請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90304完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 江伯倫 | zh_TW |
| dc.contributor.advisor | Bor-Luen Chiang | en |
| dc.contributor.author | 鄭亦晏 | zh_TW |
| dc.contributor.author | I-Yen Cheng | en |
| dc.date.accessioned | 2023-09-26T16:10:54Z | - |
| dc.date.available | 2025-08-09 | - |
| dc.date.copyright | 2023-09-26 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-09 | - |
| dc.identifier.citation | 1.Ayroldi, E., Bastianelli, A., Cannarile, L., Petrillo, M. G., Delfino, D. V., & Fierabracci, A. (2011). A pathogenetic approach to autoimmune skin disease therapy: psoriasis and biological drugs, unresolved issues, and future directions. Current Pharmaceutical Design, 17(29), 3176–3190.
2.Luckheeram, R. V., Zhou, R., Verma, A. D., & Xia, B. (2012). CD4⁺ T cells: differentiation and functions. Clinical & Developmental Immunology, 2012, 925135. 3.Tay, R. E., Richardson, E. K., & Toh, H. C. (2021). Revisiting the role of CD4+ T cells in cancer immunotherapy-new insights into old paradigms. Cancer Gene Therapy, 28(1-2), 5–17. 4.Wong, M. T., Ye, J. J., Alonso, M. N., Landrigan, A., Cheung, R. K., Engleman, E., & Utz, P. J. (2010). Regulation of human Th9 differentiation by type I interferons and IL-21. Immunology and Cell Biology, 88(6), 624–631. 5.Zhou, L., Chong, M. M., & Littman, D. R. (2009). Plasticity of CD4+ T cell lineage differentiation. Immunity, 30(5), 646–655. 6.Fontenot, J. D., Gavin, M. A., & Rudensky, A. Y. (2003). Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nature Immunology, 4(4), 330–336. 7.Chen, X., & Oppenheim, J. J. (2011). Resolving the identity myth: key markers of functional CD4+FoxP3+ regulatory T cells. International Immunopharmacology, 11(10), 1489–1496. 8.Atif, M., Warner, S., & Oo, Y. H. (2018). Linking the gut and liver: crosstalk between regulatory T cells and mucosa-associated invariant T cells. Hepatology International, 12(4), 305–314. 9.Schmidt, A., Oberle, N., & Krammer, P. H. (2012). Molecular mechanisms of Treg-mediated T cell suppression. Frontiers in Immunology, 3, 51. 10.Cheng, G., Yu, A., & Malek, T. R. (2011). T-cell tolerance and the multi-functional role of IL-2R signaling in T-regulatory cells. Immunological Reviews, 241(1), 63–76. 11.Yang, J. H., & Eun, S. C. (2017). Therapeutic application of T regulatory cells in composite tissue allotransplantation. Journal of Translational Medicine, 15(1), 218. 12.Sharabi, A., Tsokos, M. G., Ding, Y., Malek, T. R., Klatzmann, D., & Tsokos, G. C. (2018). Regulatory T cells in the treatment of disease. Nature Reviews Drug Discovery, 17(11), 823–844. 13.Ferreira, L., Muller, Y. D., Bluestone, J. A., & Tang, Q. (2019). Next-generation regulatory T cell therapy. Nature Reviews Drug Discovery, 18(10), 749–769. 14.Bluestone, J. A., & Tang, Q. (2018). Treg cells-the next frontier of cell therapy. Science (New York, N.Y.), 362(6411), 154–155. 15.Haribhai, D., Chatila, T. A., & Williams, C. B. (2016). Immunotherapy with iTreg and nTreg cells in a murine model of inflammatory bowel disease. Methods in Molecular Biology (Clifton, N.J.), 1422, 197–211. 16.Shevach, E. M., & Thornton, A. M. (2014). tTregs, pTregs, and iTregs: similarities and differences. Immunological Reviews, 259(1), 88–102. 17.Raffin, C., Vo, L. T., & Bluestone, J. A. (2020). Treg cell-based therapies: challenges and perspectives. Nature Reviews Immunology, 20(3), 158–172. 18.T.W. Mak, M.E. Saunders, and B.D. Jett, Editors. (2014) Chapter 10 - Regulation of immune responses in the periphery, in Primer to the Immune Response (Second Edition), p. 227-246. 