請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90314完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林敬哲 | zh_TW |
| dc.contributor.advisor | Jing-Jer Lin | en |
| dc.contributor.author | 劉家君 | zh_TW |
| dc.contributor.author | Chia-Chun Liu | en |
| dc.date.accessioned | 2023-09-26T16:13:37Z | - |
| dc.date.available | 2023-11-10 | - |
| dc.date.copyright | 2023-09-26 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-07-27 | - |
| dc.identifier.citation | Adkins, N. L., Niu, H., Sung, P., & Peterson, C. L. (2013). Nucleosome dynamics regulates DNA processing. Nat Struct Mol Biol, 20(7), 836-842. https://doi.org/10.1038/nsmb.2585
Alani, E., Lee, S., Kane, M. F., Griffith, J., & Kolodner, R. D. (1997). Saccharomyces cerevisiae MSH2, a mispaired base recognition protein, also recognizes Holliday junctions in DNA. J Mol Biol, 265(3), 289-301. https://doi.org/10.1006/jmbi.1996.0743 Arora, R., Lee, Y., Wischnewski, H., Brun, C. M., Schwarz, T., & Azzalin, C. M. (2014). RNaseH1 regulates TERRA-telomeric DNA hybrids and telomere maintenance in ALT tumour cells. Nat Commun, 5, 5220. https://doi.org/10.1038/ncomms6220 Arora, S., Deshpande, R. A., Budd, M., Campbell, J., Revere, A., Zhang, X., Schmidt, K. H., & Paull, T. T. (2017). Genetic Separation of Sae2 Nuclease Activity from Mre11 Nuclease Functions in Budding Yeast. Mol Cell Biol, 37(24). https://doi.org/10.1128/MCB.00156-17 Azzalin, C. M., & Lingner, J. (2008). Telomeres: the silence is broken. Cell Cycle, 7(9), 1161-1165. https://doi.org/10.4161/cc.7.9.5836 Azzalin, C. M., Reichenbach, P., Khoriauli, L., Giulotto, E., & Lingner, J. (2007). Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science, 318(5851), 798-801. https://doi.org/10.1126/science.1147182 Bah, A., Bachand, F., Clair, E., Autexier, C., & Wellinger, R. J. (2004). Humanized telomeres and an attempt to express a functional human telomerase in yeast. Nucleic Acids Res, 32(6), 1917-1927. https://doi.org/10.1093/nar/gkh511 Baker Brachmann, C., Davies, A., Cost, G. J., Caputo, E., Li, J., Hieter, P., & Boeke, J. D. (1998). Designer deletion strains derived fromSaccharomyces cerevisiae S288C: A useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast, 14(2), 115-132. https://doi.org/10.1002/(sici)1097-0061(19980130)14:2<115::Aid-yea204>3.0.Co;2-2 Balk, B., Maicher, A., Dees, M., Klermund, J., Luke-Glaser, S., Bender, K., & Luke, B. (2013). Telomeric RNA-DNA hybrids affect telomere-length dynamics and senescence. Nat Struct Mol Biol, 20(10), 1199-1205. https://doi.org/10.1038/nsmb.2662 Bayona-Feliu, A., Barroso, S., Munoz, S., & Aguilera, A. (2021). The SWI/SNF chromatin remodeling complex helps resolve R-loop-mediated transcription-replication conflicts. Nat Genet, 53(7), 1050-1063. https://doi.org/10.1038/s41588-021-00867-2 Bhowmick, R., Minocherhomji, S., & Hickson, I. D. (2016). RAD52 Facilitates Mitotic DNA Synthesis Following Replication Stress. Mol Cell, 64(6), 1117-1126. https://doi.org/10.1016/j.molcel.2016.10.037 Blackburn, E. H., & Gall, J. G. (1978). A tandemly repeated sequence at the termini of the extrachromosomal ribosomal RNA genes in Tetrahymena. J Mol Biol, 120(1), 33-53. https://doi.org/10.1016/0022-2836(78)90294-2 Boguslawski, S. J., Smith, D. E., Michalak, M. A., Mickelson, K. E., Yehle, C. O., Patterson, W. L., & Carrico, R. J. (1986). Characterization of monoclonal antibody to DNA.RNA and its application to immunodetection of hybrids. J Immunol Methods, 89(1), 123-130. https://doi.org/10.1016/0022-1759(86)90040-2 Boiteux, S., & Guillet, M. (2004). Abasic sites in DNA: repair and biological consequences in Saccharomyces cerevisiae. DNA Repair (Amst), 3(1), 1-12. https://doi.org/10.1016/j.dnarep.2003.10.002 Bowers, J., Sokolsky, T., Quach, T., & Alani, E. (1999). A mutation in the MSH6 subunit of the Saccharomyces cerevisiae MSH2-MSH6 complex disrupts mismatch recognition. J Biol Chem, 274(23), 16115-16125. https://doi.org/10.1074/jbc.274.23.16115 Bryan, T. M., Englezou, A., Dalla-Pozza, L., Dunham, M. A., & Reddel, R. R. (1997). Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nat Med, 3(11), 1271-1274. https://doi.org/10.1038/nm1197-1271 Bryan, T. M., Englezou, A., Gupta, J., Bacchetti, S., & Reddel, R. R. (1995). Telomere elongation in immortal human cells without detectable telomerase activity. EMBO J, 14(17), 4240-4248. https://doi.org/10.1002/j.1460-2075.1995.tb00098.x Bryan, T. M., & Reddel, R. R. (1997). Telomere dynamics and telomerase activity in in vitro immortalised human cells. Eur J Cancer, 33(5), 767-773. https://doi.org/10.1016/S0959-8049(97)00065-8 Cairns, B. R., Lorch, Y., Li, Y., Zhang, M., Lacomis, L., Erdjument-Bromage, H., Tempst, P., Du, J., Laurent, B., & Kornberg, R. D. (1996). RSC, an essential, abundant chromatin-remodeling complex. Cell, 87(7), 1249-1260. https://doi.org/10.1016/s0092-8674(00)81820-6 Cannavo, E., & Cejka, P. (2014). Sae2 promotes dsDNA endonuclease activity within Mre11-Rad50-Xrs2 to resect DNA breaks. Nature, 514(7520), 122-125. https://doi.org/10.1038/nature13771 Carey, M., Li, B., & Workman, J. L. (2006). RSC exploits histone acetylation to abrogate the nucleosomal block to RNA polymerase II elongation. Mol Cell, 24(3), 481-487. https://doi.org/10.1016/j.molcel.2006.09.012 Carpentier, G. (2010). Protein Array Analyzer for ImageJ. http://image.bio.methods.free.fr/dotblot.html Chai, B., Huang, J., Cairns, B. R., & Laurent, B. C. (2005). Distinct roles for the RSC and Swi/Snf ATP-dependent chromatin remodelers in DNA double-strand break repair. Genes Dev, 19(14), 1656-1661. https://doi.org/10.1101/gad.1273105 Chen, Q., Ijpma, A., & Greider, C. W. (2001). Two survivor pathways that allow growth in the absence of telomerase are generated by distinct telomere recombination events. Mol Cell Biol, 21(5), 1819-1827. https://doi.org/10.1128/MCB.21.5.1819-1827.2001 Chen, Y. B., Yang, C. P., Li, R. X., Zeng, R., & Zhou, J. Q. (2005). Def1p is involved in telomere maintenance in budding yeast. J Biol Chem, 280(26), 24784-24791. https://doi.org/10.1074/jbc.M413562200 Chu, H. P., Cifuentes-Rojas, C., Kesner, B., Aeby, E., Lee, H. G., Wei, C., Oh, H. J., Boukhali, M., Haas, W., & Lee, J. T. (2017). TERRA RNA Antagonizes ATRX and Protects Telomeres. Cell, 170(1), 86-101 e116. https://doi.org/10.1016/j.cell.2017.06.017 Chu, H. P., Minajigi, A., Chen, Y., Morris, R., Guh, C. Y., Hsieh, Y. H., Boukhali, M., Haas, W., & Lee, J. T. (2021). iDRiP for the systematic discovery of proteins bound directly to noncoding RNA. Nat Protoc, 16(7), 3672-3694. https://doi.org/10.1038/s41596-021-00555-9 Church, G. M., & Gilbert, W. (1984). Genomic sequencing. Proc Natl Acad Sci U S A, 81(7), 1991-1995. https://doi.org/10.1073/pnas.81.7.1991 Conrad, M. N., Wright, J. H., Wolf, A. J., & Zakian, V. A. (1990). RAP1 protein interacts with yeast telomeres in vivo: overproduction alters telomere structure and decreases chromosome stability. Cell, 63(4), 739-750. https://doi.org/10.1016/0092-8674(90)90140-a Costelloe, T., Louge, R., Tomimatsu, N., Mukherjee, B., Martini, E., Khadaroo, B., Dubois, K., Wiegant, W. W., Thierry, A., Burma, S., van Attikum, H., & Llorente, B. (2012). The yeast Fun30 and human SMARCAD1 chromatin remodellers promote DNA end resection. Nature, 489(7417), 581-584. https://doi.org/10.1038/nature11353 de Lange, T. (2005). Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev, 19(18), 2100-2110. https://doi.org/10.1101/gad.1346005 Deshpande, R. A., Lee, J. H., Arora, S., & Paull, T. T. (2016). Nbs1 Converts the Human Mre11/Rad50 Nuclease Complex into an Endo/Exonuclease Machine Specific for Protein-DNA Adducts. Mol Cell, 64(3), 593-606. https://doi.org/10.1016/j.molcel.2016.10.010 Dilley, R. L., Verma, P., Cho, N. W., Winters, H. D., Wondisford, A. R., & Greenberg, R. A. (2016). Break-induced telomere synthesis underlies alternative telomere maintenance. Nature, 539(7627), 54-58. https://doi.org/10.1038/nature20099 Doncheva, N. T., Morris, J. H., Gorodkin, J., & Jensen, L. J. (2019). Cytoscape StringApp: Network Analysis and Visualization of Proteomics Data. J Proteome Res, 18(2), 623-632. https://doi.org/10.1021/acs.jproteome.8b00702 Dror, V., & Winston, F. (2004). The Swi/Snf chromatin remodeling complex is required for ribosomal DNA and telomeric silencing in Saccharomyces cerevisiae. Mol Cell Biol, 24(18), 8227-8235. https://doi.org/10.1128/MCB.24.18.8227-8235.2004 Fernandes, R. V., & Lingner, J. (2023). The THO complex counteracts TERRA R-loop-mediated telomere fragility in telomerase+ cells and telomeric recombination in ALT+ cells. Nucleic Acids Res. https://doi.org/10.1093/nar/gkad448 