請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90278完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林宜玲 | zh_TW |
| dc.contributor.advisor | Yi-Ling Lin | en |
| dc.contributor.author | 李鎮宇 | zh_TW |
| dc.contributor.author | Chen-Yu Lee | en |
| dc.date.accessioned | 2023-09-25T16:14:22Z | - |
| dc.date.available | 2023-11-10 | - |
| dc.date.copyright | 2023-09-25 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-07-26 | - |
| dc.identifier.citation | Adam, V. S., M. Crosariol, S. Kumar, M. Q. Ge, S. E. Czack, S. Roy, A. Haczku, A. Tretiakova, J. M. Wilson, and M. P. Limberis. 2014. 'Adeno-associated virus 9-mediated airway expression of antibody protects old and immunodeficient mice against influenza virus', Clin Vaccine Immunol, 21: 1528-33.
Banihashemi, S. R., A. Es-Haghi, M. H. Fallah Mehrabadi, M. Nofeli, A. R. Mokarram, A. Ranjbar, M. Salman, M. Hajimoradi, S. H. Razaz, M. Taghdiri, M. Bagheri, M. Dadar, Z. M. Hassan, M. Eslampanah, Z. Salehi Najafabadi, M. Lotfi, A. Khorasani, and F. Rahmani. 2022. 'Safety and Efficacy of Combined Intramuscular/Intranasal RAZI-COV PARS Vaccine Candidate Against SARS-CoV-2: A Preclinical Study in Several Animal Models', Front Immunol, 13: 836745. Biesbrock, A. R., M. S. Reddy, and M. J. Levine. 1991. 'Interaction of a salivary mucin-secretory immunoglobulin A complex with mucosal pathogens', Infect Immun, 59: 3492-7. Birkhoff, M, M Leitz, and D Marx. 2009. 'Advantages of intranasal vaccination and considerations on device selection', Indian journal of pharmaceutical sciences, 71: 729. Chen, A., S. A. McKinley, S. Wang, F. Shi, P. J. Mucha, M. G. Forest, and S. K. Lai. 2014. 'Transient antibody-mucin interactions produce a dynamic molecular shield against viral invasion', Biophys J, 106: 2028-36. Chen, J., P. Wang, L. Yuan, L. Zhang, L. Zhang, H. Zhao, C. Chen, X. Wang, J. Han, Y. Chen, J. Jia, Z. Lu, J. Hong, Z. Lu, Q. Wang, R. Chen, R. Qi, J. Ma, M. Zhou, H. Yu, C. Zhuang, X. Liu, Q. Han, G. Wang, Y. Su, Q. Yuan, T. Cheng, T. Wu, X. Ye, T. Zhang, C. Li, J. Zhang, H. Zhu, Y. Chen, H. Chen, and N. Xia. 2022. 'A live attenuated virus-based intranasal COVID-19 vaccine provides rapid, prolonged, and broad protection against SARS-CoV-2', Sci Bull (Beijing), 67: 1372-87. Conley, M. E., and D. L. Delacroix. 1987. 'Intravascular and mucosal immunoglobulin A: two separate but related systems of immune defense?', Ann Intern Med, 106: 892-9. Davis, S. K., K. J. Selva, S. J. Kent, and A. W. Chung. 2020. 'Serum IgA Fc effector functions in infectious disease and cancer', Immunol Cell Biol, 98: 276-86. de Sousa-Pereira, P., and J. M. Woof. 2019. 'IgA: Structure, Function, and Developability', Antibodies (Basel), 8. Deal, C. E., and A. B. Balazs. 2015. 