19.Madeleine V. P, Nosratola D. V. (2020) Chapter 32 - Immune function in chronic kidney disease, in Chronic Renal Disease (Second Edition), p. 503-519 20.Chihara, N., Madi, A., Karwacz, K., Awasthi, A., & Kuchroo, V. K. (2016). Differentiation and characterization of Tr1 cells. Current Protocols in Immunology, 113, 3.27.1–3.27.10. 21.Roncarolo, M. G., Gregori, S., Bacchetta, R., & Battaglia, M. (2014). Tr1 cells and the counter-regulation of immunity: natural mechanisms and therapeutic applications. Current Topics in Microbiology and Immunology, 380, 39–68. 22.Yao, Y., Vent-Schmidt, J., McGeough, M. D., Wong, M., Hoffman, H. M., Steiner, T. S., & Levings, M. K. (2015). Tr1 cells, but not Foxp3+ regulatory T cells, suppress NLRP3 inflammasome activation via an IL-10-dependent mechanism. Journal of Immunology (Baltimore, Md.: 1950), 195(2), 488–497. 23.Chen, Y., Kuchroo, V. K., Inobe, J., Hafler, D. A., & Weiner, H. L. (1994). Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science (New York, N.Y.), 265(5176), 1237–1240. 24.Fukaura, H., Kent, S. C., Pietrusewicz, M. J., Khoury, S. J., Weiner, H. L., & Hafler, D. A. (1996). Induction of circulating myelin basic protein and proteolipid protein-specific transforming growth factor-beta1-secreting Th3 T cells by oral administration of myelin in multiple sclerosis patients. The Journal of Clinical Investigation, 98(1), 70–77. 25.Vignali, D. A., Collison, L. W., & Workman, C. J. (2008). How regulatory T cells work. Nature Reviews Immunology, 8(7), 523–532. 26.Meng, X., Yang, J., Dong, M., Zhang, K., Tu, E., Gao, Q., Chen, W., Zhang, C., & Zhang, Y. (2016). Regulatory T cells in cardiovascular diseases. Nature Reviews Cardiology, 13(3), 167–179. 27.Cao, X., Cai, S. F., Fehniger, T. A., Song, J., Collins, L. I., Piwnica-Worms, D. R., & Ley, T. J. (2007). Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance. Immunity, 27(4), 635–646. 28.Van Coillie, S., Wiernicki, B., & Xu, J. (2020). Molecular and cellular functions of CTLA-4. Advances in Experimental Medicine and Biology, 1248, 7–32. 29.Gertel, S., Polachek, A., Elkayam, O., & Furer, V. (2022). Lymphocyte activation gene-3 (LAG-3) regulatory T cells: An evolving biomarker for treatment response in autoimmune diseases. Autoimmunity Reviews, 21(6), 103085. 30.Liang, B., Workman, C., Lee, J., Chew, C., Dale, B. M., Colonna, L., Flores, M., Li, N., Schweighoffer, E., Greenberg, S., Tybulewicz, V., Vignali, D., & Clynes, R. (2008). Regulatory T cells inhibit dendritic cells by lymphocyte activation gene-3 engagement of MHC class II. Journal of Immunology (Baltimore, Md.: 1950), 180(9), 5916–5926. 31.Timperi, E., & Barnaba, V. (2021). CD39 Regulation and functions in T cells. International Journal of Molecular Sciences, 22(15), 8068. 32.Allard, B., Longhi, M. S., Robson, S. C., & Stagg, J. (2017). The ectonucleotidases CD39 and CD73: Novel checkpoint inhibitor targets. Immunological Reviews, 276(1), 121–144. 33.Borsellino, G., Kleinewietfeld, M., Di Mitri, D., Sternjak, A., Diamantini, A., Giometto, R., Höpner, S., Centonze, D., Bernardi, G., Dell'Acqua, M. L., Rossini, P. M., Battistini, L., Rötzschke, O., & Falk, K. (2007). Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood, 110(4), 1225–1232. 34.Asseman, C., Mauze, S., Leach, M. W., Coffman, R. L., & Powrie, F. (1999). An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. The Journal of Experimental Medicine, 190(7), 995–1004. 35.Chaudhry, A., Samstein, R. M., Treuting, P., Liang, Y., Pils, M. C., Heinrich, J. M., Jack, R. S., Wunderlich, F. T., Brüning, J. C., Müller, W., & Rudensky, A. Y. (2011). Interleukin-10 signaling in regulatory T cells is required for suppression of Th17 cell-mediated inflammation. Immunity, 34(4), 566–578. 