Flores-Rozas, H., Clark, D., & Kolodner, R. D. (2000). Proliferating cell nuclear antigen and Msh2p-Msh6p interact to form an active mispair recognition complex. Nat Genet, 26(3), 375-378. https://doi.org/10.1038/81708 Fu, X. H., Duan, Y. M., Liu, Y. T., Cai, C., Meng, F. L., & Zhou, J. Q. (2014). Telomere recombination preferentially occurs at short telomeres in telomerase-null type II survivors. PLoS One, 9(3), e90644. https://doi.org/10.1371/journal.pone.0090644 Gietz, R. D., & Schiestl, R. H. (2007). High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nature Protocols, 2(1), 31-34. https://doi.org/10.1038/nprot.2007.13 Grandin, N., & Charbonneau, M. (2003a). Mitotic cyclins regulate telomeric recombination in telomerase-deficient yeast cells. Mol Cell Biol, 23(24), 9162-9177. https://doi.org/10.1128/MCB.23.24.9162-9177.2003 Grandin, N., & Charbonneau, M. (2003b). The Rad51 pathway of telomerase-independent maintenance of telomeres can amplify TG1-3 sequences in yku and cdc13 mutants of Saccharomyces cerevisiae. Mol Cell Biol, 23(11), 3721-3734. https://doi.org/10.1128/MCB.23.11.3721-3734.2003 Grandin, N., & Charbonneau, M. (2007). Control of the yeast telomeric senescence survival pathways of recombination by the Mec1 and Mec3 DNA damage sensors and RPA. Nucleic Acids Res, 35(3), 822-838. https://doi.org/10.1093/nar/gkl1081 Grandin, N., Gallego, M. E., White, C. I., & Charbonneau, M. (2020). Inhibition of the alternative lengthening of telomeres pathway by subtelomeric sequences in Saccharomyces cerevisiae. DNA Repair (Amst), 96, 102996. https://doi.org/10.1016/j.dnarep.2020.102996 Halasz, L., Karanyi, Z., Boros-Olah, B., Kuik-Rozsa, T., Sipos, E., Nagy, E., Mosolygo, L. A., Mazlo, A., Rajnavolgyi, E., Halmos, G., & Szekvolgyi, L. (2017). RNA-DNA hybrid (R-loop) immunoprecipitation mapping: an analytical workflow to evaluate inherent biases. Genome Res, 27(6), 1063-1073. https://doi.org/10.1101/gr.219394.116 Harfe, B. D., & Jinks-Robertson, S. (2000). DNA mismatch repair and genetic instability. Annu Rev Genet, 34, 359-399. https://doi.org/10.1146/annurev.genet.34.1.359 Hayflick, L., & Moorhead, P. S. (1961). The serial cultivation of human diploid cell strains. Exp Cell Res, 25, 585-621. https://doi.org/10.1016/0014-4827(61)90192-6 Henning, K. A., Moskowitz, N., Ashlock, M. A., & Liu, P. P. (1998). Humanizing the yeast telomerase template. Proc Natl Acad Sci U S A, 95(10), 5667-5671. https://doi.org/10.1073/pnas.95.10.5667 Henson, J. D., Cao, Y., Huschtscha, L. I., Chang, A. C., Au, A. Y., Pickett, H. A., & Reddel, R. R. (2009). DNA C-circles are specific and quantifiable markers of alternative-lengthening-of-telomeres activity. Nat Biotechnol, 27(12), 1181-1185. https://doi.org/10.1038/nbt.1587 Henson, J. D., Hannay, J. A., McCarthy, S. W., Royds, J. A., Yeager, T. R., Robinson, R. A., Wharton, S. B., Jellinek, D. A., Arbuckle, S. M., Yoo, J., Robinson, B. G., Learoyd, D. L., Stalley, P. D., Bonar, S. F., Yu, D., Pollock, R. E., & Reddel, R. R. (2005). A Robust Assay for Alternative Lengthening of Telomeres in Tumors Shows the Significance of Alternative Lengthening of Telomeres in Sarcomas and Astrocytomas. Clinical Cancer Research, 11(1), 217-225. https://doi.org/10.1158/1078-0432.217.11.1 Hirschhorn, J. N., Brown, S. A., Clark, C. D., & Winston, F. (1992). Evidence that SNF2/SWI2 and SNF5 activate transcription in yeast by altering chromatin structure. Genes Dev, 6(12A), 2288-2298. https://doi.org/10.1101/gad.6.12a.2288 Hiyama, E., & Hiyama, K. (2007). Telomere and telomerase in stem cells. Br J Cancer, 96(7), 1020-1024. https://doi.org/10.1038/sj.bjc.6603671 Honda, M., Okuno, Y., Hengel, S. R., Martin-Lopez, J. V., Cook, C. P., Amunugama, R., Soukup, R. J., Subramanyam, S., Fishel, R., & Spies, M. (2014). Mismatch repair protein hMSH2-hMSH6 recognizes mismatches and forms sliding clamps within a D-loop recombination intermediate. Proc Natl Acad Sci U S A, 111(3), E316-325. https://doi.org/10.1073/pnas.1312988111 Hu, J., Hwang, S. S., Liesa, M., Gan, B., Sahin, E., Jaskelioff, M., Ding, Z., Ying, H., Boutin, A. T., Zhang, H., Johnson, S., Ivanova, E., Kost-Alimova, M., Protopopov, A., Wang, Y. A., Shirihai, O. S., Chin, L., & DePinho, R. A. (2012). Antitelomerase therapy provokes ALT and mitochondrial adaptive mechanisms in cancer. Cell, 148(4), 651-663. https://doi.org/10.1016/j.cell.2011.12.028 Hu, Y., Tang, H. B., Liu, N. N., Tong, X. J., Dang, W., Duan, Y. M., Fu, X. H., Zhang, Y., Peng, J., Meng, F. L., & Zhou, J. Q. (2013). Telomerase-null survivor screening identifies novel telomere recombination regulators. PLoS Genet, 9(1), e1003208. https://doi.org/10.1371/journal.pgen.1003208 Huang, P.-H., Pryde, F. E., Lester, D., Maddison, R. L., Borts, R. H., Hickson, I. D., & Louis, E. J. (2001). SGS1 is required for telomere elongation in the absence of telomerase. Current Biology, 11(2), 125-129. https://doi.org/10.1016/s0960-9822(01)00021-5 Jacobs, J. J., & de Lange, T. (2004). Significant role for p16INK4a in p53-independent telomere-directed senescence. Curr Biol, 14(24), 2302-2308. https://doi.org/10.1016/j.cub.2004.12.025 Johnson, F. B., Marciniak, R. A., McVey, M., Stewart, S. A., Hahn, W. C., & Guarente, L. (2001). The Saccharomyces cerevisiae WRN homolog Sgs1p participates in telomere maintenance in cells lacking telomerase. EMBO J, 20(4), 905-913. https://doi.org/10.1093/emboj/20.4.905 Kao, H. I., Henricksen, L. A., Liu, Y., & Bambara, R. A. (2002). Cleavage specificity of Saccharomyces cerevisiae flap endonuclease 1 suggests a double-flap structure as the cellular substrate. J Biol Chem, 277(17), 14379-14389. https://doi.org/10.1074/jbc.M110662200 Kolodner, R. D., & Marsischky, G. T. (1999). Eukaryotic DNA mismatch repair. Curr Opin Genet Dev, 9(1), 89-96. https://doi.org/10.1016/s0959-437x(99)80013-6 Konig, F., Schubert, T., & Langst, G. (2017). The monoclonal S9.6 antibody exhibits highly variable binding affinities towards different R-loop sequences. PLoS One, 12(6), e0178875. https://doi.org/10.1371/journal.pone.0178875 Larrivee, M., & Wellinger, R. J. (2006). Telomerase- and capping-independent yeast survivors with alternate telomere states. Nat Cell Biol, 8(7), 741-747. https://doi.org/10.1038/ncb1429 Larson, E. D., Duquette, M. L., Cummings, W. J., Streiff, R. J., & Maizels, N. (2005). MutSalpha binds to and promotes synapsis of transcriptionally activated immunoglobulin switch regions. Curr Biol, 15(5), 470-474. https://doi.org/10.1016/j.cub.2004.12.077 Le, S., Moore, J. K., Haber, J. E., & Greider, C. W. (1999). RAD50 and RAD51 define two pathways that collaborate to maintain telomeres in the absence of telomerase. Genetics, 152(1), 143-152. https://doi.org/10.1093/genetics/152.1.143 Lebel, C., Rosonina, E., Sealey, D. C., Pryde, F., Lydall, D., Maringele, L., & Harrington, L. A. (2009). Telomere maintenance and survival in saccharomyces cerevisiae in the absence of telomerase and RAD52. Genetics, 182(3), 671-684. https://doi.org/10.1534/genetics.109.102939 Lengsfeld, B. M., Rattray, A. J., Bhaskara, V., Ghirlando, R., & Paull, T. T. (2007). Sae2 is an endonuclease that processes hairpin DNA cooperatively with the Mre11/Rad50/Xrs2 complex. Mol Cell, 28(4), 638-651. https://doi.org/10.1016/j.molcel.2007.11.001 Li, G. M. (2008). Mechanisms and functions of DNA mismatch repair. Cell Res, 18(1), 85-98. https://doi.org/10.1038/cr.2007.115 Lillard-Wetherell, K., Combs, K. A., & Groden, J. (2005). BLM helicase complements disrupted type II telomere lengthening in telomerase-negative sgs1 yeast. Cancer Res, 65(13), 5520-5522. https://doi.org/10.1158/0008-5472.CAN-05-0632 Ling, X., Han, Y., Meng, J., Zhong, B., Chen, J., Zhang, H., Qin, J., Pang, J., & Liu, L. (2021). Small extrachromosomal circular DNA (eccDNA): major functions in evolution and cancer. Mol Cancer, 20(1), 113. https://doi.org/10.1186/s12943-021-01413-8 Liu, C. C., Chan, H. R., Su, G. C., Hsieh, Y. Z., Lei, K. H., Kato, T., Yu, T. Y., Kao, Y. W., Cheng, T. H., Chi, P., & Lin, J. J. (2023). Flap endonuclease Rad27 cleaves the RNA of R-loop structures to suppress telomere recombination. Nucleic Acids Res, 51(9), 4398-4414. https://doi.org/10.1093/nar/gkad236 Luke, B., Panza, A., Redon, S., Iglesias, N., Li, Z., & Lingner, J. (2008). The Rat1p 5' to 3' exonuclease degrades telomeric repeat-containing RNA and promotes telomere elongation in Saccharomyces cerevisiae. Mol Cell, 32(4), 465-477. https://doi.org/10.1016/j.molcel.2008.10.019 Lundblad, V., & Blackburn, E. H. (1993). An alternative pathway for yeast telomere maintenance rescues est1- senescence. Cell, 73(2), 347-360. https://doi.org/10.1016/0092-8674(93)90234-h