'Vectored antibody gene delivery for the prevention or treatment of HIV infection', Curr Opin HIV AIDS, 10: 190-7. Dong, J., S. J. Zost, A. J. Greaney, T. N. Starr, A. S. Dingens, E. C. Chen, R. E. Chen, J. B. Case, R. E. Sutton, P. Gilchuk, J. Rodriguez, E. Armstrong, C. Gainza, R. S. Nargi, E. Binshtein, X. Xie, X. Zhang, P. Y. Shi, J. Logue, S. Weston, M. E. McGrath, M. B. Frieman, T. Brady, K. M. Tuffy, H. Bright, Y. M. Loo, P. M. McTamney, M. T. Esser, R. H. Carnahan, M. S. Diamond, J. D. Bloom, and J. E. Crowe, Jr. 2021. 'Genetic and structural basis for SARS-CoV-2 variant neutralization by a two-antibody cocktail', Nat Microbiol, 6: 1233-44. Donnelly, Michelle L. L., Garry Luke, Amit Mehrotra, Xuejun Li, Lorraine E. Hughes, David Gani, and Martin D. Ryan. 2001. 'Analysis of the aphthovirus 2A/2B polyprotein ‘cleavage’ mechanism indicates not a proteolytic reaction, but a novel translational effect: a putative ribosomal ‘skip’', Journal of General Virology, 82: 1013-25. Ellis, B. L., M. L. Hirsch, J. C. Barker, J. P. Connelly, R. J. Steininger, 3rd, and M. H. Porteus. 2013. 'A survey of ex vivo/in vitro transduction efficiency of mammalian primary cells and cell lines with Nine natural adeno-associated virus (AAV1-9) and one engineered adeno-associated virus serotype', Virol J, 10: 74. Halbert, C. L., J. M. Allen, and A. D. Miller. 2002. 'Efficient mouse airway transduction following recombination between AAV vectors carrying parts of a larger gene', Nat Biotechnol, 20: 697-701. Harrison, A. G., T. Lin, and P. Wang. 2020. 'Mechanisms of SARS-CoV-2 Transmission and Pathogenesis', Trends Immunol, 41: 1100-15. Hassan, A. O., S. Shrihari, M. J. Gorman, B. Ying, D. Yuan, S. Raju, R. E. Chen, I. P. Dmitriev, E. Kashentseva, L. J. Adams, C. Mann, M. E. Davis-Gardner, M. S. Suthar, P. Y. Shi, E. O. Saphire, D. H. Fremont, D. T. Curiel, G. Alter, and M. S. Diamond. 2021. 'An intranasal vaccine durably protects against SARS-CoV-2 variants in mice', Cell Rep, 36: 109452. Jackson, C. B., M. Farzan, B. Chen, and H. Choe. 2022. 'Mechanisms of SARS-CoV-2 entry into cells', Nat Rev Mol Cell Biol, 23: 3-20. Kirkeby, L., T. T. Rasmussen, J. Reinholdt, and M. Kilian. 2000. 'Immunoglobulins in nasal secretions of healthy humans: structural integrity of secretory immunoglobulin A1 (IgA1) and occurrence of neutralizing antibodies to IgA1 proteases of nasal bacteria', Clin Diagn Lab Immunol, 7: 31-9. Kokic, G., H. S. Hillen, D. Tegunov, C. Dienemann, F. Seitz, J. Schmitzova, L. Farnung, A. Siewert, C. Hobartner, and P. Cramer. 2021. 'Mechanism of SARS-CoV-2 polymerase stalling by remdesivir', Nat Commun, 12: 279. Limberis, M. P., V. S. Adam, G. Wong, J. Gren, D. Kobasa, T. M. Ross, G. P. Kobinger, A. Tretiakova, and J. M. Wilson. 2013. 'Intranasal antibody gene transfer in mice and ferrets elicits broad protection against pandemic influenza', Sci Transl Med, 5: 187ra72. Mantis, N. J., J. Palaia, A. J. Hessell, S. Mehta, Z. Zhu, B. Corthesy, M. R. Neutra, D. R. Burton, and E. N. Janoff. 2007. 'Inhibition of HIV-1 infectivity and epithelial cell transfer by human monoclonal IgG and IgA antibodies carrying the b12 V region', J Immunol, 179: 3144-52. Marzi, M., M. K. Vakil, M. Bahmanyar, and E. Zarenezhad. 2022. 