36.Kehrl, J. H., Wakefield, L. M., Roberts, A. B., Jakowlew, S., Alvarez-Mon, M., Derynck, R., Sporn, M. B., & Fauci, A. S. (1986). Production of transforming growth factor beta by human T lymphocytes and its potential role in the regulation of T cell growth. The Journal of Experimental Medicine, 163(5), 1037–1050. 37.Lindqvist, C. A., Christiansson, L. H., Simonsson, B., Enblad, G., Olsson-Strömberg, U., & Loskog, A. S. (2010). T regulatory cells control T-cell proliferation partly by the release of soluble CD25 in patients with B-cell malignancies. Immunology, 131(3), 371–376. 38.Chien, C. H., & Chiang, B. L. (2017). Regulatory T cells induced by B cells: a novel subpopulation of regulatory T cells. Journal of Biomedical Science, 24(1), 86. 39.Chien, C. H., Yu, H. C., Chen, S. Y., & Chiang, B. L. (2017). Characterization of c-Maf+Foxp3- regulatory T cells induced by repeated stimulation of antigen-presenting B cells. Scientific Reports, 7, 46348. 40.Chien, C. H., Yu, H. H., & Chiang, B. L. (2015). Single allergen-induced oral tolerance inhibits airway inflammation in conjugated allergen immunized mice. The Journal of Allergy and Clinical Immunology, 136(4), 1110–3.e4. 41.Chu, K. H., & Chiang, B. L. (2012). Regulatory T cells induced by mucosal B cells alleviate allergic airway hypersensitivity. American Journal of Respiratory Cell and Molecular Biology, 46(5), 651–659. 42.Chen, S. Y., Hsu, W. T., Chen, Y. L., Chien, C. H., & Chiang, B. L. (2016). Lymphocyte-activation gene 3(+) (LAG3(+)) forkhead box protein 3(-) (FOXP3(-)) regulatory T cells induced by B cells alleviates joint inflammation in collagen-induced arthritis. Journal of Autoimmunity, 68, 75–85. 43.Wong, P. M., Yang, L., Yang, L., Wu, H., Li, W., Ma, X., Katayama, I., & Zhang, H. (2020). New insight into the role of exosomes in vitiligo. Autoimmunity Reviews, 19(11), 102664. 44.Pan, B. T., & Johnstone, R. M. (1983). Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell, 33(3), 967–978. 45.Hoshino, A., Costa-Silva, B., Shen, T. L., Rodrigues, G., Hashimoto, A., Tesic Mark, M., Molina, H., Kohsaka, S., Di Giannatale, A., Ceder, S., Singh, S., Williams, C., Soplop, N., Uryu, K., Pharmer, L., King, T., Bojmar, L., Davies, A. E., Ararso, Y., Zhang, T., … Lyden, D. (2015). Tumour exosome integrins determine organotropic metastasis. Nature, 527(7578), 329–335. 46.Wei, D., Zhan, W., Gao, Y., Huang, L., Gong, R., Wang, W., Zhang, R., Wu, Y., Gao, S., & Kang, T. (2021). RAB31 marks and controls an ESCRT-independent exosome pathway. Cell Research, 31(2), 157–177. 47.Gurung, S., Perocheau, D., Touramanidou, L., & Baruteau, J. (2021). The exosome journey: from biogenesis to uptake and intracellular signalling. Cell Communication and Signaling: CCS, 19(1), 47. 48.Kalluri, R., & LeBleu, V. S. (2020). The biology, function, and biomedical applications of exosomes. Science (New York, N.Y.), 367(6478), eaau6977. 49.Burtenshaw, D., Regan, B., Owen, K., Collins, D., McEneaney, D., Megson, I. L., Redmond, E. M., & Cahill, P. A. (2022). Exosomal composition, biogenesis and profiling using point-of-care diagnostics-implications for cardiovascular disease. Frontiers in Cell and Developmental Biology, 10, 853451. 50.Stenmark H. (2009). Rab GTPases as coordinators of vesicle traffic. Nature Reviews Molecular Cell Biology, 10(8), 513–525. 51.Zhang, Y., Liu, Y., Liu, H., & Tang, W. H. (2019). Exosomes: biogenesis, biologic function and clinical potential. Cell & Bioscience, 9, 19. 52.Jan, A. T., Rahman, S., Badierah, R., Lee, E. J., Mattar, E. H., Redwan, E. M., & Choi, I. (2021). Expedition into exosome biology: A perspective of progress from discovery to therapeutic development. Cancers, 13(5), 1157. 