction. Chemosphere, 288, 132631. https://doi.org/https://doi.org/10.1016/j.chemosphere.2021.132631
Mu, Y., Sun, J., Li, Z., Zhang, W., Liu, Z., Li, C., Peng, C., Cui, G., Shao, H., & Du, Z. (2022). Activation of pyroptosis and ferroptosis is involved in the hepatotoxicity induced by polystyrene microplastics in mice. Chemosphere, 291(Pt 2), 132944. https://doi.org/10.1016/j.chemosphere.2021.132944
Nishitani, S., Fukuhara, A., Tomita, I., Kume, S., Shin, J., Okuno, Y., Otsuki, M., Maegawa, H., & Shimomura, I. (2022). Ketone body 3-hydroxybutyrate enhances adipocyte function. Scientific Reports, 12(1), 10080. https://doi.org/10.1038/s41598-022-14268-w
Owen, O. E., Morgan, A. P., Kemp, H. G., Sullivan, J. M., Herrera, M. G., & Cahill, G. F., Jr. (1967). Brain metabolism during fasting. J Clin Invest, 46(10), 1589-1595. https://doi.org/10.1172/jci105650
Paul, M. B., Stock, V., Cara-Carmona, J., Lisicki, E., Shopova, S., Fessard, V., Braeuning, A., Sieg, H., & Böhmert, L. (2020). Micro- and nanoplastics – current state of knowledge with the focus on oral uptake and toxicity [10.1039/D0NA00539H]. Nanoscale Advances, 2(10), 4350-4367. https://doi.org/10.1039/D0NA00539H
Peng, C., He, N., Wu, Y., Lu, Y., Sun, H., & Wang, L. (2022). Excretion characteristics of nylon microplastics and absorption risk of nanoplastics in rats. Ecotoxicol Environ Saf, 238, 113586. https://doi.org/10.1016/j.ecoenv.2022.113586
Peyrot, F., & Ducrocq, C. (2008). Potential role of tryptophan derivatives in stress responses characterized by the generation of reactive oxygen and nitrogen species [https://doi.org/10.1111/j.1600-079X.2008.00580.x]. Journal of Pineal Research, 45(3), 235-246. https://doi.org/https://doi.org/10.1111/j.1600-079X.2008.00580.x
Powell, J. J., Faria, N., Thomas-McKay, E., & Pele, L. C. (2010). Origin and fate of dietary nanoparticles and microparticles in the gastrointestinal tract. J Autoimmun, 34(3), J226-233. https://doi.org/10.1016/j.jaut.2009.11.006
Prata, J. C., da Costa, J. P., Lopes, I., Duarte, A. C., & Rocha-Santos, T. (2020). Environmental exposure to microplastics: An overview on possible human health effects. Sci Total Environ, 702, 134455. https://doi.org/10.1016/j.scitotenv.2019.134455
Ragusa, A., Svelato, A., Santacroce, C., Catalano, P., Notarstefano, V., Carnevali, O., Papa, F., Rongioletti, M. C. A., Baiocco, F., Draghi, S., D'Amore, E., Rinaldo, D., Matta, M., & Giorgini, E. (2021). Plasticenta: First evidence of microplastics in human placenta. Environ Int, 146, 106274. https://doi.org/10.1016/j.envint.2020.106274
Richard, D. M., Dawes, M. A., Mathias, C. W., Acheson, A., Hill-Kapturczak, N., & Dougherty, D. M. (2009). L-Tryptophan: Basic Metabolic Functions, Behavioral Research and Therapeutic Indications. Int J Tryptophan Res, 2, 45-60. https://doi.org/10.4137/ijtr.s2129