Lydeard, J. R., Jain, S., Yamaguchi, M., & Haber, J. E. (2007). Break-induced replication and telomerase-independent telomere maintenance require Pol32. Nature, 448(7155), 820-823. https://doi.org/10.1038/nature06047 Makharashvili, N., Arora, S., Yin, Y., Fu, Q., Wen, X., Lee, J. H., Kao, C. H., Leung, J. W., Miller, K. M., & Paull, T. T. (2018). Sae2/CtIP prevents R-loop accumulation in eukaryotic cells. Elife, 7. https://doi.org/10.7554/eLife.42733 Maringele, L., & Lydall, D. (2004). EXO1 plays a role in generating type I and type II survivors in budding yeast. Genetics, 166(4), 1641-1649. https://doi.org/10.1534/genetics.166.4.1641 Marsischky, G. T., Lee, S., Griffith, J., & Kolodner, R. D. (1999). 'Saccharomyces cerevisiae MSH2/6 complex interacts with Holliday junctions and facilitates their cleavage by phage resolution enzymes. J Biol Chem, 274(11), 7200-7206. https://doi.org/10.1074/jbc.274.11.7200 McEachern, M. J., & Blackburn, E. H. (1994). A conserved sequence motif within the exceptionally diverse telomeric sequences of budding yeasts. Proc Natl Acad Sci U S A, 91(8), 3453-3457. https://doi.org/10.1073/pnas.91.8.3453 Meyne, J., Ratliff, R. L., & Moyzis, R. K. (1989). Conservation of the human telomere sequence (TTAGGG)n among vertebrates. Proc Natl Acad Sci U S A, 86(18), 7049-7053. https://doi.org/10.1073/pnas.86.18.7049 Mizuguchi, G., Shen, X., Landry, J., Wu, W. H., Sen, S., & Wu, C. (2004). ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science, 303(5656), 343-348. https://doi.org/10.1126/science.1090701 Munashingha, P. R., Lee, C. H., Kang, Y. H., Shin, Y. K., Nguyen, T. A., & Seo, Y. S. (2012). The trans-autostimulatory activity of Rad27 suppresses dna2 defects in Okazaki fragment processing. J Biol Chem, 287(12), 8675-8687. https://doi.org/10.1074/jbc.M111.326470 Nabetani, A., Yokoyama, O., & Ishikawa, F. (2004). Localization of hRad9, hHus1, hRad1, and hRad17 and caffeine-sensitive DNA replication at the alternative lengthening of telomeres-associated promyelocytic leukemia body. J Biol Chem, 279(24), 25849-25857. https://doi.org/10.1074/jbc.M312652200 Oeseburg, H., de Boer, R. A., van Gilst, W. H., & van der Harst, P. (2010). Telomere biology in healthy aging and disease. Pflugers Arch, 459(2), 259-268. https://doi.org/10.1007/s00424-009-0728-1 Olovnikov, A. M. (1973). A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J Theor Biol, 41(1), 181-190. https://doi.org/10.1016/0022-5193(73)90198-7 Oum, J. H., Seong, C., Kwon, Y., Ji, J. H., Sid, A., Ramakrishnan, S., Ira, G., Malkova, A., Sung, P., Lee, S. E., & Shim, E. Y. (2011). RSC facilitates Rad59-dependent homologous recombination between sister chromatids by promoting cohesin loading at DNA double-strand breaks. Mol Cell Biol, 31(19), 3924-3937. https://doi.org/10.1128/MCB.01269-10 Papamichos-Chronakis, M., Watanabe, S., Rando, O. J., & Peterson, C. L. (2011). Global regulation of H2A.Z localization by the INO80 chromatin-remodeling enzyme is essential for genome integrity. Cell, 144(2), 200-213. https://doi.org/10.1016/j.cell.2010.12.021 Pfeiffer, V., Crittin, J., Grolimund, L., & Lingner, J. (2013). The THO complex component Thp2 counteracts telomeric R-loops and telomere shortening. EMBO J, 32(21), 2861-2871. https://doi.org/10.1038/emboj.2013.217 Phillips, D. D., Garboczi, D. N., Singh, K., Hu, Z., Leppla, S. H., & Leysath, C. E. (2013). The sub-nanomolar binding of DNA-RNA hybrids by the single-chain Fv fragment of antibody S9.6. J Mol Recognit, 26(8), 376-381. https://doi.org/10.1002/jmr.2284 Podlevsky, J. D., Bley, C. J., Omana, R. V., Qi, X., & Chen, J. J. (2008). The telomerase database. Nucleic Acids Res, 36(Database issue), D339-343. https://doi.org/10.1093/nar/gkm700 Rizki, A., & Lundblad, V. (2001). Defects in mismatch repair promote telomerase-independent proliferation. Nature, 411(6838), 713-716. https://doi.org/10.1038/35079641 Schoeftner, S., & Blasco, M. A. (2008). Developmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymerase II. Nat Cell Biol, 10(2), 228-236. https://doi.org/10.1038/ncb1685 Shampay, J., Szostak, J. W., & Blackburn, E. H. (1984). DNA sequences of telomeres maintained in yeast. Nature, 310(5973), 154-157. https://doi.org/10.1038/310154a0 Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., & Ideker, T. (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res, 