53.Zhang, H., Xie, Y., Li, W., Chibbar, R., Xiong, S., & Xiang, J. (2011). CD4(+) T cell-released exosomes inhibit CD8(+) cytotoxic T-lymphocyte responses and antitumor immunity. Cellular & Molecular Immunology, 8(1), 23–30. 54.Shin, S., Jung, I., Jung, D., Kim, C. S., Kang, S. M., Ryu, S., Choi, S. J., Noh, S., Jeong, J., Lee, B. Y., Park, J. K., Shin, J., Cho, H., Heo, J. I., Jeong, Y., Choi, S. H., Lee, S. Y., Baek, M. C., & Yea, K. (2022). Novel antitumor therapeutic strategy using CD4+ T cell-derived extracellular vesicles. Biomaterials, 289, 121765. 55.Hu, Z., Chen, G., Zhao, Y., Gao, H., Li, L., Yin, Y., Jiang, J., Wang, L., Mang, Y., Gao, Y., Zhang, S., Ran, J., & Li, L. (2023). Exosome-derived circCCAR1 promotes CD8+ T-cell dysfunction and anti-PD1 resistance in hepatocellular carcinoma. Molecular Cancer, 22(1), 55. 56.Chen, S. W., Zhu, S. Q., Pei, X., Qiu, B. Q., Xiong, D., Long, X., Lin, K., Lu, F., Xu, J. J., & Wu, Y. B. (2021). Cancer cell-derived exosomal circUSP7 induces CD8+ T cell dysfunction and anti-PD1 resistance by regulating the miR-934/SHP2 axis in NSCLC. Molecular Cancer, 20(1), 144. 57.Raposo, G., Nijman, H. W., Stoorvogel, W., Liejendekker, R., Harding, C. V., Melief, C. J., & Geuze, H. J. (1996). B lymphocytes secrete antigen-presenting vesicles. The Journal of Experimental Medicine, 183(3), 1161–1172. 58.Utsugi-Kobukai, S., Fujimaki, H., Hotta, C., Nakazawa, M., & Minami, M. (2003). MHC class I-mediated exogenous antigen presentation by exosomes secreted from immature and mature bone marrow derived dendritic cells. Immunology Letters, 89(2-3), 125–131. 59.André, F., Chaput, N., Schartz, N. E., Flament, C., Aubert, N., Bernard, J., Lemonnier, F., Raposo, G., Escudier, B., Hsu, D. H., Tursz, T., Amigorena, S., Angevin, E., & Zitvogel, L. (2004). Exosomes as potent cell-free peptide-based vaccine. I. Dendritic cell-derived exosomes transfer functional MHC class I/peptide complexes to dendritic cells. Journal of Immunology (Baltimore, Md.: 1950), 172(4), 2126–2136. 60.Azimi, M., Ghabaee, M., Moghadasi, A. N., Noorbakhsh, F., & Izad, M. (2018). Immunomodulatory function of Treg-derived exosomes is impaired in patients with relapsing-remitting multiple sclerosis. Immunologic Research, 66(4), 513–520. 61.Smyth, L. A., Ratnasothy, K., Tsang, J. Y., Boardman, D., Warley, A., Lechler, R., & Lombardi, G. (2013). CD73 expression on extracellular vesicles derived from CD4+ CD25+ Foxp3+ T cells contributes to their regulatory function. European Journal of Immunology, 43(9), 2430–2440. 62.Schuler, P. J., Saze, Z., Hong, C. S., Muller, L., Gillespie, D. G., Cheng, D., Harasymczuk, M., Mandapathil, M., Lang, S., Jackson, E. K., & Whiteside, T. L. (2014). Human CD4+ CD39+ regulatory T cells produce adenosine upon co-expression of surface CD73 or contact with CD73+ exosomes or CD73+ cells. Clinical and Experimental Immunology, 177(2), 531–543. 63.Okoye, I. S., Coomes, S. M., Pelly, V. S., Czieso, S., Papayannopoulos, V., Tolmachova, T., Seabra, M. C., & Wilson, M. S. (2014). MicroRNA-containing T-regulatory-cell-derived exosomes suppress pathogenic T helper 1 cells. Immunity, 41(1), 89–103. 64.Tung, S. L., Boardman, D. A., Sen, M., Letizia, M., Peng, Q., Cianci, N., Dioni, L., Carlin, L. M., Lechler, R., Bollati, V., Lombardi, G., & Smyth, L. A. (2018). Regulatory T cell-derived extracellular vesicles modify dendritic cell function. Scientific Reports, 8(1), 6065. 65.Chen, J., Huang, F., Hou, Y., Lin, X., Liang, R., Hu, X., Zhao, J., Wang, J., Olsen, N., & Zheng, S. G. (2021). TGF-β-induced CD4+ FoxP3+ regulatory T cell-derived extracellular vesicles modulate Notch1 signaling through miR-449a and prevent collagen-induced arthritis in a murine model. Cellular & Molecular Immunology, 18(11), 2516–2529. 