請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90295
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳玉怜 | zh_TW |
dc.contributor.advisor | Yuh-Lien Chen | en |
dc.contributor.author | 虞景筌 | zh_TW |
dc.contributor.author | Chiang-Chuan Yu | en |
dc.date.accessioned | 2023-09-26T16:08:29Z | - |
dc.date.available | 2023-11-10 | - |
dc.date.copyright | 2023-09-26 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-08 | - |
dc.identifier.citation | Afshin, A., M. H. Forouzanfar, M. B. Reitsma, P. Sur, K. Estep et al., 2017 Health Effects of Overweight and Obesity in 195 Countries over 25 Years. N Engl J Med 377: 13-27.
Aird, W. C., 2003 Endothelial cell heterogeneity. Crit Care Med 31: S221-230. Al-Kindi, S. G., R. D. Brook, S. Biswal and S. Rajagopalan, 2020 Environmental determinants of cardiovascular disease: lessons learned from air pollution. Nat Rev Cardiol 17: 656-672. Allende-Vigo, M. Z., 2010 Pathophysiologic mechanisms linking adipose tissue and cardiometabolic risk. Endocr Pract 16: 692-698. Alzoubi, K. H., F. A. Mayyas, R. Mahafzah and O. F. Khabour, 2018 Melatonin prevents memory impairment induced by high-fat diet: Role of oxidative stress. Behav Brain Res 336: 93-98. Atkinson, R. W., I. C. Mills, H. A. Walton and H. R. Anderson, 2015 Fine particle components and health--a systematic review and meta-analysis of epidemiological time series studies of daily mortality and hospital admissions. J Expo Sci Environ Epidemiol 25: 208-214. Bai, Y. Y., and J. Z. Niu, 2020 miR‑222 regulates brain injury and inflammation following intracerebral hemorrhage by targeting ITGB8. Mol Med Rep 21: 1145-1153. Banduseela, V. C., Y. W. Chen, H. G. Kultima, H. S. Norman, S. Aare et al., 2013 Impaired autophagy, chaperone expression, and protein synthesis in response to critical illness interventions in porcine skeletal muscle. Physiol Genomics 45: 477-486. Barton, M., O. Baretella and M. R. Meyer, 2012 Obesity and risk of vascular disease: importance of endothelium-dependent vasoconstriction. Br J Pharmacol 165: 591-602. Bocheva, G., R. M. Slominski, Z. Janjetovic, T. K. Kim, M. Böhm et al., 2022 Protective Role of Melatonin and Its Metabolites in Skin Aging. Int J Mol Sci 23. Bui, T. M., H. L. Wiesolek and R. Sumagin, 2020 ICAM-1: A master regulator of cellular responses in inflammation, injury resolution, and tumorigenesis. J Leukoc Biol 108: 787-799. Cardinali, D. P., M. G. Ladizesky, V. Boggio, R. A. Cutrera and C. Mautalen, 2003 Melatonin effects on bone: experimental facts and clinical perspectives. J Pineal Res 34: 81-87. Carta, G., E. Murru, S. Banni and C. Manca, 2017 Palmitic Acid: Physiological Role, Metabolism and Nutritional Implications. Front Physiol 8: 902. Chan, N. C., A. M. Salazar, A. H. Pham, M. J. Sweredoski, N. J. Kolawa et al., 2011 Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy. Hum Mol Genet 20: 1726-1737. Chazotte, B., 2011 Labeling mitochondria with MitoTracker dyes. Cold Spring Harb Protoc 2011: 990-992. Chen, Y., Q. Li, Q. Li, S. Xing, Y. Liu et al., 2020 p62/SQSTM1, a Central but Unexploited Target: Advances in Its Physiological/Pathogenic Functions and Small Molecular Modulators. J Med Chem 63: 10135-10157. Chen, Y., C. Liu, P. Zhou, J. Li, X. Zhao et al., 2021 Coronary Endothelium No-Reflow Injury Is Associated with ROS-Modified Mitochondrial Fission through the JNK-Drp1 Signaling Pathway. Oxid Med Cell Longev 2021: 6699516. Cheng, X., H. Zhou, Y. Zhou and C. Song, 2022 M2 Macrophage-Derived Exosomes Inhibit Apoptosis of HUVEC Cell through Regulating miR-221-3p Expression. Biomed Res Int 2022: 1609244. Chooi, Y. C., C. Ding and F. Magkos, 2019 The epidemiology of obesity. Metabolism 92: 6-10. Collaborators, 2018 Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392: 1736-1788. Collaborators, G. R. F., 2020 Global burden of 87 risk factors in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 396: 