'Paxlovid: Mechanism of Action, Synthesis, and In Silico Study', Biomed Res Int, 2022: 7341493. Moldoveanu, Z., I. Moro, J. Radl, S. R. Thorpe, K. Komiyama, and J. Mestecky. 1990. 'Site of catabolism of autologous and heterologous IgA in non-human primates', Scand J Immunol, 32: 577-83. Naqvi, A. A. T., K. Fatima, T. Mohammad, U. Fatima, I. K. Singh, A. Singh, S. M. Atif, G. Hariprasad, G. M. Hasan, and M. I. Hassan. 2020. 'Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach', Biochim Biophys Acta Mol Basis Dis, 1866: 165878. Rochereau, N., D. Drocourt, E. Perouzel, V. Pavot, P. Redelinghuys, G. D. Brown, G. Tiraby, X. Roblin, B. Verrier, C. Genin, B. Corthesy, and S. Paul. 2013. 'Dectin-1 is essential for reverse transcytosis of glycosylated SIgA-antigen complexes by intestinal M cells', PLoS Biol, 11: e1001658. Sant'Anna, T. B., and N. M. Araujo. 2022. 'Adeno-associated virus infection and its impact in human health: an overview', Virol J, 19: 173. Santiago-Ortiz, J. L., and D. V. Schaffer. 2016. 'Adeno-associated virus (AAV) vectors in cancer gene therapy', J Control Release, 240: 287-301. Tukhvatulin, A. I., I. V. Gordeychuk, I. V. Dolzhikova, A. S. Dzharullaeva, M. E. Krasina, E. O. Bayurova, D. M. Grousova, A. V. Kovyrshina, A. S. Kondrashova, D. V. Avdoshina, S. A. Gulyaev, T. V. Gulyaeva, A. V. Moroz, V. V. Illarionova, I. D. Zorkov, A. A. Iliukhina, A. Y. Shelkov, A. G. Botikov, A. S. Erokhova, D. V. Shcheblyakov, I. B. Esmagambetov, O. V. Zubkova, E. A. Tokarskaya, D. M. Savina, Y. R. Vereveyko, A. S. Ungur, B. S. Naroditsky, A. A. Ishmukhametov, D. Y. Logunov, and A. L. Gintsburg. 2022. 'Immunogenicity and protectivity of intranasally delivered vector-based heterologous prime-boost COVID-19 vaccine Sputnik V in mice and non-human primates', Emerg Microbes Infect, 11: 2229-47. Tycko, J., V. S. Adam, M. Crosariol, J. Ohlstein, J. Sanmiguel, A. P. Tretiakova, S. Roy, S. Worgall, J. M. Wilson, and M. P. Limberis. 2021. 'Adeno-Associated Virus Vector-Mediated Expression of Antirespiratory Syncytial Virus Antibody Prevents Infection in Mouse Airways', Hum Gene Ther, 32: 1450-56. Vidarsson, G., G. Dekkers, and T. Rispens. 2014. 'IgG subclasses and allotypes: from structure to effector functions', Front Immunol, 5: 520. WHO. 2023. 'WHO Coronavirus (COVID-19) Dashboard', Accessed 15 June. https://covid19.who.int/. Wu, C. J., W. C. Huang, L. C. Chen, C. R. Shen, and M. L. Kuo. 2012. 'Pseudotyped adeno-associated virus 2/9-delivered CCL11 shRNA alleviates lung inflammation in an allergen-sensitized mouse model', Hum Gene Ther, 23: 1156-65. Wu, S., J. Huang, Z. Zhang, J. Wu, J. Zhang, H. Hu, T. Zhu, J. Zhang, L. Luo, P. Fan, B. Wang, C. Chen, Y. Chen, X. Song, Y. Wang, W. Si, T. Sun, X. Wang, L. Hou, and W. Chen. 2021. 'Safety, tolerability, and immunogenicity of an aerosolised adenovirus type-5 vector-based COVID-19 vaccine (Ad5-nCoV) in adults: preliminary report of an open-label and randomised phase 1 clinical trial', Lancet Infect Dis, 21: 1654-64. Yamasoba, D., Y. Kosugi, I. Kimura, S. Fujita, K. Uriu, J. Ito, K. Sato, and Consortium Genotype to Phenotype Japan. 