66.Aiello, S., Rocchetta, F., Longaretti, L., Faravelli, S., Todeschini, M., Cassis, L., Pezzuto, F., Tomasoni, S., Azzollini, N., Mister, M., Mele, C., Conti, S., Breno, M., Remuzzi, G., Noris, M., & Benigni, A. (2017). Extracellular vesicles derived from T regulatory cells suppress T cell proliferation and prolong allograft survival. Scientific Reports, 7(1), 11518. 67.Campos-Mora, M., De Solminihac, J., Rojas, C., Padilla, C., Kurte, M., Pacheco, R., Kaehne, T., Wyneken, Ú., & Pino-Lagos, K. (2022). Neuropilin-1 is present on Foxp3+ T regulatory cell-derived small extracellular vesicles and mediates immunity against skin transplantation. Journal of Extracellular Vesicles, 11(6), e12237. 68.Théry, C., Amigorena, S., Raposo, G., & Clayton, A. (2006). Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Current protocols in Cell Biology, Chapter 3. 69.Flaherty, S., & Reynolds, J. M. (2015). Mouse naïve CD4+ T cell isolation and in vitro differentiation into T cell subsets. Journal of Visualized Experiments: JoVE, (98), 52739. 70.Watanabe, H., Numata, K., Ito, T., Takagi, K., & Matsukawa, A. (2004). Innate immune response in Th1- and Th2-dominant mouse strains. Shock (Augusta, Ga.), 22(5), 460–466. 71.Hori, S., Nomura, T., & Sakaguchi, S. (2003). Control of regulatory T cell development by the transcription factor Foxp3. Science (New York, N.Y.), 299(5609), 1057–1061. 72.Jin, Y., Chen, X., Podolsky, R., Hopkins, D., Makala, L. H., Muir, A., & She, J. X. (2009). APC dysfunction is correlated with defective suppression of T cell proliferation in human type 1 diabetes. Clinical Immunology (Orlando, Fla.), 130(3), 272–279. 73.Golovina, T. N., Mikheeva, T., Suhoski, M. M., Aqui, N. A., Tai, V. C., Shan, X., Liu, R., Balcarcel, R. R., Fisher, N., Levine, B. L., Carroll, R. G., Warner, N., Blazar, B. R., June, C. H., & Riley, J. L. (2008). CD28 costimulation is essential for human T regulatory expansion and function. Journal of Immunology (Baltimore, Md : 1950), 181(4), 2855–2868. 74.Huang, J. H., Lin, Y. L., Wang, L. C., & Chiang, B. L. (2023). M2-like macrophages polarized by Foxp3- Treg-of-B cells ameliorate imiquimod-induced psoriasis. Journal of Cellular and Molecular Medicine, 27(11), 1477–1492. 75.Mathieu, M., Névo, N., Jouve, M., Valenzuela, J. I., Maurin, M., Verweij, F. J., Palmulli, R., Lankar, D., Dingli, F., Loew, D., Rubinstein, E., Boncompain, G., Perez, F., & Théry, C. (2021). Specificities of exosome versus small ectosome secretion revealed by live intracellular tracking of CD63 and CD9. Nature Communications, 12(1), 4389. 76.Fordjour, F. K., Guo, C., Ai, Y., Daaboul, G. G., & Gould, S. J. (2022). A shared, stochastic pathway mediates exosome protein budding along plasma and endosome membranes. The Journal of Biological Chemistry, 298(10), 102394. 77.Shao, H., Im, H., Castro, C. M., Breakefield, X., Weissleder, R., & Lee, H. (2018). New technologies for analysis of extracellular vesicles. Chemical Reviews, 118(4), 1917–1950. 78.Patel, G. K., Khan, M. A., Zubair, H., Srivastava, S. K., Khushman, M., Singh, S., & Singh, A. P. (2019). Comparative analysis of exosome isolation methods using culture supernatant for optimum yield, purity and downstream applications. Scientific Reports, 9(1), 5335. 79.Horibe, S., Tanahashi, T., Kawauchi, S., Murakami, Y., & Rikitake, Y. (2018). Mechanism of recipient cell-dependent differences in exosome uptake. BMC Cancer, 18(1), 47. 80.Colombo, M., Raposo, G., & Théry, C. (2014). Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annual Review of Cell and Developmental Biology, 30, 255–289. 