Ryu, H. M., Kim, Y. J., Oh, E. J., Oh, S. H., Choi, J. Y., Cho, J. H., Kim, C. D., Park, S. H., & Kim, Y. L. (2016). Hypoxanthine induces cholesterol accumulation and incites atherosclerosis in apolipoprotein E-deficient mice and cells. J Cell Mol Med, 20(11), 2160-2172. https://doi.org/10.1111/jcmm.12916
Sarigianni, M., Bekiari, E., Tsapas, A., Konstantinidis, D., Kaloyianni, M., Koliakos, G., & Paletas, K. (2011). Effect of Epinephrine and Insulin Resistance on Human Monocytes Obtained From Lean and Obese Healthy Participants: A Pilot Study. Angiology, 62(1), 38-45. https://doi.org/10.1177/0003319710371616
Saugstad, O. D. (1988). Hypoxanthine as an indicator of hypoxia: its role in health and disease through free radical production. Pediatr Res, 23(2), 143-150. https://doi.org/10.1203/00006450-198802000-00001
Sherwin, R. S., Shamoon, H., Hendler, R., Saccà, L., Eigler, N., & Walesky, M. (1980). Epinephrine and the regulation of glucose metabolism: effect of diabetes and hormonal interactions. Metabolism, 29(11 Suppl 1), 1146-1154. https://doi.org/10.1016/0026-0495(80)90024-4
Shi, C., Han, X., Guo, W., Wu, Q., Yang, X., Wang, Y., Tang, G., Wang, S., Wang, Z., Liu, Y., Li, M., Lv, M., Guo, Y., Li, Z., Li, J., Shi, J., Qu, G., & Jiang, G. (2022). Disturbed Gut-Liver axis indicating oral exposure to polystyrene microplastic potentially increases the risk of insulin resistance. Environ Int, 164, 107273. https://doi.org/10.1016/j.envint.2022.107273
Sun, C., Zhu, H., Wang, Y., Han, Y., Zhang, D., Cao, X., Alip, M., Nie, M., Xu, X., Lv, L., Feng, X., Sun, L., & Wang, D. (2023). Serum metabolite differences detected by HILIC UHPLC-Q-TOF MS in systemic sclerosis. Clin Rheumatol, 42(1), 125-134. https://doi.org/10.1007/s10067-022-06372-z
Syme, C., Czajkowski, S., Shin, J., Abrahamowicz, M., Leonard, G., Perron, M., Richer, L., Veillette, S., Gaudet, D., Strug, L., Wang, Y., Xu, H., Taylor, G., Paus, T., Bennett, S., & Pausova, Z. (2016). Glycerophosphocholine Metabolites and Cardiovascular Disease Risk Factors in Adolescents: A Cohort Study. Circulation, 134(21), 1629-1636. https://doi.org/10.1161/circulationaha.116.022993
Tsou, T.-Y., Lee, S.-H., Kuo, T.-H., Chien, C.-C., Chen, H.-C., & Cheng, T.-J. (2023). Distribution and toxicity of submicron plastic particles in mice. Environmental Toxicology and Pharmacology, 97, 104038. https://doi.org/https://doi.org/10.1016/j.etap.2022.104038
van Dam, R. M., Dekker, J. M., Nijpels, G., Stehouwer, C. D. A., Bouter, L. M., & Heine, R. J. (2004). Coffee consumption and incidence of impaired fasting glucose, impaired glucose tolerance, and type 2 diabetes: the Hoorn Study. Diabetologia, 47(12), 2152-2159. https://doi.org/10.1007/s00125-004-1573-6
Vandenberghe, C., St-Pierre, V., Fortier, M., Castellano, C.-A., Cuenoud, B., & Cunnane, S. C. (2020). Medium Chain Triglycerides Modulate the Ketogenic Effect of a Metabolic Switch [Original Research]. Frontiers in Nutrition, 7. https://doi.org/10.3389/fnut.2020.00003