13(11), 2498-2504. https://doi.org/10.1101/gr.1239303 Shay, J. W., & Bacchetti, S. (1997). A survey of telomerase activity in human cancer. Eur J Cancer, 33(5), 787-791. https://doi.org/10.1016/S0959-8049(97)00062-2 Sikorski, R. S., & Hieter, P. (1989). A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics, 122(1), 19-27. https://doi.org/10.1093/genetics/122.1.19 Sobinoff, A. P., Allen, J. A., Neumann, A. A., Yang, S. F., Walsh, M. E., Henson, J. D., Reddel, R. R., & Pickett, H. A. (2017). BLM and SLX4 play opposing roles in recombination-dependent replication at human telomeres. EMBO J, 36(19), 2907-2919. https://doi.org/10.15252/embj.201796889 Spies, M., & Fishel, R. (2015). Mismatch repair during homologous and homeologous recombination. Cold Spring Harb Perspect Biol, 7(3), a022657. https://doi.org/10.1101/cshperspect.a022657 Stavropoulos, D. J., Bradshaw, P. S., Li, X., Pasic, I., Truong, K., Ikura, M., Ungrin, M., & Meyn, M. S. (2002). The Bloom syndrome helicase BLM interacts with TRF2 in ALT cells and promotes telomeric DNA synthesis. Hum Mol Genet, 11(25), 3135-3144. https://doi.org/10.1093/hmg/11.25.3135 Studamire, B., Quach, T., & Alani, E. (1998). Saccharomyces cerevisiae Msh2p and Msh6p ATPase activities are both required during mismatch repair. Mol Cell Biol, 18(12), 7590-7601. https://doi.org/10.1128/MCB.18.12.7590 Sudarsanam, P., Iyer, V. R., Brown, P. O., & Winston, F. (2000). Whole-genome expression analysis of snf/swi mutants of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A, 97(7), 3364-3369. https://doi.org/10.1073/pnas.97.7.3364 Sugawara, N., Goldfarb, T., Studamire, B., Alani, E., & Haber, J. E. (2004). Heteroduplex rejection during single-strand annealing requires Sgs1 helicase and mismatch repair proteins Msh2 and Msh6 but not Pms1. Proc Natl Acad Sci U S A, 101(25), 9315-9320. https://doi.org/10.1073/pnas.0305749101 Teng, S.-C., Chang, J., McCowan, B., & Zakian, V. A. (2000). Telomerase-Independent Lengthening of Yeast Telomeres Occurs by an Abrupt Rad50p-Dependent, Rif-Inhibited Recombinational Process. Molecular Cell, 6(4), 947-952. https://doi.org/10.1016/s1097-2765(05)00094-8 Teng, S. C., & Zakian, V. A. (1999). Telomere-telomere recombination is an efficient bypass pathway for telomere maintenance in Saccharomyces cerevisiae. Mol Cell Biol, 19(12), 8083-8093. https://doi.org/10.1128/MCB.19.12.8083 Tsai, H. J., Huang, W. H., Li, T. K., Tsai, Y. L., Wu, K. J., Tseng, S. F., & Teng, S. C. (2006). Involvement of topoisomerase III in telomere-telomere recombination. J Biol Chem, 281(19), 13717-13723. https://doi.org/10.1074/jbc.M600649200 Tsai, Y. L., Tseng, S. F., Chang, S. H., Lin, C. C., & Teng, S. C. (2002). Involvement of replicative polymerases, Tel1p, Mec1p, Cdc13p, and the Ku complex in telomere-telomere recombination. Mol Cell Biol, 22(16), 5679-5687. https://doi.org/10.1128/MCB.22.16.5679-5687.2002 Tsukuda, T., Lo, Y. C., Krishna, S., Sterk, R., Osley, M. A., & Nickoloff, J. A. (2009). INO80-dependent chromatin remodeling regulates early and late stages of mitotic homologous recombination. DNA Repair (Amst), 8(3), 360-369. https://doi.org/10.1016/j.dnarep.2008.11.014 van Mourik, P. M., de Jong, J., Agpalo, D., Claussin, C., Rothstein, R., & Chang, M. (2016). Recombination-Mediated Telomere Maintenance in Saccharomyces cerevisiae Is Not Dependent on the Shu Complex. PLoS One, 11(3), e0151314. https://doi.org/10.1371/journal.pone.0151314 Wahba, L., Costantino, L., Tan, F. J., Zimmer, A., & Koshland, D. (2016). S1-DRIP-seq identifies high expression and polyA tracts as major contributors to R-loop formation. Genes Dev, 30(11), 1327-1338. https://doi.org/10.1101/gad.280834.116 Wang, K., Wang, H., Li, C., Yin, Z., Xiao, R., Li, Q., Xiang, Y., Wang, W., Huang, J., Chen, L., Fang, P., & Liang, K. (2021). Genomic profiling of native R loops with a DNA-RNA hybrid recognition sensor. Sci Adv, 7(8). https://doi.org/10.1126/sciadv.abe3516 Watson, J. D. (1972). Origin of concatemeric T7 DNA. Nat New Biol, 239(94), 197-201. https://doi.org/10.1038/newbio239197a0 Wu, G., Jiang, X., Lee, W.-H., & Chen, P.-L. (2003). Assembly of Functional ALT-associated Promyelocytic Leukemia Bodies Requires Nijmegen Breakage Syndrome 11. Cancer Research, 63(10), 2589-2595. Wu, G., Lee, W. H., & Chen, P. L. (2000). NBS1 and TRF1 colocalize at promyelocytic leukemia bodies during late S/G2 phases in immortalized telomerase-negative cells. Implication of NBS1 in alternative lengthening of telomeres. J Biol Chem, 275(39), 30618-30622. https://doi.org/10.1074/jbc.C000390200 Wu, X., & Wang, Z. (1999). Relationships between yeast Rad27 and Apn1 in response to apurinic/apyrimidinic (AP) sites in DNA. Nucleic Acids Res, 27(4), 956-962. https://doi.org/10.1093/nar/27.4.956 Wu, Y., Shin-ya, K., & Brosh, R. M., Jr. (2008). FANCJ helicase defective in Fanconia anemia and breast cancer unwinds G-quadruplex DNA to defend genomic stability. Mol Cell Biol, 28(12), 4116-4128. https://doi.org/10.1128/MCB.02210-07 Xu, Y., Kimura, T., & Komiyama, M. (2008). Human telomere RNA and DNA form an intermolecular G-quadruplex. Nucleic Acids Symp Ser (Oxf)(52), 169-170. https://doi.org/10.1093/nass/nrn086 Yeager, T. R., Neumann, A. A., Englezou, A., Huschtscha, L. I., Noble, J. R., & Reddel, R. R. (1999). Telomerase-negative Immortalized Human Cells Contain a Novel Type of Promyelocytic Leukemia (PML) Body1. Cancer Research, 59(17), 4175-4179. Yu, E. Y., Perez-Martin, J., Holloman, W. K., & Lue, N. F. (2015). Mre11 and Blm-Dependent Formation of ALT-Like Telomeres in Ku-Deficient Ustilago maydis. PLoS Genet, 11(10), e1005570. https://doi.org/10.1371/journal.pgen.1005570 Yu, T. Y., Kao, Y. W., & Lin, J. J. (2014). Telomeric transcripts stimulate telomere recombination to suppress senescence in cells lacking telomerase. Proc Natl Acad Sci U S A, 111(9), 3377-3382. https://doi.org/10.1073/pnas.1307415111 Zhang, J. Y., Zheng, K. W., Xiao, S., Hao, Y. H., & Tan, Z. (2014). Mechanism and manipulation of DNA:RNA hybrid G-quadruplex formation in transcription of G-rich DNA. J Am Chem Soc, 136(4), 1381-1390. https://doi.org/10.1021/ja4085572 Zhang, Z. Z., Pannunzio, N. R., Hsieh, C. L., Yu, K., & Lieber, M. R. (2015). Complexities due to single-stranded RNA during antibody detection of genomic rna:dna hybrids. BMC Res Notes, 8, 127. https://doi.org/10.1186/s13104-015-1092-1 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90314 | - |
| dc.description.abstract | 端粒對於維持染色體完整性至關重要,在DNA複製過程中的端粒縮短最會終導致細胞衰老。儘管大多數真核生物依賴端粒酶維持端粒長度,但一小部分細胞利用一種稱為 “alternative lengthening of telomeres” (ALT) 的重組機制恢復端粒長度。在酵母Saccharomyces cerevisiae中,缺乏端粒酶的倖存者通過同源重組恢復端粒長度,分為第一型型存活者 (Y' element複製,依賴RAD51路徑) 和第二型倖存者 (長而異質的TG序列,不仰賴RAD51)。先前的研究發現,“telomeric repeat-containing RNA” (TERRA) 和RNA-DNA hybrid在促進II型重組中扮演著重要角色。在本研究中,我們使用了兩種策略來篩選參與調控端粒重組的其他因子。在第一種策略中,我們篩選了具有核酸酶活性的蛋白質,並發現SAE2和RAD27的突變對tlc1細胞中的存活者形成產生影響。SAE2是人類CtIP的同源物,調控MRX (Mre11-Rad50-Xrs2) 複合物的內切酶活性。表達Sae2-D285P/K288P (缺乏Mre11調節活性) 無法拯救sae2 tlc1細胞中第二型端粒重組延遲形成的表型,表明Sae2通過調節MRX複合物的活性參與第二型端粒重組。Rad27是人類Fen1的同源物,參與移除岡崎片段的5' flap。缺乏RAD27會導致第二型倖存者提早產生。Rad27藉由切割RNA-DNA hybrid的5' flap,阻止TERRA和RNA-DNA hybrid在端粒上的累積,從而防止C-circle形成和第二型端粒重組。在第二種策略中,我們使用生物信息學和已發表的數據分析了蛋白作用網絡,發現mismatch repair (MMR) 因子和chromatin remodeler蛋白作為候選調節因子。MutSα (Msh2-Msh6) 和MutLα (Mlh1-Pms1) 的突變在tlc1細胞中會延遲第二型倖存者出現。儘管msh2 rad51 tlc1突變體仍然會產生第二型倖存者,這代表MMR對於第二型重組不是必需的,但MMR仍在抑制第一型重組和促進第二型重組中發揮作用。Chromatin remodeler中的INO80複合物突變體在我們的篩選中發現會促進第二型倖存者的形成。缺失INO80會降低tlc1細胞的細胞存活能力並加速端粒侵蝕。此外,ino80 tlc1細胞表現更高的TERRA表達量,表明INO80複合物在抑制TERRA表達方面發揮作用。 | zh_TW |
| dc.description.abstract | Telomeres are crucial for maintaining chromosome integrity, and their shortening during DNA replication leads to cellular senescence. While most eukaryotes rely on telomerase to maintain telomere length, a small fraction of cells employ a recombination-based mechanism called alternative lengthening of telomeres (ALT). In yeast, rare survivors lacking telomerase regain telomere length through homologous recombination, classified into type I survivors (amplified subtelomeric Y' elements, RAD51-dependent) and type II survivors (long heterogeneous TG sequences, RAD51-independent). Previous studies found that telomeric repeat-containing RNA (TERRA) and RNA-DNA hybrids play roles in promoting type II recombination. Here, we used two strategies to screen other factors involved in regulating telomere recombination. In the first strategy, we screened proteins with nuclease activities and identified SAE2 and RAD27 mutations affecting survivor formation in tlc1 cells. Sae2, the homolog of human CtIP, regulates the endonuclease activity of the MRX (Mre11-Rad50-Xrs2) complex. Expression of Sae2-D285P/K288P, a mutant with impaired Mre11 regulation activity, failed to rescue the late type II formation phenotype in sae2 tlc1 cells, indicating Sae2's contribution to type II recombination through regulation of MRX complex activities. Rad27, the homolog of human Fen1, participates in removing the 5' flap of Okazaki fragments. Depletion of RAD27 led to early formation of type II survivors. By cleaving the 5' flap of RNA-DNA hybrids, Rad27 inhibited TERRA and RNA-DNA hybrid accumulation on telomeres and preventing C-circle formation and type II recombination. In the second strategy, we analyzed the interaction network using bioinformatics and published data, identifying mismatch repair (MMR) factors and chromatin remodelers as candidate regulators. Mutations in MutSα (Msh2-Msh6) and MutLα (Mlh1-Pms1) exhibited a late onset of type II survivors in tlc1 cells. Although type II survivors still emerged in msh2 rad51 tlc1 mutants, indicating that MMR is not required for type II recombination, MMR played a role in inhibiting type I recombination and promoting type II recombination. Chromatin remodeler INO80 complex mutants promoted type II survivor formation in our screening. Depletion of INO80 decreased cell viability and accelerated telomere erosion in tlc1 cells. Additionally, ino80 tlc1 cells exhibited higher TERRA expression, suggesting that the INO80 complex played a role in inhibiting TERRA expression. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-26T16:13:36Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-26T16:13:37Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iii 目錄 iv 圖目錄 vii 表目錄 ix 縮寫檢索表 x 第一章 緒論 1 1.1. 端粒 (telomere) 與端粒酶 (telomerase) 1 1.2. ALT與端粒重組 2 1.3. 關於酵母菌老化倖存者的研究 3 第二章 研究方法 5 2.1. 材料 5 菌株 5 引子與探針 (primers and probes) 6 培養基 (medium) 11 緩衝液 13 2.2. 方法 15 大腸桿菌細胞轉型 (E. coli transformation) 15 PCR 基因型分型 (PCR genotyping) 15 質體製備 15 酵母菌細胞轉型 (yeast transformation) 16 酵母菌孢子切開術 (tetrad dissection) 17 交配型 (mating type) 確認法 17 酵母菌染色體 DNA 製備 18 端粒限制片段分析 (telomere restriction fragment (TRF) analysis) 18 端粒 C 環檢測 (C-circle assay;CCA) 21 酵母菌 TERRA 表現量分析 23 S9.6抗體純化 25 酵母菌 DNA-RNA 免疫沉澱分析 (DRIP) 26 酵母 TCA 蛋白萃取法 29 西方墨點分析 (Western blotting analysis) 29 第三章 研究結果 31 3.1. Screen of Nucleases 31 3.1.1. 剔除 SAE2 影響第二型倖存者形成 31 3.1.2. 過量表現 (overexpress) SAE2 促使端粒重組提前 33 3.1.3. Sae2透過調節MRX complex來影響第二型端粒重組 33 3.1.4. Rad27的nuclease活性抑制第二型重組的發生 34 3.1.5. Rad27參與抑制TERRA以及RNA-DNA hybrid形成 36 3.1.6. Rad27抑制C-circle累積 37 3.2. Screen for Telomeric Recombination-Related Proteins 39 3.2.1. 透過生物資訊學尋找參與端粒重組的潛在因子 39 3.2.2. Msh2-Msh6異源二聚體參與了第二型端粒重組的過程 40 3.2.3. MMR因子的突變損害了第二型倖存者的形成 41 3.2.4. MMR系統具有調節端粒重組的功能 42 3.2.5. MutSα的完整功能是調控第二型倖存者所必需 43 3.2.6. 倖存者的類型決策並不依賴於修復端粒重組中間體的異源雙螺旋體 44 3.2.7. 進行染色質重塑因子與倖存者的篩選分析 46 3.2.8. INO80的突變加速了端粒侵蝕並增強了TERRA的表達 47 第四章 結論與討論 49 參考文獻 54 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | TERRA | zh_TW |
| dc.subject | 端粒 | zh_TW |
| dc.subject | 第二型倖存者 | zh_TW |
| dc.subject | ALT | zh_TW |
| dc.subject | DNA錯配修復 | zh_TW |
| dc.subject | 染色質重塑蛋白 | zh_TW |
| dc.subject | Rad27 | zh_TW |
| dc.subject | R-loop | zh_TW |
| dc.subject | telomere | en |
| dc.subject | TERRA | en |
| dc.subject | R-loop | en |
| dc.subject | Rad27 | en |
| dc.subject | chromatin remodeler | en |
| dc.subject | mismatch repair | en |
| dc.subject | ALT | en |
| dc.subject | type II survivors | en |
| dc.title | 端粒酶缺乏之釀酒酵母之老化後期倖存者機制分析 | zh_TW |
| dc.title | Mechanistic Analysis of Post-senescent Survivors in Telomerase-deficient Saccharomyces cerevisiae | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 鄧述諄;冀宏源 ;朱雪萍;鄭子豪 | zh_TW |
| dc.contributor.oralexamcommittee | Shu-Chun Teng;Peter Chi;Hsueh-Ping Catherine Chu;Tzu-Hao Cheng | en |
| dc.subject.keyword | 端粒,第二型倖存者,ALT,DNA錯配修復,TERRA,R-loop,Rad27,染色質重塑蛋白, | zh_TW |
| dc.subject.keyword | telomere,ALT,mismatch repair,type II survivors,TERRA,R-loop,Rad27,chromatin remodeler, | en |
| dc.relation.page | 107 | - |
| dc.identifier.doi | 10.6342/NTU202302190 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-07-27 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 生物化學暨分子生物學研究所 | - |
| dc.date.embargo-lift | 2028-07-26 | - |
| 顯示於系所單位: | 生物化學暨分子生物學科研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 16.88 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