81.Li, D., Liu, J., Guo, B., Liang, C., Dang, L., Lu, C., He, X., Cheung, H. Y., Xu, L., Lu, C., He, B., Liu, B., Shaikh, A. B., Li, F., Wang, L., Yang, Z., Au, D. W., Peng, S., Zhang, Z., Zhang, B. T., … Zhang, G. (2016). Osteoclast-derived exosomal miR-214-3p inhibits osteoblastic bone formation. Nature Communications, 7, 10872. 82.Yan, C., Chen, J., Wang, C., Yuan, M., Kang, Y., Wu, Z., Li, W., Zhang, G., Machens, H. G., Rinkevich, Y., Chen, Z., Yang, X., & Xu, X. (2022). Milk exosomes-mediated miR-31-5p delivery accelerates diabetic wound healing through promoting angiogenesis. Drug Delivery, 29(1), 214–228. 83.Zheng, P., Chen, L., Yuan, X., Luo, Q., Liu, Y., Xie, G., Ma, Y., & Shen, L. (2017). Exosomal transfer of tumor-associated macrophage-derived miR-21 confers cisplatin resistance in gastric cancer cells. Journal of Experimental & Clinical Cancer Research: CR, 36(1), 53. 84.Yang, F., Yang, Y., Chen, Y., Li, G., Zhang, G., Chen, L., Zhang, Z., Mai, Q., & Zeng, G. (2021). MiR-21 is remotely governed by the commensal bacteria and impairs anti-TB immunity by down-regulating IFN-γ. Frontiers in Microbiology, 11, 512581. 85.Bu, Y. M., Zheng, D. Z., Wang, L., & Liu, J. (2017). Abrasive endoprosthetic wear particles inhibit IFN-γ secretion in human monocytes via upregulating TNF-α-induced miR-29b. Inflammation, 40(1), 166–173. 86.Sambucci, M., Gargano, F., Guerrera, G., Battistini, L., & Borsellino, G. (2019). One, no one, and one hundred thousand: T regulatory cells' multiple identities in neuroimmunity. Frontiers in Immunology, 10, 2947. 87.Noval Rivas, M., Burton, O. T., Wise, P., Charbonnier, L. M., Georgiev, P., Oettgen, H. C., Rachid, R., & Chatila, T. A. (2015). Regulatory T cell reprogramming toward a Th2-cell-like lineage impairs oral tolerance and promotes food allergy. Immunity, 42(3), 512–523. 88.Jadli, A. S., Ballasy, N., Edalat, P., & Patel, V. B. (2020). Inside(sight) of tiny communicator: exosome biogenesis, secretion, and uptake. Molecular and Cellular Biochemistry, 467(1-2), 77–94. 89.Wu, Y., Wu, W., Wong, W. M., Ward, E., Thrasher, A. J., Goldblatt, D., Osman, M., Digard, P., Canaday, D. H., & Gustafsson, K. (2009). Human gamma delta T cells: a lymphoid lineage cell capable of professional phagocytosis. Journal of Immunology (Baltimore, Md.: 1950), 183(9), 5622–5629. 90.Cevaal, P. M., Ali, A., Czuba-Wojnilowicz, E., Symons, J., Lewin, S. R., Cortez-Jugo, C., & Caruso, F. (2021). In vivo T cell-targeting nanoparticle drug delivery systems: considerations for rational design. ACS Nano, 15(3), 3736–3753. 91.Varkouhi, A. K., Scholte, M., Storm, G., & Haisma, H. J. (2011). Endosomal escape pathways for delivery of biologicals. Journal of Controlled Release: Official Journal of the Controlled Release Society, 151(3), 220–228. 92.He, C., Zheng, S., Luo, Y., & Wang, B. (2018). Exosome theranostics: biology and translational medicine. Theranostics, 8(1), 237–255. 93.Wu, P., Zhang, B., Shi, H., Qian, H., & Xu, W. (2018). MSC-exosome: A novel cell-free therapy for cutaneous regeneration. Cytotherapy, 20(3), 291–301. 94.Duan, L., Xu, L., Xu, X., Qin, Z., Zhou, X., Xiao, Y., Liang, Y., & Xia, J., (2021). Exosome-mediated delivery of gene vectors for gene therapy. Nanoscale, 13(3), 1387–1397. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90304 | - |