Vilks, K., Videja, M., Makrecka-Kuka, M., Katkevics, M., Sevostjanovs, E., Grandane, A., Dambrova, M., & Liepinsh, E. (2021). Long-Chain Acylcarnitines Decrease the Phosphorylation of the Insulin Receptor at Tyr1151 Through a PTP1B-Dependent Mechanism. International Journal of Molecular Sciences, 22(12), 6470. https://www.mdpi.com/1422-0067/22/12/6470
Walczak, A. P., Hendriksen, P. J. M., Woutersen, R. A., van der Zande, M., Undas, A. K., Helsdingen, R., van den Berg, H. H. J., Rietjens, I. M. C. M., & Bouwmeester, H. (2015). Bioavailability and biodistribution of differently charged polystyrene nanoparticles upon oral exposure in rats. Journal of Nanoparticle Research, 17(5), 231. https://doi.org/10.1007/s11051-015-3029-y
Wang, B., Yao, M., Lv, L., Ling, Z., & Li, L. (2017). The Human Microbiota in Health and Disease. Engineering, 3(1), 71-82. https://doi.org/10.1016/j.Eng.2017.01.008
Wang Miaoying, A. A. C. A. O. M. A. W. (2019). Effect of Citric Acid on Insulin Sensitivity in Hyperlipidemic Mice. FOOD SCIENCE, 40(9), 132-138. {https://www.spkx.net.cn/EN/10.7506/spkx1002-6630-20180203-039}
Wang, P.-S., Kuo, C.-H., Yang, H.-C., Liang, Y.-J., Huang, C.-J., Sheen, L.-Y., & Pan, W.-H. (2018). Postprandial Metabolomics Response to Various Cooking Oils in Humans. Journal of Agricultural and Food Chemistry, 66(19), 4977-4984. https://doi.org/10.1021/acs.jafc.8b00530
Wang, Y. M., Hu, X. Q., Xue, Y., Li, Z. J., Yanagita, T., & Xue, C. H. (2011). Study on possible mechanism of orotic acid-induced fatty liver in rats. Nutrition, 27(5), 571-575. https://doi.org/10.1016/j.nut.2010.03.005
Wei, J., Wang, X., Liu, Q., Zhou, N., Zhu, S., Li, Z., Li, X., Yao, J., & Zhang, L. (2021). The impact of polystyrene microplastics on cardiomyocytes pyroptosis through NLRP3/Caspase-1 signaling pathway and oxidative stress in Wistar rats. Environmental Toxicology, 36(5), 935-944. https://doi.org/https://doi.org/10.1002/tox.23095
Wright, S. L., & Kelly, F. J. (2017). Plastic and Human Health: A Micro Issue? Environ Sci Technol, 51(12), 6634-6647. https://doi.org/10.1021/acs.est.7b00423
Wright, S. L., & Kelly, F. J. (2017). Plastic and Human Health: A Micro Issue? Environmental Science & Technology, 51(12), 6634-6647. https://doi.org/10.1021/acs.est.7b00423
Wu, P., Lin, S., Cao, G., Wu, J., Jin, H., Wang, C., Wong, M. H., Yang, Z., & Cai, Z. (2022). Absorption, distribution, metabolism, excretion and toxicity of microplastics in the human body and health implications. Journal of Hazardous Materials, 437, 129361. https://doi.org/https://doi.org/10.1016/j.jhazmat.2022.129361
Xiao, F., Du, Y., Lv, Z., Chen, S., Zhu, J., Sheng, H., & Guo, F. (2016). Effects of essential amino acids on lipid metabolism in mice and humans. Journal of Molecular Endocrinology, 57(4), 223-231. https://doi.org/10.1530/JME-16-0116