1223-1249. Cui, J., Z. Li, S. Zhuang, S. Qi, L. Li et al., 2018 Melatonin alleviates inflammation-induced apoptosis in human umbilical vein endothelial cells via suppression of Ca(2+)-XO-ROS-Drp1-mitochondrial fission axis by activation of AMPK/SERCA2a pathway. Cell Stress Chaperones 23: 281-293. da Costa, R. M., R. S. Fais, C. R. P. Dechandt, P. Louzada-Junior, L. C. Alberici et al., 2017 Increased mitochondrial ROS generation mediates the loss of the anti-contractile effects of perivascular adipose tissue in high-fat diet obese mice. Br J Pharmacol 174: 3527-3541. Deng, Y., S. Li, Z. Chen, W. Wang, B. Geng et al., 2021 Mdivi-1, a mitochondrial fission inhibitor, reduces angiotensin-II- induced hypertension by mediating VSMC phenotypic switch. Biomed Pharmacother 140: 111689. Denli, A. M., B. B. Tops, R. H. Plasterk, R. F. Ketting and G. J. Hannon, 2004 Processing of primary microRNAs by the Microprocessor complex. Nature 432: 231-235. Eisner, V., M. Picard and G. Hajnóczky, 2018 Mitochondrial dynamics in adaptive and maladaptive cellular stress responses. Nat Cell Biol 20: 755-765. Eleutherio, E. C. A., R. S. Silva Magalhães, A. de Araújo Brasil, J. R. Monteiro Neto and L. de Holanda Paranhos, 2021 SOD1, more than just an antioxidant. Arch Biochem Biophys 697: 108701. Engin, A. B., 2017 What Is Lipotoxicity? Adv Exp Med Biol 960: 197-220. Esposito, E., and S. Cuzzocrea, 2010 Antiinflammatory activity of melatonin in central nervous system. Curr Neuropharmacol 8: 228-242. Esquela-Kerscher, A., and F. J. Slack, 2006 Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer 6: 259-269. Fisher, C. R., A. A. Shaaeli, M. C. Ebeling, S. R. Montezuma and D. A. Ferrington, 2022 Investigating mitochondrial fission, fusion, and autophagy in retinal pigment epithelium from donors with age-related macular degeneration. Sci Rep 12: 21725. Flynn, J. M., and S. Melov, 2013 SOD2 in mitochondrial dysfunction and neurodegeneration. Free Radic Biol Med 62: 4-12. Gao, M., C. Liang, W. Hong, X. Yu, Y. Zhou et al., 2022 Biomass-related PM2.5 induces mitochondrial fragmentation and dysfunction in human airway epithelial cells. Environ Pollut 292: 118464. García-Navarro, A., C. González-Puga, G. Escames, L. C. López, A. López et al., 2007 Cellular mechanisms involved in the melatonin inhibition of HT-29 human colon cancer cell proliferation in culture. J Pineal Res 43: 195-205. Gatica, D., V. Lahiri and D. J. Klionsky, 2018 Cargo recognition and degradation by selective autophagy. Nat Cell Biol 20: 233-242. Geng, J., H. Liu, P. Ge, T. Hu, Y. Zhang et al., 2019 PM2.5 promotes plaque vulnerability at different stages of atherosclerosis and the formation of foam cells via TLR4/MyD88/NFκB pathway. Ecotoxicol Environ Saf 176: 76-84. Ghosh, A., L. Gao, A. Thakur, P. M. Siu and C. W. K. Lai, 2017 Role of free fatty acids in endothelial dysfunction. J Biomed Sci 24: 50. Glick, D., S. Barth and K. F. Macleod, 2010 Autophagy: cellular and molecular mechanisms. J Pathol 221: 3-12. Guan, L., X. Geng, C. Stone, E. E. P. Cosky, Y. Ji et al., 2019 PM(2.5) exposure induces systemic inflammation and oxidative stress in an intracranial atherosclerosis rat model. Environ Toxicol 34: 530-538. Guo, C., L. Sun, X. Chen and D. Zhang, 2013 Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen Res 8: 2003-2014. Guohua, F., Z. Tieyuan, M. Xinping and X. Juan, 2021 Melatonin protects against PM2.5-induced lung injury by inhibiting ferroptosis of lung epithelial cells in a Nrf2-dependent manner. Ecotoxicol Environ Saf 223: 112588. Haberzettl, P., T. E. O'Toole, A. Bhatnagar and D. J. Conklin, 2016 Exposure to Fine Particulate Air Pollution Causes Vascular Insulin Resistance by Inducing Pulmonary Oxidative Stress. Environ Health Perspect 124: 1830-1839. Hamanaka, R. B., and N. S. Chandel, 2010 Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends Biochem Sci 35: 505-513. He, L., Y. Li, D. Zhang, H. Song, D. Xu