| dc.description.abstract | 調節性T細胞是一群具有免疫抑制能力的T細胞。透過表達Foxp3轉錄因子,他們抑制致病性T細胞增殖或過度活化以維持免疫系統的穩定狀態。因此,調節性T細胞也被用於治療過敏、自體免疫疾病等免疫療法。在我們實驗室先前的研究中發現了當B細胞和CD4+CD25- T細胞共培養後會誘導出一群不表現Foxp3的調節性T細胞,我們將它們命名為「B細胞誘導之調節性T細胞 (Treg-of-B)」。在體外增殖的實驗中我們證明B細胞誘導之調節性T細胞具有抑制CD4+ T細胞增生的能力,我們將重心放在探討其誘發免疫抑制的機制上。首先,我們利用流式細胞儀分析分離自小鼠脾臟的B細胞及CD4+CD25- T細胞,確認細胞純度達90%以上,接著也分析了培養後的B細胞誘導之調節性T細胞標誌,結果證明我們建立了穩定且良好的培養系統用於體外生成B細胞誘導之調節性T細胞。另一方面,有研究指出調節性T細胞的外泌體參與在其免疫抑制能力中,因此,我們也想了解B細胞誘導之調節性T細胞來源之外泌體是否對抑制T細胞增殖有所貢獻。培養B細胞誘導之調節性T細胞後我們以額外的抗CD3和抗CD28抗體或是骨髓源性巨噬細胞再刺激B細胞誘導之調節性T細胞,並透過超高速離心法純化外泌體。這些外泌體除了表現特異性標誌如CD9和CD63外,也表達調節性T細胞相關抑制分子,如LAG3、PD-1和CD39,並進一步用於研究對CD4+ T細胞增生的影響。結果顯示,B細胞誘導之調節性T細胞來源之外泌體僅能些微降低Th1細胞增殖,但無法有效抑制稚幼CD4+ T細胞和Th2細胞。然而,B細胞誘導之調節性T細胞來源之外泌體被證明能顯著損害Th1細胞產生IFN-γ。這些數據支持B細胞誘導之調節性T細胞來源之外泌體在第一型免疫反應疾病中的潛在治療能力。 | zh_TW |
| dc.description.abstract | Regulatory T cells are a group of T cells with immunosuppressive abilities. By expressing the Foxp3 transcription factor, they perform immunoregulatory functions and suppress the proliferation or hyperactivation of pathogenic T cells to maintain homeostasis. Therefore, regulatory T cells were used as immunotherapy to treat allergies, autoimmune diseases, etc. In our previous studies, it was found that when B cells and CD4+CD25- T cells were co-cultured, it could induce a subtype of regulatory T cells which did not express Foxp3, named "B-cell-induced regulatory T cells," also called Treg-of-B cells. In in vitro proliferative experiments, we demonstrated that Treg-of-B cells have the ability to inhibit the proliferation of CD4+ T cells. We focused on exploring the mechanism of their immunosuppressive capability. First, we analyzed B cells and CD4+CD25- T cells isolated from mice spleen by flow cytometry and confirmed that the cell purity was over 90%. Then we also examined the Treg-of-B markers after culture. The results proved that we have established a stable and sound culture system for in vitro generation of Treg-of-B cells. On the other hand, some studies have pointed out that the exosomes of regulatory T cells are involved in their immunosuppressive ability. Therefore, we want to understand whether the exosomes derived from Treg-of-B cells contributed to the suppression of T cell proliferation. After culturing Treg-of-B cells, we restimulated them with plate-bond anti-CD3 and anti-CD28 antibodies or bone marrow-derived macrophages and then purified exosomes by ultracentrifugation. In addition to expression of specific signs such as CD9 and CD63, Treg-of-B cell-derived exosomes expressed regulatory T cell-related inhibitory molecules, such as LAG3, PD-1, and CD39. They were further used to investigate the effect on CD4+ T cell proliferation. The results showed that Treg-of-B cell-derived exosomes could only slightly reduce the proliferation of Th1 cells but not effectively inhibit naïve CD4+ T cells and Th2 cells. Nonetheless, Treg-of-B cell-derived exosomes were revealed to significantly impair IFN-γ production by Th1 cells. These data supported the potential therapeutic capacity of Treg-of-B cell-derived exosomes in type 1 immune diseases. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-26T16:10:54Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-26T16:10:54Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 I
中文摘要 III Abstract IV Content VI Content of Figures XI Chapter 1. Introduction 1 PartⅠ. Background 2 1.Overview of regulatory T cells 2 1.1 CD4+ T cell differentiation 2 1.2 Regulatory T cells (Treg) 2 1.2.1 Characterization of regulatory T cells 2 1.2.2 Regulatory T cells population 3 1.2.3 Mechanisms of regulatory T cell suppression 4 1.3 B cell-induced regulatory T cells (Treg-of-B cells) 6 1.3.1 Characterization of Treg-of-B cells 6 1.3.2 Application of Treg-of-B cells 6 2. Overview of exosomes 7 2.1 Origin and characterization of exosomes 7 2.2 Exosomes and immune response 8 2.3 Regulatory T cell-derived exosomes 10 Part II. Statement of the Motives 12 Part III. Study Aims 13 Chapter 2. Materials and Methods 14 PartⅠ. Materials 15 