Xie, L., Chen, T., Liu, J., Hou, Y., Tan, Q., Zhang, X., Li, Z., Farooq, T. H., Yan, W., & Li, Y. (2022). Intestinal flora variation reflects the short-term damage of microplastic to the intestinal tract in mice. Ecotoxicology and Environmental Safety, 246, 114194. https://doi.org/https://doi.org/10.1016/j.ecoenv.2022.114194
Xie, L., Chen, T., Liu, J., Hou, Y., Tan, Q., Zhang, X., Li, Z., Farooq, T. H., Yan, W., & Li, Y. (2022). Intestinal flora variation reflects the short-term damage of microplastic to the intestinal tract in mice. Ecotoxicol Environ Saf, 246, 114194. https://doi.org/10.1016/j.ecoenv.2022.114194
Xiong, W., Zhao, Y., Wei, Z., Li, C., Zhao, R., Ge, J., & Shi, B. (2023). N1-methyladenosine formation, gene regulation, biological functions, and clinical relevance. Molecular Therapy, 31(2), 308-330. https://doi.org/10.1016/j.ymthe.2022.10.015
Xu, D., Ma, Y., Han, X., & Chen, Y. (2021). Systematic toxicity evaluation of polystyrene nanoplastics on mice and molecular mechanism investigation about their internalization into Caco-2 cells. Journal of Hazardous Materials, 417, 126092. https://doi.org/https://doi.org/10.1016/j.jhazmat.2021.126092
Yan, Z., Liu, Y., Zhang, T., Zhang, F., Ren, H., & Zhang, Y. (2022). Analysis of Microplastics in Human Feces Reveals a Correlation between Fecal Microplastics and Inflammatory Bowel Disease Status. Environ Sci Technol, 56(1), 414-421. https://doi.org/10.1021/acs.est.1c03924
Zhang, Y., Yin, K., Wang, D., Wang, Y., Lu, H., Zhao, H., & Xing, M. (2022). Polystyrene microplastics-induced cardiotoxicity in chickens via the ROS-driven NF-κB-NLRP3-GSDMD and AMPK-PGC-1α axes. Science of The Total Environment, 840, 156727. https://doi.org/https://doi.org/10.1016/j.scitotenv.2022.156727
Zhao, J., Gomes, D., Jin, L., Mathis, S. P., Li, X., Rouchka, E. C., Bodduluri, H., Conklin, D. J., & O'Toole, T. E. (2022). Polystyrene bead ingestion promotes adiposity and cardiometabolic disease in mice. Ecotoxicol Environ Saf, 232, 113239. https://doi.org/10.1016/j.ecoenv.2022.113239
Zhao, J., Gomes, D. C., Conklin, D., & O'Toole, T. E. (2021). Abstract 9880: Microplastics Exposure Promotes Cardiovascular Disease Risk in Mice. Circulation, 144(Suppl_1), A9880-A9880. https://doi.org/doi:10.1161/circ.144.suppl_1.9880
Zhao, L., Shi, W., Hu, F., Song, X., Cheng, Z., & Zhou, J. (2021). Prolonged oral ingestion of microplastics induced inflammation in the liver tissues of C57BL/6J mice through polarization of macrophages and increased infiltration of natural killer cells. Ecotoxicol Environ Saf, 227, 112882. https://doi.org/10.1016/j.ecoenv.2021.112882