2022. 'Neutralisation sensitivity of SARS-CoV-2 omicron subvariants to therapeutic monoclonal antibodies', Lancet Infect Dis, 22: 942-43. Yoshida, M., A. Masuda, T. T. Kuo, K. Kobayashi, S. M. Claypool, T. Takagawa, H. Kutsumi, T. Azuma, W. I. Lencer, and R. S. Blumberg. 2006. 'IgG transport across mucosal barriers by neonatal Fc receptor for IgG and mucosal immunity', Springer Semin Immunopathol, 28: 397-403. Zost, S. J., P. Gilchuk, J. B. Case, E. Binshtein, R. E. Chen, J. P. Nkolola, A. Schafer, J. X. Reidy, A. Trivette, R. S. Nargi, R. E. Sutton, N. Suryadevara, D. R. Martinez, L. E. Williamson, E. C. Chen, T. Jones, S. Day, L. Myers, A. O. Hassan, N. M. Kafai, E. S. Winkler, J. M. Fox, S. Shrihari, B. K. Mueller, J. Meiler, A. Chandrashekar, N. B. Mercado, J. J. Steinhardt, K. Ren, Y. M. Loo, N. L. Kallewaard, B. T. McCune, S. P. Keeler, M. J. Holtzman, D. H. Barouch, L. E. Gralinski, R. S. Baric, L. B. Thackray, M. S. Diamond, R. H. Carnahan, and J. E. Crowe, Jr. 2020. 'Potently neutralizing and protective human antibodies against SARS-CoV-2', Nature, 584: 443-49. Zou, R., L. Peng, D. Shu, L. Zhao, J. Lan, G. Tan, J. Peng, X. Yang, M. Liu, C. Zhang, J. Yuan, H. Wang, S. Li, H. Lu, W. Zhong, and Y. Liu. 2022. 'Antiviral Efficacy and Safety of Molnupiravir Against Omicron Variant Infection: A Randomized Controlled Clinical Trial', Front Pharmacol, 13: 939573. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90278 | - |
| dc.description.abstract | 新型冠狀病毒 (SARS-CoV-2) 是一種高傳染力的冠狀病毒,主要透過上呼吸道黏膜感染人體,在2020年到2023年間對人類造成重大的影響,為此人類也發展出如小分子藥物、疫苗、單株抗體的策略以應對SARS-CoV-2的挑戰。其中,單株抗體可以直接中和病毒以抑制病毒感染,目前已有許多商業化單株抗體投入使用,其中一種單株抗體COV2-2130,在商業化的單株抗體中是相對廣效的,具有中和多個變異株的能力。因此為了在鼻腔黏膜產生對SARS-CoV-2的免疫力以預防感染,本研究將包裹COV2-2130抗體基因的腺相關病毒 (adeno-associated virus,AAV) 轉導到鼻腔,而且由於自然情況下鼻腔黏膜的抗體組成是dIgA (dimeric IgA) 的衍生物,為了瞭解抗體的類型 (class) 與構型 (conformation) 是否會影響中和能力,研究還將抗體以dIgA、mIgA (monomeric IgA)、IgG的形式表現;並檢驗鼻腔給予AAV之後是否能提供黏膜免疫 (mucosal immunity) 與全身免疫 (systemic immunity)。結果顯示在血液中dIgA、IgG組的小鼠可偵測到抗體表現,在mIgA組則觀察到較低的表現量;而這些抗體的中和能力與抗體表現量呈現高度一致。在鼻腔分泌物中則觀察到不一樣的現象,不論dIgA、mIgA、IgG組皆可以在鼻腔沖洗液中檢測到抗體表現,然而dIgA與IgG組相比,即使抗體表現量相近,dIgA組卻表現出更明顯的病毒抑制能力。透過AAV鼻腔轉導抗體基因可以在鼻腔分泌物與血液中偵測到這些功能性抗體的表現,說明這套系統具有提供黏膜免疫與全身免疫的潛力,期望未來能有更廣泛的利用。 | zh_TW |
| dc.description.abstract | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly contagious coronavirus that primarily infects human through the upper respiratory tract mucosa. It has had a significant impact on humans from 2020 to 2023. In response to the challenge, various strategies have been developed, including small molecule drugs, vaccines, and monoclonal antibodies. Monoclonal antibodies have the ability to directly neutralize the virus and inhibit viral infection. Currently, there are numerous commercial monoclonal antibodies, among which COV2-2130 is relatively broad-spectrum, capable of neutralizing multiple variants.