1.Animals 15 2.Culture medium and buffer 15 3.EasySepTM system 17 4.BD IMagTM system 17 5.Cytokines, monoclonal antibodies, and mitogen 17 6.Flow cytometry 18 7.Protein quantification 20 8.Enzyme-linked immunosorbent assay (ELISA) 20 9.RNA extraction 20 10.Reverse transcriptase polymerase chain reaction (RT-PCR) 21 11.Real-time polymerase chain reaction / quantitative polymerase chain reaction (qPCR) 21 Part II. Methods 22 1.Culture of Treg-of-B cells 22 1.1 Preparation of splenocytes 22 1.2 B220+ B cells and CD4+CD25- T cells isolation 22 1.3 In vitro generation of Treg-of-B cells 23 2.Culture of bone marrow-derived macrophages 23 2.1 Preparation of bone marrow cells 23 2.2 Bone marrow-derived macrophages (BMDM) differentiation 24 2.3 Co-culture of bone marrow-derived macrophages and Treg-of-B cells 24 3.Flow cytometry 24 3.1 Flow cytometry to identify cells 24 3.2 Flow cytometry to identify exosome 25 4.[3H]-incorporation assay 25 5.The purification of exosomes 26 6.Culture of Th1 cells and Th2 cells 27 6.1 Preparation of consumables and reagents 27 6.2 Isolation of CD4+CD25- T cells 27 6.3 In vitro differentiation 27 6.4 Analysis 28 7.Enzyme-linked immunosorbent assay (ELISA) 29 8.RNA extraction 30 9.Reverse transcriptase polymerase chain reaction (RT-PCR) 30 10.Real-time polymerase chain reaction / quantitative polymerase chain reaction (qPCR) 30 11. Statistical analysis 31 Chapter 3. Results 32 1.The purity of B220+ B cells, CD4+CD25- T cells, and CD4+CD25+ T cells 33 2.Markers expression on CD4+CD25+ T cells and Treg-of-B cells 33 3.Cytokine profile of nTreg and Treg-of-B cell 34 4.Treg-of-B cells suppress CD4+ T cells in the presence of APC 35 5.Differentiation of bone marrow-derived macrophages (BMDMs) 36 6.The conditioned medium of Treg-of-B cells restimulated could not suppress the proliferation of CD4+ T cells 37 7.Size distribution of exosomes derived from Treg-of-B cells 37 8.Surface markers of exosomes derived from Treg-of-B cells 39 9.Treg-of-B cell-derived exosomes failed to suppress CD4+CD25- T cell proliferation. 40 10.In vitro differentiation of Th1 cells and Th2 cells 41 11.Treg-of-B cells reduced Th1 and Th2 cell proliferation in the presence of APC, whereas their restimulated conditioned medium failed 42 12.Treg-of-B cell-derived exosomes slightly suppressed Th1 cells proliferation without dose effect 42 13.Treg-of-B cell-derived exosomes affected IFN-γ production of Th1 cells 43 Chapter 4. Discussion 45 Figures 54 Reference 75 | - |
| dc.language.iso | en | - |
| dc.subject | 免疫調節 | zh_TW |
| dc.subject | 調節性T細胞 | zh_TW |
| dc.subject | B細胞誘導之調節性T細胞 | zh_TW |
| dc.subject | 外泌體 | zh_TW |
| dc.subject | 免疫療法 | zh_TW |
| dc.subject | immunomodulation | en |
| dc.subject | Regulatory T cells | en |
| dc.subject | immunotherapy | en |
| dc.subject | exosome | en |
| dc.subject | Treg-of-B cells | en |
| dc.title | 探討B細胞誘發調節性T細胞外泌體之抑制作用 | zh_TW |
| dc.title | Study on the suppressive effects of exosomes derived from Treg-of-B-cells | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 柯俊榮;何佳安 | zh_TW |
| dc.contributor.oralexamcommittee | Chun-Jung Ko;Ja-An Annie Ho | en |
| dc.subject.keyword | 調節性T細胞,B細胞誘導之調節性T細胞,外泌體,免疫調節,免疫療法, | zh_TW |
| dc.subject.keyword | Regulatory T cells,Treg-of-B cells,exosome,immunomodulation,immunotherapy, | en |
| dc.relation.page | 85 | - |
| dc.identifier.doi | 10.6342/NTU202303631 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-08-09 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 免疫學研究所 | - |
| dc.date.embargo-lift | 2025-08-09 | - |
| 顯示於系所單位: | 免疫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 3.92 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