Zheng, D.-m., An, Z.-n., Ge, M.-h., Wei, D.-z., Jiang, D.-w., Xing, X.-j., Shen, X.-l., & Liu, C. (2021). Medium & long-chain acylcarnitine’s relation to lipid metabolism as potential predictors for diabetic cardiomyopathy: a metabolomic study. Lipids in Health and Disease, 20(1), 151. https://doi.org/10.1186/s12944-021-01576-9
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90327-
dc.description.abstract塑膠微粒(Microplastics, MPs),是環境中的新興污染物,泛指直徑小於五毫米的塑膠球體、纖維的塑膠碎片。人類暴露塑膠微粒的途徑主要可分為吸入、皮膚接觸和攝入。其中攝入被認為是主要途徑,已有許多研究在自來水、瓶裝水、食鹽等各類食物中檢測到塑膠微粒,顯示人類可能通過食物鏈暴露塑膠微粒,此外,近年來塑膠食品包裝容器也被認為是塑膠微粒的主要來源。

現今已有大量的動物暴露塑膠微粒研究證據,顯示塑膠微粒會引起不良的健康效應,當塑膠微粒經攝入途徑暴露,會經腸胃道屏障吸收進入體內,並可能進一步的分佈在各器官中,如肝臟、腎臟等,甚至可能穿越血腦屏障累積於腦部,導致許多器官的不良健康效應,包含氧化壓力、肝臟脂質代謝異常、醣類代謝異常以及腸道菌群異常等問題,進而可能增加罹患胰島素阻抗、心血管疾病等風險。而同時也已有許多研究於人類生物檢體中檢測到塑膠微粒,如糞便、血液、肝臟、胎盤檢體等,顯示人類同時也暴露在塑膠微粒的風險當中。迄今,塑膠微粒相關的人類研究僅停留在塑膠微粒暴露的評估上,尚未有研究進行塑膠微粒對人體的健康風險評估,因此塑膠微粒對人體的健康風險仍未知。

本研究通過國立臺灣大學行為與社會科學研究倫理委員會審查,符合研究倫理規範,案號202205HM049。招募符合條件的健康受試者,年齡區間在20歲至35歲,並且必須居住在台北和新北市。進行為期一週的研究,收集塑膠使用相關之個人習慣問卷與一週塑膠食品包裝容器紀錄,於研究第七天,於台大公衛學院進行生理指標的量測,包含身高、體重、腰圍與血壓,並收集糞便、血液及尿液檢體。使用µ-FTIR進行糞便中塑膠微粒濃度的檢測,其結果將與食/飲品包裝容器使用量,作為塑膠微粒的暴露指標,同時利用糞便、血液與尿液進行健康效應相關指標的量測,包含血液常規、肝腎功能標誌物、脂質與醣類代謝相關指標、心血管相關指標、腸道菌群、短鏈脂肪酸與代謝體等,探討塑膠微粒暴露對人體健康效應的影響。

本次研究共招募到五十名受試者,平均年齡24歲,共有女性33位與男性17位,教育程度皆大學以上。糞便中塑膠微粒濃度為平均每乾重糞便中有44.16顆的塑膠微粒,五十個樣本中有八個樣本未檢測到塑膠微粒。六天使用的食/飲品包裝容器平均使用量為18個。於脂質與醣類代謝相關指標結果,各分組有較一致且集中的趨勢,在糞便中檢測到塑膠微粒時,>11.5組之HDL 濃度會顯著下降;食/飲品塑膠包裝容器使用量分組下,使用量較高組別的TG、LDL和TCH/HDL顯著上升,HDL顯著下降。糞便中塑膠微粒濃度和Insulin AC呈現正相關;食/飲品塑膠包裝容器使用量、瓶裝水飲用頻率與使用茶包的頻率,皆與HbA1c呈現正相關,發現脂質與醣類代謝與塑膠微粒暴露具有一定相關性外,也與BMI及心血管風險指標fibrinogen趨勢相同,綜合結果顯示塑膠微粒暴露可能導致肥胖、心血管疾病以及胰島素阻抗風險,且與過去部分動物實驗結果趨勢相同,但在肝臟相關指標的結果發現,糞便中的塑膠微粒濃度與肝發炎指摽AST、ALT呈顯著負相關,在已排除慢性肝炎的情況下,推測可能部分塑膠微粒種類可能與肝臟保護作用相關。進一步地利用腸道菌群及短鏈脂肪酸的檢測,了解塑膠微粒暴露造成健康效應之機轉,結果顯示在各分組間有發現部分的菌群與短鍊脂肪酸有顯著差異,但綜合所有組別結果來看,並沒有顯著並一致的變化趨勢。而在血中代謝體分析中,則有數個代謝物與糞便中塑膠微粒濃度有顯著相關,包含與許多脂質及醣類代謝相關的代謝物,如檸檬酸、乙醯肉鹼、苯丙胺酸等,綜合所有代謝物變化之趨勢,發現塑膠微粒暴露可能造成細胞代謝異常,並影響脂質與醣類代謝,導致不良健康效應。

本研究為小規模的人類健康風險評估研究,初步結果發現人類暴露塑膠微粒所造成的健康效應,與動物實驗暴露塑膠微粒的結果相近,塑膠微粒暴露可能導致脂質與醣類代謝的異常,增加肥胖、胰島素抵抗與心血管疾病的風險。但目前在塑膠微粒暴露指標的建立上,仍有許多限制之處,未來需要更進一步且更大規模的研究,才能更了解塑膠微粒對人體健康的影響。
zh_TW
dc.description.abstractMicroplastics (MPs) are generally referred as various plastic products or plastic fragments with a particle size less than 5 mm in diameter. MPs are widely distributed in the environment and have been detected in human placenta, feces and blood. The exposure routes of microplastics include ingestion, inhalation and skin contact. Ingestion is considered the major route of human exposure to MPs. Recently, animal studies have shown that MPs administered through the gastrointestinal tract may be absorbed and cause liver and kidney injuries. Studies also find that MPs cause alteration in lipid and glucose metabolism and gut microbiota dysbiosis. However, it remains unknown whether MPs could cause any toxicities in humans. Here, we conducted a cross-sectional study to investigate if MPs exposure are associated with adverse health outcome.