Therefore, to generate immunity against SARS-CoV-2 in the nasal mucosa and prevent infection, this study employed adeno-associated virus (AAV) to deliver the COV2-2130 antibody gene in the nasal cavity. Since the main type of antibody in nasal mucosa is a derivative of dimeric IgA (dIgA), the study aimed to investigate whether the antibody class and conformation would affect its neutralizing capacity. To understand their impact, COV2-2130 were expressed in the forms of dIgA, monomeric IgA (mIgA), and IgG. The study also examined whether nasal administration of AAV could induce both mucosal immunity and systemic immunity. Results revealed detectable antibody expression in mice belonging to the dIgA and IgG groups in the blood, but lower expression was observed in the mIgA group. The neutralizing capacity of serum antibodies correlated significantly with their expression levels. While, distinct findings were observed in nasal secretions. Antibody expression was detectable in the nasal lavage fluid of all groups. However, despite similar expression levels, the dIgA group exhibited enhanced ability to inhibit viral activity compared to the IgG group. The expression of these functional antibodies can be detected in nasal secretions and blood by delivering antibody genes after AAV nasal administration. This indicates that the system has the potential to provide both mucosal and systemic immunity. We hope that this system can be more widely utilized in the future. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-25T16:14:22Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-25T16:14:22Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iii 目錄 iv 圖目錄 iv 附錄目錄 iv 第一章 緒論 1 1.1 新型冠狀病毒 1 1.1.1 新型冠狀病毒簡介 1 1.1.2 對抗新型冠狀病毒的策略 1 1.1.3 單株抗體—COV2-2130 3 1.2 黏膜中的抗體 3 1.3 腺相關病毒 4 1.3.1 腺相關病毒簡介 4 1.3.2 腺相關病毒的應用 5 1.4 研究動機 5 第二章 材料與方法 6 2.1 材料 6 2.1.1 病毒株 6 2.1.2 細胞株 6 2.1.3 抗體 6 2.1.4 試劑與藥品 7 2.1.5 商品化套組 (commercial kit) 7 2.1.6 質體 7 2.2 實驗方法 8 2.2.1 質體建構 8 2.2.2 細胞轉染 8 2.2.3 ELISA 9 2.2.4 西方點墨法 9 2.2.5抗體純化 9 2.3.2 假型慢病毒中和試驗 10 2.3.2 SARS-CoV-2中和試驗 10 2.3.2 AAV病毒顆粒生產 10 2.3.2動物實驗 11 第三章 結果 12 3.1 建立dIgA、mIgA及IgG抗體表現系統 12 3.1.1 抗體轉基因設計 12 3.1.2細胞轉染dIgA、mIgA、IgG質體後的抗體表現與構型 13 3.1.3 COV2-2130抗體的中和能力 13 3.2 利用AAV載體遞送抗體轉基因至小鼠鼻腔以表現抗體 14 3.2.1 AAV血清型的選擇 14 3.2.2 AAV9-Ab轉導HEK293T細胞以確認其轉導情形 15 3.2.3小鼠鼻腔轉導AAV9-Ab後的抗體表現量與中和能力 15 討論 17 參考資料 20 附圖 25 附錄 35 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 新型冠狀病毒 | zh_TW |
| dc.subject | 載體免疫預防 | zh_TW |
| dc.subject | IgG | zh_TW |
| dc.subject | IgA | zh_TW |
| dc.subject | 黏膜免疫 | zh_TW |
| dc.subject | 腺相關病毒 | zh_TW |
| dc.subject | IgA | en |
| dc.subject | IgG | en |
| dc.subject | AAV | en |
| dc.subject | SARS-CoV-2 | en |
| dc.subject | Vectored Immunoprophylaxis | en |
| dc.subject | mucosal immunity | en |
| dc.title | 利用腺相關病毒表現中和抗體以預防新型冠狀病毒感染 | zh_TW |
| dc.title | AAV-mediated neutralizing antibody expression to prevent SARS-CoV-2 infection | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陶秘華;陳美如 | zh_TW |
| dc.contributor.oralexamcommittee | Mi-Hua Tao;Mei-Ru Chen | en |
| dc.subject.keyword | 新型冠狀病毒,腺相關病毒,黏膜免疫,IgA,IgG,載體免疫預防, | zh_TW |
| dc.subject.keyword | SARS-CoV-2,AAV,mucosal immunity,IgA,IgG,Vectored Immunoprophylaxis, | en |
| dc.relation.page | 44 | - |
| dc.identifier.doi | 10.6342/NTU202302137 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-07-26 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 微生物學研究所 | - |
| dc.date.embargo-lift | 2028-07-26 | - |
| 顯示於系所單位: | 微生物學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 2.98 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