et al., 2022 Dapagliflozin improves endothelial cell dysfunction by regulating mitochondrial production via the SIRT1/PGC-1α pathway in obese mice. Biochem Biophys Res Commun 615: 123-130. Hu, G., A. Y. Gong, J. Liu, R. Zhou, C. Deng et al., 2010 miR-221 suppresses ICAM-1 translation and regulates interferon-gamma-induced ICAM-1 expression in human cholangiocytes. Am J Physiol Gastrointest Liver Physiol 298: G542-550. Jaffe, E. A., 1987 Cell biology of endothelial cells. Hum Pathol 18: 234-239. Jansen, F., X. Yang, K. Baumann, D. Przybilla, T. Schmitz et al., 2015 Endothelial microparticles reduce ICAM-1 expression in a microRNA-222-dependent mechanism. J Cell Mol Med 19: 2202-2214. Jiang, J., Y. Li, S. Liang, B. Sun, Y. Shi et al., 2020 Combined exposure of fine particulate matter and high-fat diet aggravate the cardiac fibrosis in C57BL/6J mice. J Hazard Mater 391: 122203. Jiang, J., S. Liang, J. Zhang, Z. Du, Q. Xu et al., 2021 Melatonin ameliorates PM(2.5) -induced cardiac perivascular fibrosis through regulating mitochondrial redox homeostasis. J Pineal Res 70: e12686. Khaminets, A., C. Behl and I. Dikic, 2016 Ubiquitin-Dependent And Independent Signals In Selective Autophagy. Trends Cell Biol 26: 6-16. Khan, M. J., M. Rizwan Alam, M. Waldeck-Weiermair, F. Karsten, L. Groschner et al., 2012 Inhibition of autophagy rescues palmitic acid-induced necroptosis of endothelial cells. J Biol Chem 287: 21110-21120. Kilinç, E., R. Van Oerle, J. I. Borissoff, C. Oschatz, M. E. Gerlofs-Nijland et al., 2011 Factor XII activation is essential to sustain the procoagulant effects of particulate matter. J Thromb Haemost 9: 1359-1367. Kumar, P., A. Nagarajan and P. D. Uchil, 2018 Analysis of Cell Viability by the MTT Assay. Cold Spring Harb Protoc 2018. López-Armada, M. J., R. R. Riveiro-Naveira, C. Vaamonde-García and M. N. Valcárcel-Ares, 2013 Mitochondrial dysfunction and the inflammatory response. Mitochondrion 13: 106-118. Lavie, C. J., R. V. Milani and H. O. Ventura, 2009 Obesity and cardiovascular disease: risk factor, paradox, and impact of weight loss. J Am Coll Cardiol 53: 1925-1932. Li, J., J. Li, G. Wang, K. F. Ho, J. Han et al., 2022 In-vitro oxidative potential and inflammatory response of ambient PM(2.5) in a rural region of Northwest China: Association with chemical compositions and source contribution. Environ Res 205: 112466. Li, P., Y. Bai, X. Zhao, T. Tian, L. Tang et al., 2018 NR4A1 contributes to high-fat associated endothelial dysfunction by promoting CaMKII-Parkin-mitophagy pathways. Cell Stress Chaperones 23: 749-761. Li, W., L. Ji, J. Tian, W. Tang, X. Shan et al., 2021 Ophiopogonin D alleviates diabetic myocardial injuries by regulating mitochondrial dynamics. J Ethnopharmacol 271: 113853. Liang, S., J. Zhang, R. Ning, Z. Du, J. Liu et al., 2020 The critical role of endothelial function in fine particulate matter-induced atherosclerosis. Part Fibre Toxicol 17: 61. Liu, C. W., H. C. Sung, S. R. Lin, C. W. Wu, C. W. Lee et al., 2017a Resveratrol attenuates ICAM-1 expression and monocyte adhesiveness to TNF-α-treated endothelial cells: evidence for an anti-inflammatory cascade mediated by the miR-221/222/AMPK/p38/NF-κB pathway. Sci Rep 7: 44689. Liu, N., J. Wu, L. Zhang, Z. Gao, Y. Sun et al., 2017b Hydrogen Sulphide modulating mitochondrial morphology to promote mitophagy in endothelial cells under high-glucose and high-palmitate. J Cell Mol Med 21: 3190-3203. Liu, Y. J., R. L. McIntyre, G. E. Janssens and R. H. Houtkooper, 2020 Mitochondrial fission and fusion: A dynamic role in aging and potential target for age-related disease. Mech Ageing Dev 186: 111212. Loos, R. J., 2012 Genetic determinants of common obesity and their value in prediction. Best Pract Res Clin Endocrinol Metab 26: 211-226. Lu, T. X., and M. E. Rothenberg, 2013 Diagnostic, functional, and therapeutic roles of microRNA in allergic diseases. J Allergy Clin Immunol 132: 3-13; quiz 14. Lund, E., S. Güttinger, A. Calado, J. E. Dahlberg and U. Kutay, 2004 Nuclear export of microRNA precursors. Science 303: 95-98. Marques-Rocha, J. L., M. Samblas, F. I. Milagro, J. Bressan, J. A. Martínez et al., 2015 Noncoding RNAs, cytokines, and inflammation-related diseases. Faseb j 29: 3595-3611. Mathew, B., L. Francis, A. Kayalar and J. Cone, 2008 Obesity: effects on cardiovascular disease and its diagnosis. J Am Board Fam Med 21: 562-568. Mauvezin, C., and T. P. Neufeld, 2015 Bafilomycin A1 disrupts autophagic flux by inhibiting both V-ATPase-dependent acidification and Ca-P60A/SERCA-dependent autophagosome-lysosome fusion. Autophagy 11: 1437-1438. Mehlem, A., C. E. Hagberg, L. Muhl, U. Eriksson and A. Falkevall, 2013 Imaging of neutral lipids by oil red O for analyzing the metabolic status in health and disease. Nat Protoc 8: 1149-1154. Miao, X., W. Li, B. Niu, J. Li, J. Sun et al., 2019 Mitochondrial dysfunction in endothelial cells induced by airborne fine particulate matter (<2.5 μm). J Appl Toxicol 39: 1424-1432. Miller, M. R., C. A. Shaw and J. P. Langrish, 2012 From particles to patients: oxidative stress and the cardiovascular effects of air pollution. Future Cardiol 8: 577-602. Mittal, M., M. R. Siddiqui, K. Tran, S. P. Reddy and A. B. Malik, 2014 Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal 20: 1126-1167. Montiel-Dávalos, A., E. Alfaro-Moreno and R. López-Marure, 2007 PM2.5 and PM10 induce the expression of adhesion molecules and the adhesion of monocytic cells to human umbilical vein endothelial cells. Inhal Toxicol 19 Suppl 1: 91-98. Murphy, M. P., 2009 How mitochondria produce reactive oxygen species. Biochem J 417: 1-13. Ning, L., X. Rui, L. Guorui, F. Tinglv, L. Donghang et al., 2022 A novel mechanism for the protection against acute lung injury by melatonin: mitochondrial quality control of lung epithelial cells is preserved through SIRT3-dependent deacetylation of SOD2. Cell Mol Life Sci 79: 610. Ning, R., Y. Li, Z. Du, T. Li, Q. Sun et al., 2021 The mitochondria-targeted antioxidant MitoQ attenuated PM(2.5)-induced vascular fibrosis via regulating mitophagy. Redox Biol 46: 102113. Otera, H., N. Ishihara and K. Mihara, 2013 New insights into the function and regulation of mitochondrial fission. Biochim Biophys Acta 1833: 1256-1268. Palikaras, K., E. Lionaki and N. Tavernarakis, 2018 Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. Nat Cell Biol 20: 1013-1022. Pei, C., F. Wang, D. Huang, S. Shi, X. Wang et al., 2021 Astragaloside IV Protects from PM2.5-Induced Lung Injury by Regulating Autophagy via Inhibition of PI3K/Akt/mTOR Signaling in vivo and in vitro. J Inflamm Res 14: 4707-4721. Perelman, A., C. Wachtel, M. Cohen, S. Haupt, H. Shapiro et al., 2012 JC-1: alternative excitation wavelengths facilitate mitochondrial membrane potential cytometry. Cell Death Dis 3: e430. Perry, S. W., J. P. Norman, J. Barbieri, E. B. Brown and H. A. Gelbard, 2011 Mitochondrial membrane potential probes and the proton gradient: a practical usage guide. Biotechniques 50: 98-115. Qiu, Y. N., G. H. Wang, F. Zhou, J. J. Hao, L. Tian et al., 2019 PM2.5 induces liver fibrosis via triggering ROS-mediated mitophagy. Ecotoxicol Environ Saf 167: 178-187. Quiles, J. M., and B. Gustafsson Å, 2022 The role of mitochondrial fission in cardiovascular health and disease. Nat Rev Cardiol 19: 723-736. Raja, A. A., A. Dandare, M. J. Khan and M. J. Khan, 2022 Free Fatty Acid Overload Targets Mitochondria: Gene Expression Analysis of Palmitic Acid-Treated Endothelial Cells. Genes (Basel) 13. Reiter, R. J., S. Rosales-Corral, D. X. Tan, M. J. Jou, A. Galano et al., 2017 Melatonin as a mitochondria-targeted antioxidant: one of evolution's best ideas. Cell Mol Life Sci 74: 3863-3881. Reiter, R. J., R. Sharma, S. A. Rosales-Corral, A. Coto-Montes, J. A. Boga et al., 2020 Advances in Characterizing Recently-Identified Molecular Actions of Melatonin: Clinical Implications. Approaching Complex Diseases 2: 301-341. Ren, G., S. Bhatnagar, D. J. Hahn and J. A. Kim, 2020 Long-chain acyl-CoA synthetase-1 mediates the palmitic acid-induced inflammatory response in human aortic endothelial cells. Am J Physiol Endocrinol Metab 319: E893-e903. Rhim, J. S., W. P. Tsai, Z. Q. Chen, Z. Chen, C. Van Waes et al., 1998 A human vascular endothelial cell model to study angiogenesis and tumorigenesis. Carcinogenesis 19: 673-681. Rocha, V. Z., and P. Libby, 2009 Obesity, inflammation, and atherosclerosis. Nat Rev Cardiol 6: 399-409. Rui, W., L. Guan, F. Zhang, W. Zhang and W. Ding, 2016 PM2.5-induced oxidative stress increases adhesion molecules expression in human endothelial cells through the ERK/AKT/NF-κB-dependent pathway. J Appl Toxicol 36: 48-59. Sacks, B., H. Onal, R. Martorana, A. Sehgal, A. Harvey et al., 2021 Mitochondrial targeted antioxidants, mitoquinone and SKQ1, not vitamin C, mitigate doxorubicin-induced damage in H9c2 myoblast: pretreatment vs. co-treatment. BMC Pharmacol Toxicol 22: 49. Sakamuru, S., M. S. Attene-Ramos and M. Xia, 2016 Mitochondrial Membrane Potential Assay. Methods Mol Biol 1473: 17-22. Schantz, M. M., D. Cleveland, N. A. Heckert, J. R. Kucklick, S. D. Leigh et al., 2016 Development of two fine particulate matter standard reference materials (<4 μm and <10 μm) for the determination of organic and inorganic constituents. Anal Bioanal Chem 408: 4257-4266. Sekine, S., and R. J. Youle, 2018 PINK1 import regulation; a fine system to convey mitochondrial stress to the cytosol. BMC Biol 16: 2. Shan, Y., J. Hu, H. Lv, X. Cui and W. Di, 2021 miR-221 Exerts Neuroprotective Effects in Ischemic Stroke by Inhibiting the Proinflammatory Response. J Stroke Cerebrovasc Dis 30: 105489. Sivandzade, F., A. Bhalerao and L. Cucullo, 2019 Analysis of the Mitochondrial Membrane Potential Using the Cationic JC-1 Dye as a Sensitive Fluorescent Probe. Bio Protoc 9. Smith, R. A., and M. P. Murphy, 2010 Animal and human studies with the mitochondria-targeted antioxidant MitoQ. Ann N Y Acad Sci 1201: 96-103. Sorriento, D., and G. Iaccarino, 2019 Inflammation and Cardiovascular Diseases: The Most Recent Findings. Int J Mol Sci 20. Soujanya, K. V., and A. P. Jayadeep, 2022 Obesity-associated biochemical markers of inflammation and the role of grain phytochemicals. J Food Biochem 46: e14257. Su, L., J. Zhang, H. Gomez, J. A. Kellum and Z. Peng, 2023 Mitochondria ROS and mitophagy in acute kidney injury. Autophagy 19: 401-414. Sun, F., H. Zhang, T. Huang, J. Shi, T. Wei et al., 2021 miRNA-221 Regulates Spinal Cord Injury-Induced Inflammatory Response through Targeting TNF-α Expression. Biomed Res Int 2021: 6687963. Sun, L., H. Wang, S. Yu, L. Zhang, J. Jiang et al., 2022 Herceptin induces ferroptosis and mitochondrial dysfunction in H9c2 cells. Int J Mol Med 49. Sung, H. C., C. W. Liu, C. Y. Hsiao, S. R. Lin, I. S. Yu et al., 2018 The effects of wild bitter gourd fruit extracts on ICAM-1 expression in pulmonary epithelial cells of C57BL/6J mice and microRNA-221/222 knockout mice: Involvement of the miR-221/-222/PI3K/AKT/NF-κB pathway. Phytomedicine 42: 90-99. Tan, B. L., and M. E. Norhaizan, 2019 Effect of High-Fat Diets on Oxidative Stress, Cellular Inflammatory Response and Cognitive Function. Nutrients 11. Thomé, M. P., E. C. Filippi-Chiela, E. S. Villodre, C. B. Migliavaca, G. R. Onzi et al., 2016 Ratiometric analysis of Acridine Orange staining in the study of acidic organelles and autophagy. J Cell Sci 129: 4622-4632. Tong, M., D. Zablocki and J. Sadoshima, 2020 The role of Drp1 in mitophagy and cell death in the heart. J Mol Cell Cardiol 142: 138-145. Turrens, J. F., 2003 Mitochondrial formation of reactive oxygen species. J Physiol 552: 335-344. Tyrrell, D. J., M. G. Blin, J. Song, S. C. Wood, M. Zhang et al., 2020 Age-Associated Mitochondrial Dysfunction Accelerates Atherogenesis. Circ Res 126: 298-314. Vargas, J. N. S., M. Hamasaki, T. Kawabata, R. J. Youle and T. Yoshimori, 2023 The mechanisms and roles of selective autophagy in mammals. Nat Rev Mol Cell Biol 24: 167-185. Wai, T., and T. Langer, 2016 Mitochondrial Dynamics and Metabolic Regulation. Trends Endocrinol Metab 27: 105-117. Wang, D., M. F. Green, E. McDonnell and M. D. Hirschey, 2013 Oxygen flux analysis to understand the biological function of sirtuins. Methods Mol Biol 1077: 241-258. Wang, J., P. Wang, S. Li, S. Wang, Y. Li et al., 2014 Mdivi-1 prevents apoptosis induced by ischemia-reperfusion injury in primary hippocampal cells via inhibition of reactive oxygen species-activated mitochondrial pathway. J Stroke Cerebrovasc Dis 23: 1491-1499. Wang, S. H., X. L. Zhu, F. Wang, S. X. Chen, Z. T. Chen et al., 2021 LncRNA H19 governs mitophagy and restores mitochondrial respiration in the heart through Pink1/Parkin signaling during obesity. Cell Death Dis 12: 557. Wang, Y., and M. Tang, 2020 PM2.5 induces autophagy and apoptosis through endoplasmic reticulum stress in human endothelial cells. Sci Total Environ 710: 136397. Wang, Y. H., Y. P. Liu, J. Q. Zhu, G. H. Zhou, F. Zhang et al., 2023 Physcion prevents high-fat diet-induced endothelial dysfunction by inhibiting oxidative stress and endoplasmic reticulum stress pathways. Eur J Pharmacol 943: 175554. Wang, Z., Z. Wang, L. Gao, L. Xiao, R. Yao et al., 2020 miR-222 inhibits cardiac fibrosis in diabetic mice heart via regulating Wnt/β-catenin-mediated endothelium to mesenchymal transition. J Cell Physiol 235: 2149-2160. Weber, J. A., D. H. Baxter, S. Zhang, D. Y. Huang, K. H. Huang et al., 2010 The microRNA spectrum in 12 body fluids. Clin Chem 56: 1733-1741. Wenzl, F. A., S. Ambrosini, S. A. Mohammed, S. Kraler, T. F. Lüscher et al., 2021 Inflammation in Metabolic Cardiomyopathy. Front Cardiovasc Med 8: 742178. Wu, J., Y. Yang, Y. Gao, Z. Wang and J. Ma, 2020 Melatonin Attenuates Anoxia/Reoxygenation Injury by Inhibiting Excessive Mitophagy Through the MT2/SIRT3/FoxO3a Signaling Pathway in H9c2 Cells. Drug Des Devel Ther 14: 2047-2060. Xie, W., J. You, C. Zhi and L. Li, 2021 The toxicity of ambient fine particulate matter (PM2.5) to vascular endothelial cells. J Appl Toxicol 41: 713-723. Yang, Q., Q. Ma, J. Xu, Z. Liu, X. Mao et al., 2022 Endothelial AMPKα1/PRKAA1 exacerbates inflammation in HFD-fed mice. Br J Pharmacol 179: 1661-1678. Yoo, S. M., and Y. K. Jung, 2018 A Molecular Approach to Mitophagy and Mitochondrial Dynamics. Mol Cells 41: 18-26. Yoshida, T., Y. Asano and K. Ui-Tei, 2021 Modulation of MicroRNA Processing by Dicer via Its Associated dsRNA Binding Proteins. Noncoding RNA 7. Yuan, D., Q. Wang, D. Wu, M. Yu, S. Zhang et al., 2012 Monocyte-endothelial adhesion is modulated by Cx43-stimulated ATP release from monocytes. Biochem Biophys Res Commun 420: 536-541. Zelko, I. N., T. J. Mariani and R. J. Folz, 2002 Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic Biol Med 33: 337-349. Zhai, X., J. Wang, J. Sun and L. Xin, 2022 PM(2.5) induces inflammatory responses via oxidative stress-mediated mitophagy in human bronchial epithelial cells. Toxicol Res (Camb) 11: 195-205. Zhang, B., X. Guo, Y. Li, Q. Peng, J. Gao et al., 2017 d-Chiro inositol ameliorates endothelial dysfunction via inhibition of oxidative stress and mitochondrial fission. Mol Nutr Food Res 61. Zhang, L. M., S. S. Lv, S. R. Fu, J. Q. Wang, L. Y. Liang et al., 2021 Procyanidins inhibit fine particulate matter-induced vascular smooth muscle cells apoptosis via the activation of the Nrf2 signaling pathway. Ecotoxicol Environ Saf 223: 112586. Zorova, L. D., V. A. Popkov, E. Y. Plotnikov, D. N. Silachev, I. B. Pevzner et al., 2018 Mitochondrial membrane potential. Anal Biochem 552: 50-59. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90295 | - |
dc.description.abstract | 隨著人類生活的改變,肥胖人口日漸增加,空氣汙染也未被有效控制,而不論是高脂飲食還是空氣汙染都是導致心血管疾病 (Cardiovascular disease,CVD) 的危險因素。先前的研究發現,粒線體損傷與心血管疾病有著重要的關聯。然而,目前尚不清楚空氣懸浮微粒 (particulate matter,PM2.5,PM) 和棕櫚酸 (palmitic aicd,PA) 共同處理,是否會透過粒線體損傷增加內皮細胞的發炎情形。本實驗中,使用10 μg/mL PM 和 150 μM PA共同處理HUVECs 24小時作為體外模型,並加入褪黑激素 (Melatonin,50 μM),一種抗氧化劑,來觀察對內皮細胞發炎的影響。首先,使用MTT測定,PA和PM共同處理降低了HUVECs的細胞存活率。透過western blot 、免疫染色及單核球細胞黏附實驗,觀察到PM+PA 處理後,ICAM-1 (Intercellular adhesion molecule-1) 的表達增加,則證實了細胞的發炎反應。然而,褪黑激素治療明顯減少了這些變化。此外,使用MitoSOX Red染色觀察發現PM+PA的處理,顯著增加HUVECs中的粒線體活性氧物質 (reactive oxygen species,ROS) 的產生,而褪黑激素也抑制了這種變化。利用JC-1染色,我們觀察到PM+PA導致粒線體膜電位改變,並且透過Mito-Tracker染色,PM+PA處理組的粒線體分裂情形增加,同時Western blot也觀察到粒線體分裂蛋白Drp1 (Dynamin-related protein 1) 表達上升。然而,加入褪黑激素可保護內皮細胞避免粒線體損傷和分裂。吖啶橙 (acridine orange)染色和Western blot顯示,褪黑激素降低了PM和PA處理造成的自噬相關蛋白 p62 和 LC3B (Microtubule-associated proteins 1A/1B light chain 3B) 以及粒線體自噬相關蛋白PINK1 (PTEN-induced kinase 1) 和Parkin的表達,減少自噬作用的發生。除此之外,過去研究指出miR-221和miR-222可以透過與ICAM-1 3'UTR結合抑制ICAM-1的轉譯作用,因此我們也觀察到,褪黑激素會透過增加miR-221和miR-222,來抑制ICAM-1表現。在動物實驗方面,透過高脂飲食 (high-fat diet,HFD) 和氣管注射 (intratracheal injection) PM及管餵 (oral gavage) 褪黑激素,觀察到褪黑激素降低活性氧物質、減少粒線體分裂蛋白Drp1、減少自噬相關蛋白p62、LC3B和Pink1,以及增加miR-221和miR-222含量,並減輕內皮細胞的發炎反應。綜上所述,PM和高脂環境的共同存在下,會誘導內皮細胞的粒線體活性氧物質產生、使粒線體分裂、損傷和自噬作用並造成血管內皮細胞的發炎反應,而褪黑激素可以作為一種抗氧化劑,透過清除粒線體的活性氧物質、減輕粒線體分裂和損傷、減少粒線體自噬,也可以透過增加miR-221和miR-222減輕內皮的發炎反應。期待持續的研究,實現褪黑激素成為一種抗發炎保健食品,透過保護心血管以維護國民整體健康,迎接美好生活。 | zh_TW |
dc.description.abstract | Due to the shifts in lifestyles, the number of obese individuals continues to rise, and the effective control of air pollution remains a challenge. Both a high-fat diet and air pollution are risk factors for cardiovascular diseases (CVDs). Previous studies have demonstrated an association between mitochondrial damage and CVDs. However, it remains unclear whether the combined treatment of particulate matter (PM2.5,PM) and palmitic acid (PA) leads to an increase endothelial cell inflammation through mitochondrial damage. In this study, we used human umbilical vein endothelial cells (HUVECs) as an in vitro model and treated them with 10 μg/mL PM and 150 μM PA for 24 hours. To observe the effects on endothelial cell inflammation, we added melatonin (50 μM). The result of the MTT assay revealed that PM and PA combined treatment decreased the cell viability of HUVECs. The result of western blot analysis demonstrated an increase in ICAM-1 expression after PM+PA treatment. Monocyte adhesion experiments and immunostaining results supported the inflammatory response of the PM+PA-treated cells. On the other hand, treatment with melatonin significantly attenuated these changes. Furthermore, the results of MitoSOX Red staining indicated a substantial increase in the production of mitochondrial reactive oxygen species (ROS) in PM+PA-treated HUVECs, which was mitigated by melatonin administration. JC-1 staining results revealed a decrease in mitochondrial membrane potential caused by PM+PA treatment. MitoTracker staining results suggested an increase in mitochondrial fission in the PM+PA-treated group, while western blotting results revealed elevated expression levels of the mitochondrial fission protein Drp1. Melatonin, nevertheless, preserved mitochondrial integrity and prevented mitochondrial fission in endothelial cells. Additionally, melatonin decreased the levels of autophagy-related proteins p62 and LC3B, as well as mitophagy-related proteins PINK1 and Parkin, indicating a reduction in mitophagy. Moreover, previous research has shown that miR-221 and miR-222 can inhibit ICAM-1 translation by binding to the 3'UTR of ICAM-1. In our study, we observed that melatonin increased the expression levels of miR-221 and miR-222, resulting in reduced ICAM-1 expression levels. In animal experiments, we used a high-fat diet, intratracheal injection of PM, and oral gavage of melatonin. It was discovered that melatonin decreased ROS, mitochondrial fission protein Drp1, mitophagy-related proteins p62, LC3B, and Pink1, increased miR-221 and miR-222 levels, and decreased the inflammatory response of endothelial cells. Furthermore, melatonin increased the levels of miR-221 and miR-222, thus reducing the inflammatory response of endothelial cells. In conclusion, combined exposure to PM and a high-fat environment induced the production of ROS in the mitochondria of endothelial cells, leading to mitochondrial fission, damage, and mitophagy, ultimately resulting in the inflammatory response in vascular endothelial cells. Melatonin fulfills its potential as an antioxidant by scavenging mitochondrial reactive oxygen species, reducing mitochondrial fission and damage, mitigating mitophagy, and decreasing endothelial inflammation through upregulation of miR-221 and miR-222. We anticipate further research to establish melatonin as an anti-inflammatory food supplement, safeguarding the cardiovascular system and promoting overall population health for a better future. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-26T16:08:29Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-09-26T16:08:29Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口委審定書 I
致謝 II 摘要 III Abstract V 目錄 VII 壹、緒論 1 一、 懸浮微粒與心血管疾病的關係 1 二、 高血脂與心血管疾病的關係 1 三、 內皮細胞的發炎反應與心血管疾病的關係 2 四、 懸浮微粒和高脂飲食與粒線體活性氧物質的關係 3 五、 粒線體的功能及動態平衡 5 六、 細胞的自噬作用及粒線體自噬 6 七、 Micro RNA 221/222與內皮發炎的相關性 10 八、 褪黑激素的抗氧化特性 12 九、 研究動機與假說 13 貳、實驗材料 15 一、 儀器設備 15 二、材料與試劑 16 三、溶液配方 20 參、實驗方法 22 一、 PM的製備 (Preparation of PM) 22 二、 PA的製備 (Preparation of palmitic acid) 23 三、 Mel的製備 (Preparation of Melatonin) 23 四、 分離人類臍靜脈內皮細胞 (HUVECs isolation) 23 五、 細胞培養及處理 (Cell culture and treatment) 24 六、 細胞存活性分析法 (Cell viability assay) 26 七、 細胞免疫螢光染色 (Immunofluorescence staining in cells) 26 八、 單核球黏附試驗 (Monocyte adhesion assay) 27 九、 oil red o staining 27 十、 西方墨點法 (Western blot) 28 十一、 粒線體活性氧物質測定 (Mitochondrial ROS level assay) 30 十二、 粒線體膜電位測定 (Measurement of mitochondrial membrane potential) 31 十三、 ATP測定 (ATP assay) 31 十四、 粒線體長度分析 (analysis of mitochondrial length) 32 十五、 吖啶橙染色 (acridine orange staining,AO stain) 32 十六、 RNA萃取與逆轉錄聚合酶連鎖反應 (Reverse transcription quantitative polymerase chain reaction,RT- qPCR) 32 十七、 miR-221/222 mimic轉染 (Transfection of miR-221/222 mimics) 33 十八、 動物模式 (Animal model) 33 十九、 石蠟包埋 (Paraffin embedding) 34 二十、 免疫組織螢光染色 (Immunofluorescence staining in tissues) 35 二十一、 冷凍切片 (Frozen section) 36 二十二、 數據統計分析 (Statistical analysis) 36 肆、結果 37 PM、PA以及Mel處理對HUVECs的細胞存活率及發炎的影響 37 Mel降低PM和PA共同處理HUVECs所造成之粒線體ROS 38 PM和PA共同處理HUVECs造成ROS依賴型粒線體受損,而Mel可以減緩此傷害 40 PM和PA共同處理HUVECs造成粒線體自噬,而Mel可以減緩此作用 43 miR-221、miR-222在PM、HFD以及Mel處理的HUVECs中的作用 44 PM、HFD以及Mel處理對小鼠胸主動脈內皮細胞的影響 46 伍、討論與結論 49 陸、參考文獻 60 柒、圖 75 圖一、PM、PA以及Mel處理對HUVECs的細胞存活率及發炎的影響 77 圖二、Mel降低PM和PA共同處理HUVECs所造成之粒線體ROS增加 83 圖三、PM和PA共同處理HUVECs造成ROS依賴型粒線體受損,而Mel可以減緩此傷害 91 圖四、PM和PA共同處理HUVECs造成粒線體自噬,而Mel可以減緩此作用 97 圖五、miR-221、miR-222在PM、HFD以及Mel處理的HUVECs中的作用 102 圖六、PM、HFD以及Mel處理對小鼠胸主動脈內皮細胞的影響 109 | - |
dc.language.iso | zh_TW | - |
dc.title | 探討粒線體功能在懸浮微粒及高脂飲食誘導內皮細胞發炎時扮演的角色 | zh_TW |
dc.title | To study the role of mitochondria in particulate matter 2.5 and high-fat diet induced endothelial inflammation. | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 莫凡毅;許美鈴;吳佳慶;王懷詩 | zh_TW |
dc.contributor.oralexamcommittee | Fan-E Mo;Meei-Ling Sheu;Chia-Ching Wu;Hwai-Shi Wang | en |
dc.subject.keyword | 懸浮微粒,棕櫚酸,高脂飲食,褪黑激素,粒線體活性氧物質,粒線體分裂,粒線體自噬,發炎反應, | zh_TW |
dc.subject.keyword | particulate matter,palmitic acid,high fat diet,melatonin,ROS,mitochondrial fission,mitophagy,inflammation, | en |
dc.relation.page | 120 | - |
dc.identifier.doi | 10.6342/NTU202303628 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2023-08-09 | - |
dc.contributor.author-college | 醫學院 | - |
dc.contributor.author-dept | 解剖學暨細胞生物學研究所 | - |
dc.date.embargo-lift | 2028-08-08 | - |
顯示於系所單位: | 解剖學暨細胞生物學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 此日期後於網路公開 2028-08-08 | 5.98 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。