The study was approved by the Research Ethics Committee of National Taiwan University (No. 202205HM049). Young adults were recruited from the metropolitan Taipei area. A dietary questionnaire for 6 days and plastic usage habits associated with MPs exposure over the past three months. Fecal samples, peripheral blood and urine were also collected. Fecal samples were prepared and examined under micro-FTIR to determine the presence of MPs. Urinalysis and CBC were performed. Plasma biochemistry for liver and kidney injury was also tested. To examine the homeostasis of lipids and glucose, lipid profile and marker for glucose metabolism were determined. Further, 16S rRNA gene sequencing Short-chain fatty acid relative quantitation was conducted from the fecal samples to determine the composition of gut microbiota and SCFAs composition. LC-MS untargeted profiling from plasma to determine metabolite changing.

A total of 50 adults with an average age of 24, females of 33 and male of 17 were included in the analysis. The mean concentration of fecal MPs was 44.16 per gram of fecal dry weight. The average plastic packaging container usage of 6 days was 18. Grouping by the concentration of fecal MPs, plastic packaging container usage of 6 days, and four plastic usage habits. The habits include the material of commonly used bottles, frequency of bottled water consumption, tea bag usage frequency, and straw-biting behavior. The Multiple regression analysis results showed HDL level was significantly lower in the >11.5 group as compared to the Undetectable group, and also significantly lower in the usage of container >18 as compared to the group of ≤18. The TG, LDL and TCH/HDL levels were significantly higher in the usage of container >18 as compared to the group of ≤18. In glucose metabolism markers, insulin level was positively correlated with the concentration of fecal MPs. The HbA1c levels were positively correlated with the average plastic packaging container usage, the frequency of bottled water consumption, and the tea bag usage frequency. In this study, we found significant differences between groups in HDL and insulin levels, which were consistent across all grouping methods. Further, the BMI and fibrinogen levels were significantly higher in the usage of container >18 as compared to the group of ≤18. To explore the MPs' toxicological mechanism, we conducted the gut microbiota, SCFAs, and metabolite profiling. However, the results of gut microbiota and SCFAs weren’t found to correlate across all grouping methods. In the metabolites results, we found several metabolites were significantly related to lipid and glucose metabolism, such as Hypoxanthine, Phenylalanine, Paraxanthine, and citric acid. It was found that exposure to MPs may cause abnormal cellular metabolism and affect lipid and carbohydrate metabolism, leading to health effects.

Our pilot study suggests that MPs exposure may cause metabolic disturbances and affect lipid and glucose homeostasis. Moreover, the results are consistent with the previous finding from animal studies. Therefore, increasing the risk of obesity, insulin resistance, and cardiovascular disease. Further study with more subjects is needed to confirm the findings.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-26T16:17:05Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-26T16:17:05Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 I
中文摘要 II
ABSTRACT V
目錄 VIII
表目錄 XIII
圖目錄 XIV
縮寫表 XV
第一章 前言與研究目的 1
1.1 前言 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 塑膠微粒定義 3
2.2 塑膠微粒之暴露途徑 3
2.3 塑膠微粒的毒物動力學 5
2.3.1吸收 5
2.3.2 分佈 6
2.3.3 代謝與排泄 8
2.4 塑膠微粒之健康效應 9
2.4.1 塑膠微粒暴露對醣類與脂質代謝之影響 10
2.5 塑膠微粒相關之人體研究 12
第三章 材料與方法 14
3.1 收案流程與研究架構 14
3.2 研究對象 14
3.3 問卷說明 14
3.4 基本體格檢查 15
3.4.1 身高、體重量測與BMI值計算 15
3.4.2 腰圍量測 15
3.4.3 血壓量測 15
3.5 糞便檢體採集與塑膠微粒濃度檢測 15
3.5.1 糞便採集 15
3.5.2 樣本前處理 16
3.5.3 塑膠微粒濃度檢測 16
3.6 血液檢體採集與分析 17
3.6.1 血液採集 17
3.6.2 血液常規分析 17
3.6.3 肝臟相關指標 17
3.6.4 脂質代謝相關指標 17
3.6.5 腎臟相關指標 18
3.6.6 醣類相關指標 18
3.6.7 心血管相關與其他指標 19
3.7 尿液檢體採集與分析 19
3.7.1 尿液常規檢測 19
3.7.2 腎臟相關指標檢測 19
3.8 腸道菌群分析 20
3.9 血中代謝體分析 20
3.10 短鏈脂肪酸分析 21
3.11 統計分析方法 21
第四章 結果 22
4.1 受試者之基本資料 22
4.2 糞便中塑膠微粒濃度之結果與分組 22
4.3 問卷結果與分組 22
4.4 生理指標檢測結果 24
4.4.1 身體質量指數 24
4.4.2 血壓 24
4.5 生化指標檢測結果 25
4.5.1 肝臟相關指標 25
4.5.2 脂質相關指標 26
4.5.3 腎臟相關指標 27
4.5.4 醣類代謝相關指標 27
4.5.5 心血管相關與其他指標 28
4.6 腸道菌群、短鏈脂肪酸檢測結果 29
4.7 代謝體檢測結果 30
第五章 討論 32
5.1脂質與醣類代謝之趨勢與關係 33
5.2 肝腎器官健康效應之趨勢與關係 35
5.3 人類腸道菌群與短鏈脂肪酸之趨勢與關係 36
5.4 血中代謝體之趨勢與關聯性 37
5.5 研究之限制與建議 43
5.5.1 塑膠微粒檢測方法之限制 43
5.5.2 分組與問卷設計之不足 44
5.5.3 與動物研究之差異 45
第六章 結論 47
第七章 參考資料 48
附錄 97
-
dc.language.isozh_TW-
dc.subject脂質代謝zh_TW
dc.subject塑膠微粒zh_TW
dc.subject人體健康效應zh_TW
dc.subject醣類代謝zh_TW
dc.subjectMicroplasticsen
dc.subjectHealth effectsen
dc.subjectlipid metabolismen
dc.subjecthumanen
dc.title塑膠微粒經腸胃道暴露之健康效應研究zh_TW
dc.titleHealth effect study of microplastics oral exposure in humansen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳保中;吳焜裕;蕭伊倫zh_TW
dc.contributor.oralexamcommitteePau-Chung Chen;Kuen-Yuh Wu;I-Lun Hsiaoen
dc.subject.keyword塑膠微粒,人體健康效應,脂質代謝,醣類代謝,zh_TW
dc.subject.keywordMicroplastics,Health effects,human,lipid metabolism,en
dc.relation.page111-
dc.identifier.doi10.6342/NTU202301351-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-07-19-
dc.contributor.author-college公共衛生學院-
dc.contributor.author-dept公共衛生碩士學位學程-
dc.date.embargo-lift2025-07-07-
Appears in Collections:公共衛生碩士學位學程

Files in This Item:
File SizeFormat 
ntu-111-2.pdf
Access limited in NTU ip range
5.39 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved