請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90265
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳沛隆 | zh_TW |
dc.contributor.advisor | Pei-Lung Chen | en |
dc.contributor.author | 許慈恩 | zh_TW |
dc.contributor.author | Tsz-En Shiu | en |
dc.date.accessioned | 2023-09-25T16:10:39Z | - |
dc.date.available | 2023-11-10 | - |
dc.date.copyright | 2023-09-25 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-06 | - |
dc.identifier.citation | 1. Sambrook, J. G., Figueroa, F., & Beck, S. (2005). A genome-wide survey of Major Histocompatibility Complex (MHC) genes and their paralogues in zebrafish. BMC genomics, 6, 152.
2. Al Naqbi, H., Mawart, A., Alshamsi, J., Al Safar, H., & Tay, G. K. (2021). Major histocompatibility complex (MHC) associations with diseases in ethnic groups of the Arabian Peninsula. Immunogenetics, 73(2), 131–152. 3. Heijmans, C. M. C., de Groot, N. G., & Bontrop, R. E. (2020). Comparative genetics of the major histocompatibility complex in humans and nonhuman primates. International journal of immunogenetics, 47(3), 243–260. 4. Kloypan, C., Koomdee, N., Satapornpong, P., Tempark, T., Biswas, M., & Sukasem, C. (2021). A Comprehensive Review of HLA and Severe Cutaneous Adverse Drug Reactions: Implication for Clinical Pharmacogenomics and Precision Medicine. Pharmaceuticals (Basel, Switzerland), 14(11), 1077. 5. Kumánovics, A., & Fischer Lindahl, K. (2004). Good copy, bad copy: choosing animal models for HLA-linked diseases. Current opinion in genetics & development, 14(3), 258–263. 6. Pease, L. R., Nathenson, S. G., & Leinwand, L. A. (1982). Mapping class I gene sequences in the major histocompatibility complex. Nature, 298(5872), 382–385. 7. Daza-Vamenta, R., Glusman, G., Rowen, L., Guthrie, B., & Geraghty, D. E. (2004). Genetic divergence of the rhesus macaque major histocompatibility complex. Genome research, 14(8), 1501–1515. 8. van den Elsen P. J. (2011). Expression regulation of major histocompatibility complex class I and class II encoding genes. Frontiers in immunology, 2, 48. 9. Choo S. Y. (2007). The HLA system: genetics, immunology, clinical testing, and clinical implications. Yonsei medical journal, 48(1), 11–23. 10. Chen, L., Reyes-Vargas, E., Dai, H., Escobar, H., Rudd, B., Fairbanks, J., Ho, A., Cusick, M. F., Kumánovics, A., Delgado, J., He, X., & Jensen, P. E. (2014). Expression of the mouse MHC class Ib H2-T11 gene product, a paralog of H2-T23 (Qa-1) with shared peptide-binding specificity. Journal of immunology (Baltimore, Md. : 1950), 193(3), 1427–1439. 11. Zhao, Y., Xiong, J., Chen, H. X., Zhang, M., Zhou, L. N., Wu, Y. F., Li, W. J., Fei, X., Li, F., Zhu, C., Li, W., Ying, S. M., Wang, L., Chen, Z. H., & Shen, H. H. (2022). A Spontaneous H2-Aa Point Mutation Impairs MHC II Synthesis and CD4+ T-Cell Development in Mice. Frontiers in immunology, 13, 810824. 12. van den Elsen, P. J., Gobin, S. J., van Eggermond, M. C., & Peijnenburg, A. (1998). Regulation of MHC class I and II gene transcription: differences and similarities. Immunogenetics, 48(3), 208–221. 13. Wieczorek, M., Abualrous, E. T., Sticht, J., Álvaro-Benito, M., Stolzenberg, S., Noé, F., & Freund, C. (2017). Major Histocompatibility Complex (MHC) Class I and MHC Class II Proteins: Conformational Plasticity in Antigen Presentation. Frontiers in immunology, 8, 292. 14. Yewdell J. W. (2022). MHC Class I Immunopeptidome: Past, Present, and Future. Molecular & cellular proteomics : MCP, 21(7), 100230. 15. Fernández-Soria V, Ballana E, Sánchez-Mazas A, Nunes JM. (2019). MHC class III diversity and haplotype evolution in humans and primates. Hum Immunol. 2019;80(5):294-301. 16. Hakkarainen, T. J., Krams, I., Coetzee, V., Skrinda, I., Kecko, S., Krama, T., Ilonen, J., & Rantala, M. J. (2021). MHC Class II Heterozygosity Associated With Attractiveness of Men and Women. Evolutionary psychology : an international journal of evolutionary approaches to psychology and behavior, 19(1), 1474704921991994. 17. Mosaad Y. M. (2015). Clinical Role of Human Leukocyte Antigen in Health and Disease. Scandinavian journal of immunology, 82(4), 283–306. 18. Donaldson, W. L., Oriol, J. G., Pelkaus, C. L., & Antczak, D. F. (1994). Paternal and maternal major histocompatibility complex class I antigens are expressed co-dominantly by equine trophoblast. Placenta, 15(2), 123–135. 19. Horton, R., Wilming, L., Rand, V. et al. (2004). Gene map of the extended human MHC. Nat Rev Genet 5, 889–899. 20. Pierini, F., & Lenz, T. L. (2018). Divergent Allele Advantage at Human MHC Genes: Signatures of Past and Ongoing Selection. Molecular biology and evolution, 35(9), 2145–2158. 21. Denkberg, G., Cohen, C. J., Segal, D., Kirkin, A. F., & Reiter, Y. (2000). Recombinant human single-chain MHC-peptide complexes made from E. coli By in vitro refolding: functional single-chain MHC-peptide complexes and tetramers with tumor associated antigens. European journal of immunology, 30(12), 3522–3532. 22. Serçinoğlu, O., & Ozbek, P. (2020). Sequence-structure-function relationships in class I MHC: A local frustration perspective. PloS one, 15(5), e0232849. 23. Reche, P. A. and E. L. Reinherz (2003). Sequence variability analysis of human class I and class II MHC molecules: functional and structural correlates of amino acid polymorphisms. J Mol Biol 331(3): 623-641. 24. Stern, L. J., & Wiley, D. C. (1994). Antigenic peptide binding by class I and class II histocompatibility proteins. Behring Institute Mitteilungen, (94), 1–10. 25. Rock, K. L., & Goldberg, A. L. (1999). Degradation of cell proteins and the generation of MHC class I-presented peptides. Annual review of immunology, 17, 739–779. 26. Huang, J., Zarnitsyna, V., Liu, B. et al. (2010). The kinetics of two-dimensional TCR and pMHC interactions determine T-cell responsiveness. Nature 464, 932–936. 27. Praest, P., Liaci, A. M., Förster, F., & Wiertz, E. J. H. J. (2019). New insights into the structure of the MHC class I peptide-loading complex and mechanisms of TAP inhibition by viral immune evasion proteins. Molecular immunology, 113, 103–114. 28. Tynan, F. E., Burrows, S. R., Buckle, A. M., Clements, C. S., Borg, N. A., Miles, J. J., Beddoe, T., Whisstock, J. C., Wilce, M. C., Silins, S. L., Burrows, J. M., Kjer-Nielsen, L., Kostenko, L., Purcell, A. W., McCluskey, J., & Rossjohn, J. (2005). T cell receptor recognition of a 'super-bulged' major histocompatibility complex class I-bound peptide. Nature immunology, 6(11), 1114–1122. 29. Buslepp, J., Wang, H., Biddison, W. E., Appella, E., & Collins, E. J. (2003). A correlation between TCR Valpha docking on MHC and CD8 dependence: implications for T cell selection. Immunity, 19(4), 595–606. 30. Feng, D., Bond, C., Ely, L. et al. (2007). Structural evidence for a germline-encoded T cell receptor–major histocompatibility complex interaction 'codon'. Nat Immunol 8, 975–983. 31. Bjorkman, P. J., Saper, M. A., Samraoui, B., Bennett, W. S., Strominger, J. L., & Wiley, D. C. (1987). Structure of the human class I histocompatibility antigen, HLA-A2. Nature, 329(6139), 506–512. 32. Wang, C., Wang, Z., Yao, T., Zhou, J., & Wang, Z. (2022). The immune-related role of beta-2-microglobulin in melanoma. Frontiers in oncology, 12, 944722. 33. Shi, C., Zhu, Y., Su, Y., Chung, L. W., & Cheng, T. (2009). Beta2-microglobulin: emerging as a promising cancer therapeutic target. Drug discovery today, 14(1-2), 25–30. 34. Yewdell J. W. (2011). DRiPs solidify: progress in understanding endogenous MHC class I antigen processing. Trends in immunology, 32(11), 548–558. 35. Kloetzel P. M. (2004). Generation of major histocompatibility complex class I antigens: functional interplay between proteasomes and TPPII. Nature immunology, 5(7), 661–669. 36. Brown, J. H., Jardetzky, T., Saper, M. A., Samraoui, B., Bjorkman, P. J., & Wiley, D. C. (1988). A hypothetical model of the foreign antigen binding site of class II histocompatibility molecules. Nature, 332(6167), 845–850. 37. Zhang, L., Li, X., Ma, L., Zhang, B., Meng, G., & Xia, C. (2020). A Newly Recognized Pairing Mechanism of the α- and β-Chains of the Chicken Peptide-MHC Class II Complex. Journal of immunology (Baltimore, Md. : 1950), 204(6), 1630–1640. 38. Wang, P., Sidney, J., Dow, C., Mothé, B., Sette, A., & Peters, B. (2008). A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach. PLoS computational biology, 4(4), e1000048. 39. Trombetta, E. S., & Mellman, I. (2005). Cell biology of antigen processing in vitro and in vivo. Annual review of immunology, 23, 975–1028. 40. Thelemann, C., Eren, R. O., Coutaz, M., Brasseit, J., Bouzourene, H., Rosa, M., Duval, A., Lavanchy, C., Mack, V., Mueller, C., Reith, W., & Acha-Orbea, H. (2014). Interferon-γ induces expression of MHC class II on intestinal epithelial cells and protects mice from colitis. PloS one, 9(1), e86844. 41. Neefjes, J., Jongsma, M., Paul, P. et al. (2011). Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat Rev Immunol 11, 823–836. 42. Underhill, D., Goodridge, H. (2012). Information processing during phagocytosis. Nat Rev Immunol 12, 492–502. 43. Roche, P., Furuta, K. (2015). The ins and outs of MHC class II-mediated antigen processing and presentation. Nat Rev Immunol 15, 203–216. 44. Villadangos, J. A., Bryant, R. A., Deussing, J., Driessen, C., Lennon-Duménil, A. M., Riese, R. J., Roth, W., Saftig, P., Shi, G. P., Chapman, H. A., Peters, C., & Ploegh, H. L. (1999). Proteases involved in MHC class II antigen presentation. Immunological reviews, 172, 109–120. 45. Shah, K., Al-Haidari, A., Sun, J. et al. (2021). T cell receptor (TCR) signaling in health and disease. Sig Transduct Target Ther 6, 412. 46. Zhao, Y., Niu, C., & Cui, J. (2018). Gamma-delta (γδ) T cells: friend or foe in cancer development?. Journal of translational medicine, 16(1), 3. 47. Garcia, K. C., Degano, M., Stanfield, R. L., Brunmark, A., Jackson, M. R., Peterson, P. A., Teyton, L., & Wilson, I. A. (1996). An alphabeta T cell receptor structure at 2.5 A and its orientation in the TCR-MHC complex. Science (New York, N.Y.), 274(5285), 209–219. 48. Attaf, M., Legut, M., Cole, D. K., & Sewell, A. K. (2015). The T cell antigen receptor: the Swiss army knife of the immune system. Clinical and experimental immunology, 181(1), 1–18. 49. Thakkar, N., Bailey-Kellogg, C. (2019). Balancing sensitivity and specificity in distinguishing TCR groups by CDR sequence similarity. BMC Bioinformatics 20, 241. 50. Deseke, M., Prinz, I. (2020). Ligand recognition by the γδ TCR and discrimination between homeostasis and stress conditions. Cell Mol Immunol 17, 914–924. 51. Livak, F., Burtrum, D. B., Rowen, L., Schatz, D. G., & Petrie, H. T. (2000). Genetic modulation of T cell receptor gene segment usage during somatic recombination. The Journal of experimental medicine, 192(8), 1191–1196. 52. Nikolich-Zugich, J., Slifka, M. K., & Messaoudi, I. (2004). The many important facets of T-cell repertoire diversity. Nature reviews. Immunology, 4(2), 123–132. 53. Gellert M. (2002). V(D)J recombination: RAG proteins, repair factors, and regulation. Annual review of biochemistry, 71, 101–132. 54. Swanson P. C. (2004). The bounty of RAGs: recombination signal complexes and reaction outcomes. Immunological reviews, 200, 90–114. 55. Ma, Y., Pannicke, U., Schwarz, K., & Lieber, M. R. (2002). Hairpin opening and overhang processing by an Artemis/DNA-dependent protein kinase complex in nonhomologous end joining and V(D)J recombination. Cell, 108(6), 781–794. 56. Ahnesorg, P., Smith, P., & Jackson, S. P. (2006). XLF interacts with the XRCC4-DNA ligase IV complex to promote DNA nonhomologous end-joining. Cell, 124(2), 301–313. 57. Kumar, B. V., Connors, T. J., & Farber, D. L. (2018). Human T Cell Development, Localization, and Function throughout Life. Immunity, 48(2), 202–213. 58. Kisielow, P., & Miazek, A. (1995). Positive selection of T cells: rescue from programmed cell death and differentiation require continual engagement of the T cell receptor. The Journal of experimental medicine, 181(6), 1975–1984. 59. Xiong, J., Parker, B. L., Dalheimer, S. L., & Yankee, T. M. (2013). Interleukin-7 supports survival of T-cell receptor-β-expressing CD4(-) CD8(-) double-negative thymocytes. Immunology, 138(4), 382–391. 60. Rothenberg, E. V., Moore, J. E., & Yui, M. A. (2008). Launching the T-cell-lineage developmental programme. Nature reviews. Immunology, 8(1), 9–21. 61. Baldwin, T. A., Sandau, M. M., Jameson, S. C., & Hogquist, K. A. (2005). The timing of TCR alpha expression critically influences T cell development and selection. The Journal of experimental medicine, 202(1), 111–121. 62. Tanaka, H., & Taniuchi, I. (2014). The CD4/CD8 lineages: central decisions and peripheral modifications for T lymphocytes. Current topics in microbiology and immunology, 373, 113–129. 63. Singer, A., & Bosselut, R. (2004). CD4/CD8 coreceptors in thymocyte development, selection, and lineage commitment: analysis of the CD4/CD8 lineage decision. Advances in immunology, 83, 91–131. 64. Liu, X., & Bosselut, R. (2004). Duration of TCR signaling controls CD4-CD8 lineage differentiation in vivo. Nature immunology, 5(3), 280–288. 65. Guy, C. S., & Vignali, D. A. (2009). Organization of proximal signal initiation at the TCR:CD3 complex. Immunological reviews, 232(1), 7–21. 66. Lenschow, D. J., Walunas, T. L., & Bluestone, J. A. (1996). CD28/B7 system of T cell costimulation. Annual review of immunology, 14, 233–258. 67. Kaech, S., Wherry, E. & Ahmed, R. (2002) Effector and memory T-cell differentiation: implications for vaccine development. Nat Rev Immunol 2, 251–262. 68. Cui, W., & Kaech, S. M. (2010). Generation of effector CD8+ T cells and their conversion to memory T cells. Immunological reviews, 236, 151–166. 69. Chao, C. C., Jensen, R., & Dailey, M. O. (1997). Mechanisms of L-selectin regulation by activated T cells. Journal of immunology (Baltimore, Md. : 1950), 159(4), 1686–1694. 70. Manjunath, N., Shankar, P., Wan, J., Weninger, W., Crowley, M. A., Hieshima, K., Springer, T. A., Fan, X., Shen, H., Lieberman, J., & von Andrian, U. H. (2001). Effector differentiation is not prerequisite for generation of memory cytotoxic T lymphocytes. The Journal of clinical investigation, 108(6), 871–878. 71. Li, L., Dong, M., & Wang, X. G. (2016). The Implication and Significance of Beta 2 Microglobulin: A Conservative Multifunctional Regulator. Chinese medical journal, 129(4), 448–455. 72. Story CM, Mikulska JE, Simister NE. (1994) A major histocompatibility complex Class I-like Fc receptor cloned from human placenta: possible role in transfer of immunoglobulin G from mother to fetus. J Exp Med; 180:2377–2381. 73. Andersen, J. T., Dalhus, B., Viuff, D., Ravn, B. T., Gunnarsen, K. S., Plumridge, A., Bunting, K., Antunes, F., Williamson, R., Athwal, S., Allan, E., Evans, L., Bjørås, M., Kjærulff, S., Sleep, D., Sandlie, I., & Cameron, J. (2014). Extending serum half-life of albumin by engineering neonatal Fc receptor (FcRn) binding. The Journal of biological chemistry, 289(19), 13492–13502. 74. Feder, J. N., Gnirke, A., Thomas, W., Tsuchihashi, Z., Ruddy, D. A., Basava, A., Dormishian, F., Domingo, R., Jr, Ellis, M. C., Fullan, A., Hinton, L. M., Jones, N. L., Kimmel, B. E., Kronmal, G. S., Lauer, P., Lee, V. K., Loeb, D. B., Mapa, F. A., McClelland, E., Meyer, N. C., … Wolff, R. K. (1996). A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nature genetics, 13(4), 399–408. 75. Glas, R., Ohlén, C., Höglund, P., & Kärre, K. (1994). The CD8+ T cell repertoire in beta 2-microglobulin-deficient mice is biased towards reactivity against self-major histocompatibility class I. The Journal of experimental medicine, 179(2), 661–672. 76. Jhaver, K. G., Rao, T. D., Frey, A. B., & Vukmanović, S. (1995). Apparent split tolerance of CD8+ T cells from beta 2-microglobulin-deficient (beta 2m-/-) mice to syngeneic beta 2m+/+ cells. Journal of immunology (Baltimore, Md. : 1950), 154(12), 6252–6261. 77. Roberts, A. D., Ordway, D. J., & Orme, I. M. (1993). Listeria monocytogenes infection in beta 2 microglobulin-deficient mice. Infection and immunity, 61(3), 1113–1116. 78. Quinn, D. G., Zajac, A. J., Hioe, C. E., & Frelinger, J. A. (1997). Virus-specific, CD8+ major histocompatibility complex class I-restricted cytotoxic T lymphocytes in lymphocytic choriomeningitis virus-infected beta2-microglobulin-deficient mice. Journal of virology, 71(11), 8392–8396. 79. Salcedo, M., Andersson, M., Lemieux, S., Van Kaer, L., Chambers, B. J., & Ljunggren, H. G. (1998). Fine tuning of natural killer cell specificity and maintenance of self tolerance in MHC class I-deficient mice. European journal of immunology, 28(4), 1315–1321. 80. Wani, M. A., Haynes, L. D., Kim, J., Bronson, C. L., Chaudhury, C., Mohanty, S., Waldmann, T. A., Robinson, J. M., & Anderson, C. L. (2006). Familial hypercatabolic hypoproteinemia caused by deficiency of the neonatal Fc receptor, FcRn, due to a mutant beta2-microglobulin gene. Proceedings of the National Academy of Sciences of the United States of America, 103(13), 5084–5089. 81. Kim, J., Bronson, C. L., Wani, M. A., Oberyszyn, T. M., Mohanty, S., Chaudhury, C., Hayton, W. L., Robinson, J. M., & Anderson, C. L. (2008). Beta 2-microglobulin deficient mice catabolize IgG more rapidly than FcRn- alpha-chain deficient mice. Experimental biology and medicine (Maywood, N.J.), 233(5), 603–609. 82. Ghetie, V., Hubbard, J. G., Kim, J. K., Tsen, M. F., Lee, Y., & Ward, E. S. (1996). Abnormally short serum half-lives of IgG in beta 2-microglobulin-deficient mice. European journal of immunology, 26(3), 690–696. 83. Chen, PL., Shih, SR., Wang, PW. et al. (2015) Genetic determinants of antithyroid drug-induced agranulocytosis by human leukocyte antigen genotyping and genome-wide association study. Nat Commun 6, 7633. 84. Chen, P. L., Fann, C. S., Chu, C. C., Chang, C. C., Chang, S. W., Hsieh, H. Y., Lin, M., Yang, W. S., & Chang, T. C. (2011). Comprehensive genotyping in two homogeneous Graves' disease samples reveals major and novel HLA association alleles. PloS one, 6(1), e16635. 85. Schloss, J., Ali, R., Racine, J. J., Chapman, H. D., Serreze, D. V., & DiLorenzo, T. P. (2018). HLA-B*39:06 Efficiently Mediates Type 1 Diabetes in a Mouse Model Incorporating Reduced Thymic Insulin Expression. Journal of immunology (Baltimore, Md. : 1950), 200(10), 3353–3363. 86. Kanaan, S. B., Sensoy, O., Yan, Z., Gadi, V. K., Richardson, M. L., & Nelson, J. L. (2019). Immunogenicity of a rheumatoid arthritis protective sequence when acquired through microchimerism. Proceedings of the National Academy of Sciences of the United States of America, 116(39), 19600–19608. 87. Şelli, M. E., Thomas, A. C., Wraith, D. C., & Newby, A. C. (2017). A humanized HLA-DR4 mouse model for autoimmune myocarditis. Journal of molecular and cellular cardiology, 107, 22–26. 88. Zhu, M. M., Niu, B. W., Liu, L. L., Yang, H., Qin, B. Y., Peng, X. H., Chen, L. X., Liu, Y., Wang, C., Ren, X. N., Xu, C. H., Zhou, X. H., & Li, F. (2022). Development of a humanized HLA-A30 transgenic mouse model. Animal models and experimental medicine, 5(4), 350–361. 89. Dewan, A. E., Koentgen, F., Johannesen, M. K., du Pre, M. F., & Sollid, L. M. (2021). Generation of an HLA-DQ2.5 Knock-In Mouse. ImmunoHorizons, 5(1), 25–32. 90. Mouse and rat. (n.d.). National Taiwan University Experimental Animal Resource Center. 91. Yu-Chun Lin, development of new immunogenomic platforms to study human disease (2020), Graduate Institute of Medical Genomics and Proteomics, National Taiwan University. 92. Yu-Tsung Lai, Establishing a humanized MHC mouse model (2021), Graduate Institute of Medical Genomics and Proteomics, National Taiwan University. 93. Deng W, Wang Y, Liu Z, Cheng H, Xue Y (2014) HemI: A Toolkit for Illustrating Heatmaps. PLoS ONE 9(11): e111988. 94. Spellerberg, I. F., and Fedor, P. J., 2003. A tribute to Claude Shannon (1916–2001) and a plea for more rigorous use of species richness, species diversity and the ‘Shannon – Wiener’ Index. Global Ecology and Biogeography, 12, 177–179. 95. Valerio Arnaboldi, Andrea Passarella, Marco Conti, Robin I.M. Dunbar. (2015). Chapter 5 - Evolutionary Dynamics in Twitter Ego Networks. In Computer Science Reviews and Trends, Online Social Networks, Elsevier, 75-92. 96. Bardou, P., Mariette, J., Escudié, F. et al. (2014). jvenn: an interactive Venn diagram viewer. BMC Bioinformatics 15, 293. 97. Demaria, S., & Bushkin, Y. (1993). CD8 and beta 2-microglobulin-free MHC class I molecules in T cell immunoregulation. International journal of clinical & laboratory research, 23(2), 61–69. 98. Andersen, M. H., Schrama, D., Thor Straten, P., & Becker, J. C. (2006). Cytotoxic T cells. The Journal of investigative dermatology, 126(1), 32–41. 99. Shields, M. J., Assefi, N., Hodgson, W., Kim, E. J., & Ribaudo, R. K. (1998). Characterization of the interactions between MHC class I subunits: a systematic approach for the engineering of higher affinity variants of beta 2-microglobulin. Journal of immunology (Baltimore, Md. : 1950), 160(5), 2297–2307. 100. Swearengen J. R. (2018). Choosing the right animal model for infectious disease research. Animal models and experimental medicine, 1(2), 100–108. 101. Silva-Santana, G., Bax, J. C., Fernandes, D. C. S., Bacellar, D. T. L., Hooper, C., Dias, A. A. S. O., Silva, C. B., de Souza, A. M., Ramos, S., Santos, R. A., Pinto, T. R., Ramão, M. A., & Mattos-Guaraldi, A. L. (2020). Clinical hematological and biochemical parameters in Swiss, BALB/c, C57BL/6 and B6D2F1 Mus musculus. Animal models and experimental medicine, 3(4), 304–315. 102. Thapa, P., & Farber, D. L. (2019). The Role of the Thymus in the Immune Response. Thoracic surgery clinics, 29(2), 123–131. 103. Lewis, S. M., Williams, A., & Eisenbarth, S. C. (2019). Structure and function of the immune system in the spleen. Science immunology, 4(33), eaau6085. 104. Donetskova, A. D., Sharova, N. I., Nikonova, M. F., Mitin, A. N., Litvina, M. M., Komogorova, V. V., & Iarilin, A. A. (2013). Dynamics of T-Cell receptor gene rearrangement and T-lymphocytes migration from thymus during post-radiation regeneration. Radiatsionnaia biologiia, radioecologiia, 53(6), 575–582. 105. DeVette, C. I., Andreatta, M., Bardet, W., Cate, S. J., Jurtz, V. I., Jackson, K. W., Welm, A. L., Nielsen, M., & Hildebrand, W. H. (2018). NetH2pan: A Computational Tool to Guide MHC Peptide Prediction on Murine Tumors. Cancer immunology research, 6(6), 636–644. 106. Bhat, P., Leggatt, G., Waterhouse, N., & Frazer, I. H. (2017). Interferon-γ derived from cytotoxic lymphocytes directly enhances their motility and cytotoxicity. Cell death & disease, 8(6), e2836. 107. Elhanati, Y., Murugan, A., Callan, C. G., Jr, Mora, T., & Walczak, A. M. (2014). Quantifying selection in immune receptor repertoires. Proceedings of the National Academy of Sciences of the United States of America, 111(27), 9875–9880. 108. Quigley, M. F., Greenaway, H. Y., Venturi, V., Lindsay, R., Quinn, K. M., Seder, R. A., Douek, D. C., Davenport, M. P., & Price, D. A. (2010). Convergent recombination shapes the clonotypic landscape of the naive T-cell repertoire. Proceedings of the National Academy of Sciences of the United States of America, 107(45), 19414–19419. 109. Goding, J. W., & Walker, I. D. (1980). Allelic forms of beta 2-microglobulin in the mouse. Proceedings of the National Academy of Sciences of the United States of America, 77(12), 7395–7399. 110. Bjerager, L., Pedersen, L. O., Bregenholt, S., Nissen, M. H., & Claesson, M. H. (1996). MHC class I phenotype and function of human beta 2-microglobulin transgenic murine lymphocytes. Scandinavian journal of immunology, 44(6), 615–622. 111. Pedersen, L. O., Stryhn, A., Holter, T. L., Etzerodt, M., Gerwien, J., Nissen, M. H., Thøgersen, H. C., & Buus, S. (1995). The interaction of beta 2-microglobulin (beta 2m) with mouse class I major histocompatibility antigens and its ability to support peptide binding. A comparison of human and mouse beta 2m. European journal of immunology, 25(6), 1609–1616. 112. Jackson, S. J., Andrews, N., Ball, D., Bellantuono, I., Gray, J., Hachoumi, L., Holmes, A., Latcham, J., Petrie, A., Potter, P., Rice, A., Ritchie, A., Stewart, M., Strepka, C., Yeoman, M., & Chapman, K. (2017). Does age matter? The impact of rodent age on study outcomes. Laboratory animals, 51(2), 160–169. 113. Miranda, C. J., Makui, H., Andrews, N. C., & Santos, M. M. (2004). Contributions of beta2-microglobulin-dependent molecules and lymphocytes to iron regulation: insights from HfeRag1(-/-) and beta2mRag1(-/-) double knock-out mice. Blood, 103(7), 2847–2849. 114. Santos, M. M., de Sousa, M., Rademakers, L. H., Clevers, H., Marx, J. J., & Schilham, M. W. (2000). Iron overload and heart fibrosis in mice deficient for both beta2-microglobulin and Rag1. The American journal of pathology, 157(6), 1883–1892. 115. Santos, M., Clevers, H., de Sousa, M., & Marx, J. J. (1998). Adaptive response of iron absorption to anemia, increased erythropoiesis, iron deficiency, and iron loading in beta2-microglobulin knockout mice. Blood, 91(8), 3059–3065. 116. Xu, L., Chen, L., Zhang, B., Liu, Z., Liu, Q., Liang, H., Chen, Y., Chen, X., Leng, C., & Zhang, B. (2023). Alkaline phosphatase combined with γ-glutamyl transferase is an independent predictor of prognosis of hepatocellular carcinoma patients receiving programmed death-1 inhibitors. Frontiers in immunology, 14, 1115706. 117. Fukuda, T., Asou, E., Nogi, K., & Goto, K. (2017). Evaluation of mouse red blood cell and platelet counting with an automated hematology analyzer. The Journal of veterinary medical science, 79(10), 1707–1711. 118. Everds N. (2007). In: Fox J. Waltham (MA): Academic Press. Hematology of the laboratory mouse. The mouse in biomedical research, p 135–163. 119. Webb JL, Latimer KS. (2011). In: Latimer KS. Hoboken (NJ): Wiley–Blackwell. Leukocytes. Veterinary laboratory medicine: clinical pathology, p 45–82. 120. Russell ES, Bernstein SE. (1966). In: Green EL. New York (NY): McGraw Hill. Blood and blood formation. Biology of the laboratory mouse, p 351–372. 121. Moore D. (2000). In: Feldman BF, Zinkl JG, Jain NC. Hoboken (NJ): Wiley–Blackwell. Hematology of the mouse (Mus musculus). Schalm's veterinary hematology, p 1219–1224. 122. Provencher Bolliger A, Everds NE, Zimmerman KL, Moore DM, Smith SA, Barnhart KF. (2010). In: Weiss D, Wardrop J, Schalm OW. Hoboken (NJ): Wiley–Blackwell. Schalm's veterinary hematology, p 852–887. 123. Fernandez, G. C., Lopez, M. F., Gomez, S. A., Ramos, M. V., Bentancor, L. V., Fernandez-Brando, R. J., Landoni, V. I., Dran, G. I., Meiss, R., Isturiz, M. A., & Palermo, M. S. (2006). Relevance of neutrophils in the murine model of haemolytic uraemic syndrome: mechanisms involved in Shiga toxin type 2-induced neutrophilia. Clinical and experimental immunology, 146(1), 76–84. 124. Linden M, Ward JM, Cherian S. (2011). In: Trueting PM, Dintzis SM. Amsterdam (the Netherlands): Elsevier. Hematopoietic and lymphoid tissues. Comparative anatomy and histology: a mouse and human atlas, p 309–338. 125. Schwab, C. L., Fan, R., Zheng, Q., Myers, L. P., Hébert, P., & Pruett, S. B. (2005). Modeling and predicting stress-induced immunosuppression in mice using blood parameters. Toxicological sciences : an official journal of the Society of Toxicology, 83(1), 101–113. 126. O'Connell, K. E., Mikkola, A. M., Stepanek, A. M., Vernet, A., Hall, C. D., Sun, C. C., Yildirim, E., Staropoli, J. F., Lee, J. T., & Brown, D. E. (2015). Practical murine hematopathology: a comparative review and implications for research. Comparative medicine, 65(2), 96–113. 127. Sandalova, T., Michaëlsson, J., Harris, R. A., Ljunggren, H. G., Kärre, K., Schneider, G., & Achour, A. (2005). Expression, refolding and crystallization of murine MHC class I H-2Db in complex with human beta2-microglobulin. Acta crystallographica. Section F, Structural biology and crystallization communications, 61(Pt 12), 1090–1093. 128. Achour, A., Michaëlsson, J., Harris, R. A., Ljunggren, H. G., Kärre, K., Schneider, G., & Sandalova, T. (2006). Structural basis of the differential stability and receptor specificity of H-2Db in complex with murine versus human beta2-microglobulin. Journal of molecular biology, 356(2), 382–396. 129. Montealegre, S., Venugopalan, V., Fritzsche, S., Kulicke, C., Hein, Z., & Springer, S. (2015). Dissociation of β2-microglobulin determines the surface quality control of major histocompatibility complex class I molecules. FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 29(7), 2780–2788. 130. Lee, J. Y., Han, A. R., & Lee, D. R. (2019). T Lymphocyte Development and Activation in Humanized Mouse Model. Development & reproduction, 23(2), 79–92. 131. Sadasivam, M., Noel, S., Lee, S. A., Gong, J., Allaf, M. E., Pierorazio, P., Rabb, H., & Hamad, A. R. A. (2019). Activation and Proliferation of PD-1+ Kidney Double-Negative T Cells Is Dependent on Nonclassical MHC Proteins and IL-2. Journal of the American Society of Nephrology : JASN, 30(2), 277–292. 132. Peschon, J. J., Morrissey, P. J., Grabstein, K. H., Ramsdell, F. J., Maraskovsky, E., Gliniak, B. C., Park, L. S., Ziegler, S. F., Williams, D. E., Ware, C. B., Meyer, J. D., & Davison, B. L. (1994). Early lymphocyte expansion is severely impaired in interleukin 7 receptor-deficient mice. The Journal of experimental medicine, 180(5), 1955–1960. 133. Nemazee D. (2000). Receptor selection in B and T lymphocytes. Annual review of immunology, 18, 19–51. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90265 | - |
dc.description.abstract | 自體免疫疾病普遍為多基因性(polygenic),涉及眾多易感性基因(susceptibility gene),當中較為著名的例子是 MHC 基因。近年來,透過基因組關聯分析(genome-wide association studies, GWAS)與次世代定序(next generation sequencing, NGS)的研究,我們已經深入了解特定 MHC 等位基因與自體免疫疾病的發生有顯著相關性。然而,MHC 等位基因並非誘發疾病的主因。為了釐清 MHC 等位基因與人類自體免疫相關疾病的致病機制,本實驗室發展出擬人化主要組織相容性複合體(major histocompatibility complex, MHC)之小鼠模式,目前已透過基於 CRISPR-Cas9 技術之同源臂重組方法建立出擬人化 β2-微球蛋白(β2-microglobulin, B2M)剔入小鼠模式,利用此小鼠模式作為實驗手段,將研究聚焦在我們感興趣之人類免疫相關疾病。
本文旨在探討擬人化 B2M 剔入(gene knock-in)小鼠模式之表徵與可行性。透過DNA、mRNA和蛋白質水平上的研究,該小鼠模型的建立已獲得證實。同時,透過定期體重測量與生理觀察,證明該小鼠模式具備良好生長發育狀況。然而,研究結果顯示雄性擬人化 B2M 剔入小鼠的肝臟重量指數顯著降低,其丙氨酸氨基轉移酶(alanine aminotransferase, ALT)與天門冬氨酸氨基轉移酶(aspartate aminotransferase, AST)的含量於血清中異常升高,說明雄性擬人化 B2M 剔入小鼠的肝臟受到一定的影響。值得注意的是,臟器外觀與蘇木精-伊紅染色結果判讀並未發現異常變化。 B2M 蛋白為 MHC-I 分子呈獻至細胞表面的重要基礎。透過分析 MHC-I 分子的呈獻狀態,擬人化 B2M 剔入小鼠展示出呈獻 MHC-I 分子之能力,並對其重鏈分子的呈獻有所偏好。鑒於 MHC 分子與 T 細胞具有密不可分的關聯性,本文評估該小鼠模式胸腺與次級淋巴器官中的淋巴球組成,結果顯示,擬人化 B2M 剔入小鼠之 T 細胞於胸腺中得以順利發育,並正常分布於周邊淋巴器官。然而,DN1(CD25- CD44+)階段之胸腺細胞比例降低與脾臟淋巴球數目異常,仍有待釐清。此外,擬人化 B2M 剔入小鼠之 T 細胞具備正常的活化能力與產生 Interferon-gamma (IFN-γ) 的功能,同時,在 T 細胞受體特徵中展示出與一般野生型(wild-type)小鼠相似的 V(D)J 基因使用模式,並具有相對平衡與多樣的 T 細胞受體CDR3 克隆型(clonotype)。 綜觀本研究結果,擬人化 B2M 剔入小鼠的整體健康狀態並未受到顯著影響,儘管雄性擬人化 B2M 剔入小鼠的肝臟出現一些問題,限制了其作為肝臟相關疾病研究的應用,總括而言,擬人化 B2M 剔入小鼠在 MHC-I 重鏈分子呈獻上的差異,不影響其 T 細胞發育、組成與活化,並具有多樣的 T 細胞受體庫(TCR repertoire),因此,擬人化 B2M 剔入小鼠具備作為研究模式的潛力。 | zh_TW |
dc.description.abstract | Autoimmune diseases are generally considered to be polygenic, involving numerous susceptibility genes. Among these, the most well-known examples are the MHC genes. In recent years, through genome-wide association studies (GWAS) and next-generation sequencing (NGS) research, we have gained deeper insights into the significant correlation between specific MHC alleles and the occurrence of autoimmune diseases. However, MHC alleles are not the primary cause of disease induction. To elucidate the pathogenic mechanisms underlying the association between MHC alleles and human autoimmune-related diseases, our laboratory has developed a humanized mouse model of the major histocompatibility complex (MHC). Currently, using the homologous arm recombination method based on CRISPR-Cas9 technology, we have successfully established a humanized β2-microglobulin (B2M) knock-in mouse model. By utilizing this mouse model as an experimental tool, our research focuses on investigating the human immune-related diseases of interest.
This study aims to explore the characterization and feasibility of the humanized β2-microglobulin (B2M) knock-in mouse model. The establishment of this mouse model has been confirmed through investigations at the DNA, mRNA, and protein levels. Additionally, regular measurements of body weight and physiological observations have demonstrated that the mouse model exhibits healthy growth and development. However, the research results indicate that the liver coefficient of male humanized B2M knock-in mice significantly decreased, and the levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were abnormally elevated in the serum, suggesting the liver of male humanized B2M knock-in mice is affected to some extent. It is noteworthy that no abnormal changes were observed in organ appearance and histological analysis using hematoxylin-eosin staining. The B2M protein plays a crucial role in presenting MHC-I molecules on the cell surface. Through the analysis of MHC-I molecule presentation, the humanized B2M knock-in mouse model demonstrates the ability to present MHC-I molecules and exhibits a preference for the presentation of certain heavy chain molecules. Given the close association between MHC molecules and T cells, this study evaluates the lymphocyte composition in the thymus and secondary lymphoid organs of the mouse model. The results show that T cells in the humanized B2M knock-in mice undergo successful development in the thymus and exhibit normal distribution in the peripheral lymphoid organs. However, the decreased proportion of thymocytes at the DN1 (CD25- CD44+) stage and abnormal numbers of splenic lymphocytes still require further investigation. Additionally, the T cells of the humanized B2M knock-in mice possess normal activation capability and the ability to produce Interferon-gamma (IFN-γ). Furthermore, they exhibited similar V(D)J gene usage patterns in T cell receptor characteristics as the wild-type mice, along with a relative balance and diverse T cell receptor CDR3 clonotypes. Taking a comprehensive view of the research findings, the overall health of the humanized B2M knock-in mice was not significantly affected, although some issues were observed in the liver of male humanized B2M knock-in mice, limiting its application as a model for liver-related diseases. In summary, the differences in MHC-I heavy chain molecule presentation do not affect the development, composition, and activation of T cells in the humanized B2M knock-in mice, and they possess a diverse T cell receptor repertoire (TCR repertoire). Therefore, the humanized B2M knock-in mouse holds potential as a research model. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-25T16:10:39Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-09-25T16:10:39Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | Content
口試委員審定書 i 致謝 ii 中文摘要 iii Abstract v 1. Introduction 1 1.1 Genes of major histocompatibility complex (MHC) 1 1.1.1 Characteristics of major histocompatibility complex (MHC) 2 1.1.2 Composition of MHC class I molecules 2 1.1.3 Role of MHC class I molecules in antigen presentation 3 1.1.4 Composition of MHC class II molecules 4 1.1.5 Role of MHC class II molecules in antigen presentation 4 1.2 T cell receptor and its specificity for antigen recognition 5 1.2.1 Generation of TCR repertoire 6 1.2.2 The process of T cell maturation and selection in the thymus 7 1.2.3 CD8 and CD4 T cell development pathways 8 1.2.4 T cell activation and differentiation 8 1.3 The role of B2M molecules and B2M mouse model 9 1.4 Study purpose 10 2. Materials and Methods 12 2.1 Acquisition of experimental mice 12 2.2 Design and cloning of human B2M construct 13 2.3 CRISPR/Cas9-mediated knock-in for generating hB2M KI mice 13 2.4 Genotyping of hB2M KI mice 14 2.4.1 Extraction of genomic DNA (gDNA) 14 2.4.2 Polymerase Chain Reaction (PCR) for genotype identification 15 2.5 RNA extraction from hB2M KI mice 16 2.5.1 Ficoll density gradient separation for isolation of PBMCs 16 2.5.2 Collection of spleen tissue for isolation of splenocytes 17 2.5.3 RNA extraction for PBMCs and splenocytes 18 2.6 cDNA synthesis 19 2.7 Reverse Transcription-PCR (RT-PCR) 20 2.8 Reverse Transcription-quantitative PCR (RT-qPCR) 20 2.9 Flow cytometry analysis 21 2.9.1 Isolation of PBMCs for flow cytometry analysis 22 2.9.2 Isolation of splenocytes and thymocytes for flow cytometry analysis 23 2.9.3 Immunophenotyping 24 2.9.4 Intracellular protein staining 25 2.10 Body weight analysis 26 2.11 Measurements of body length, tail length, and limb length 27 2.12 Organ coefficient and immune organs analysis 27 2.13 Serum biochemical analysis 28 2.14 Complete blood count (CBC) 29 2.15 Hematoxylin and eosin stain (H&E stain) 29 2.16 T cell activation assay 30 2.16.1 T cell culture 31 2.17 Enzyme-linked immunosorbent assay (ELISA) 32 2.18 TCR library 33 2.18.1 Isolation of CD8+ and CD4+ T cells by sorting 34 2.18.2 RNA preparation and cDNA synthesis 34 2.18.3 Purification of cDNA 35 2.18.4 Nested PCR for enriching T cell receptor chains 36 2.18.5 Sequencing and data processing 38 2.19 Analysis of V(D)J usage patterns 38 2.20 Analysis of CDR3 clonotype diversity 39 2.21 Statistical analysis 40 3. Results 41 3.1 Generation of hB2M KI mice with modified mouse B2m gene 41 3.2 Genotyping strategy for genotype determination in hB2M KI mice 42 3.3 Analysis of mRNA expression level of human B2M gene in hB2M KI mice 43 3.4 Expression of human B2M molecules on the cell surface of hB2M KI mice 44 3.5 Intracellular staining of mouse B2M molecules 44 3.6 Evaluation of physiological parameters in hB2M KI mice 45 3.7 Evaluation of hematological parameters in hB2M KI mice 47 3.8 Evaluation of histological parameters in hB2M KI mice 48 3.9 Analysis of immune organ size in hB2M KI mice 48 3.10 Impact of human B2M molecules on MHC-I presentation in hB2M KI mice 49 3.11 Thymocyte differentiation and development in hB2M KI mice 50 3.12 Analysis of lymphocyte distribution in hB2M KI mice 51 3.13 Evaluation of T cell activation in hB2M KI mice 52 3.14 Assessing IFN-γ production after anti-CD3/28 stimulation 53 3.15 Comparative analysis of V(D)J gene usage frequencies in hB2M KI mice 53 3.16 V, D, and J gene segment usage patterns in hB2M KI mice 55 3.17 Diversity analysis of TCR repertoires in hB2M KI mice 56 4. Discussion 58 4.1. Successful knock-in of human B2M gene and protein phenotypic abnormalities 58 4.2. Physiological assessment and liver abnormalities in male hB2M KI mice 59 4.3. Partial hematologic parameter abnormalities in hB2M KI mice 61 4.4. Differential presentation of H-2Db and H-2Kb molecules 63 4.5. Immune organ structure and altered splenic lymphocytes in hB2M KI mice 64 4.6. Normal T cell activation in hB2M KI mice 66 4.7. Similarity in V(D)J gene usage and diversity of TCR CDR3 clones 66 5. Conclusion 69 6. Reference 71 List of Figures Fig. 1. Modification of humanized B2M loci and chimeric MHC Class I. 82 Fig. 2. Genotyping primer annealing sites and genotype analysis. 83 Fig. 3 Analysis of RT-PCR primer annealing sites and genotype-specific results. 84 Fig. 4. RT-qPCR results of mouse B2m gene and human B2M gene. 85 Fig. 5. The expression of B2M molecule on the surface of CD8+ T cells in PBMCs and splenocytes. 86 Fig. 5. The expression of B2M molecule on the surface of CD8+ T cells in PBMCs and splenocytes. 87 Fig. 6. The expression of mouse B2M molecule on cell surface and intracellularly. 88 Fig. 7. Gender-based assessment of phenotype and necropsy in hB2M KI mice. 89 Fig. 8. Normal body length and tail length in hB2M KI mice. 90 Fig. 9. Normal length of forelimb and hindlimb bones in hB2M KI mice. 91 Fig. 10. Normal body weight in hB2M KI mice. 92 Fig. 11. Gross appearance of various organs in hB2M KI mice. 93 Fig. 12. Organ weight-to-body weight ratios of brain, heart, lung, liver, thymus, spleen, and kidney in hB2M KI mice. 94 Fig. 13. Serum biochemical analysis in male hB2M KI mice. 95 Fig. 14. Characterization of red blood cell and platelet parameters in hB2M KI mice. 96 Fig. 15. Characterization of white blood cell parameters in hB2M KI mice. 97 Fig. 16. Hematoxylin and eosin staining of brain, heart, lung, and liver tissues in hB2M KI mice. 98 Fig. 17. Hematoxylin and eosin staining of thymus, spleen, kidney, and intestine tissues in hB2M KI mice. 99 Fig. 18. Immunological organ analysis of thymus and spleen size in hB2M KI mice. 100 Fig. 19. The expression of mouse MHC-I on the surface of CD8+ T cells in PBMCs and splenocytes. 101 Fig. 19. The expression of mouse MHC-I on the surface of CD8+ T cells in PBMCs and splenocytes. 102 Fig. 20. Mouse H-2Kb molecule expressed on cell surface and intracellularly. 103 Fig. 21. RT-qPCR results of mouse H-2Db gene and mouse H-2Kb gene. 104 Fig. 22. Normal thymic T cell development in hB2M KI mice. 105 Fig. 23. The differentiation of thymocytes in hB2M KI mice. 106 Fig. 24. Total numbers of thymocytes and T cells at different developmental stages in hB2M KI mice. 107 Fig. 25. Lymphoid populations in PBMCs and spleen from hB2M KI mice. 108 Fig. 26. T-cell subsets in PBMCs and spleen from hB2M KI mice. 109 Fig. 27. Total numbers of splenocytes and lymphocytes in hB2M KI mice. 110 Fig. 28. Microscopic images of anti-CD3/28 stimulated splenocyte cultures. 111 Fig. 29. Normal CD8 T cell activation in hB2M KI mice with anti-CD3/CD28. 112 Fig. 30. Normal CD4 T cell activation in hB2M KI mice with anti-CD3/CD28. 113 Fig. 31. IFN-γ production in T cells after anti-CD3/CD28 stimulation. 114 Fig. 32. Usage of TRV and TRD genes in CD8 T cells. 115 Fig. 33. Usage of TRJ genes in CD8 T cells. 116 Fig. 34. Usage of TRV and TRD genes in CD4 T cells. 117 Fig. 35. Usage of TRJ genes in CD4 T cells. 118 Fig. 36. Usage patterns of CD8 TRAV genes. 119 Fig. 37. Usage patterns of CD8 TRBV genes. 120 Fig. 38. Usage patterns of CD8 TRGV and TRDV genes. 121 Fig. 39. Usage patterns of CD8 TRBD and TRDD genes. 122 Fig. 40. Usage patterns of CD8 TRAJ and TRBJ genes. 123 Fig. 41. Usage patterns of CD8 TRGJ and TRDJ genes. 124 Fig. 42. Usage patterns of CD4 TRAV genes. 125 Fig. 43. Usage patterns of CD4 TRBV genes. 126 Fig. 44. Usage patterns of CD4 TRGV and TRDV genes. 127 Fig. 45. Usage patterns of CD4 TRBD and TRDD genes. 128 Fig. 46. Usage patterns of CD4 TRAJ and TRBJ genes. 129 Fig. 47. Usage patterns of CD4 TRGJ and TRDJ genes. 130 Fig. 48. Venn diagram of CDR3 diversity in CD8 T cells. 131 Fig. 49. Venn diagram of CDR3 diversity in CD4 T cells. 132 Fig. 50. Comparison of TCR CDR3 clone diversity by the Shannon-Weiner index. 133 Fig. 51. CDR3 diversity in CD8 and CD4 T cells among individuals. 134 Fig. S1. Experimental framework diagram. 135 Fig. S2. Flowchart for hB2M KI mice model validation. 135 Fig. S3. Health assessment flowchart for hB2M KI mice model. 136 Fig. S4. MHC-I presentation analysis diagram in hB2M KI mice. 136 Fig. S5. T cell stimulation experiment diagram for hB2M KI mice. 137 Fig. S6. Diagram of TCR repertoire analysis in hB2M KI mice. 137 Fig. S7. Gating strategy for thymocyte panel analysis. 138 Fig. S8. Gating strategy for analyzing lymphoid populations in PBMCs. 139 Fig. S9. Gating strategy for analyzing lymphoid populations in splenocytes. 140 Fig. S10. Gating strategy for analyzing the activated T cell subsets. 141 Fig. S11. Quality control results of the TCR library in CD8 T cells. 142 Fig. S12. Quality control results of the TCR library in CD4 T cells. 143 List of Tables Table 1. The primers used for the human B2M construct. 144 Table 2. Nucleotide sequences of genotyping primers. 145 Table 3. Nucleotide sequences of RT-PCR and RT-qPCR primers. 146 Table 4. Fluorescent antibodies used for thymic T cell development. 147 Table 5. Fluorescent antibodies for immunophenotyping and intracellular staining 148 Table 6. Fluorescent antibodies used for T cell activation assay. 149 Table 7. Fluorescent antibodies used for T cell sorting. 150 Table 8. Total RNA concentration, absorbance ratios, and RNA integrity number (RIN) specifically for PBMCs. 151 Table 9. Total RNA concentration, absorbance ratios, and RNA integrity number (RIN) specifically for splenocytes. 152 Table 10. Body and tail lengths in hB2M KI mice. 153 Table 11. Forelimb and hindlimb bone lengths in hB2M KI mice. 154 Table 12. Body weight of male hB2M KI mice. 155 Table 13. Body weight of female hB2M KI mice. 156 Table 14. Organ weight-to-body weight ratios in hB2M KI mice. 157 Table 15. Thymus and spleen lengths in hB2M KI mice. 158 Table 16. Total RNA concentration, absorbance ratios, and RNA integrity number (RIN) specifically for splenic CD8 T cells. 159 Table 17. Total RNA concentration, absorbance ratios, and RNA integrity number (RIN) specifically for splenic CD4 T cells. 160 | - |
dc.language.iso | en | - |
dc.title | 人類免疫相關疾病研究中擬人化 B2M 小鼠模式之表徵與可行性 | zh_TW |
dc.title | Characterization and Feasibility of Humanized B2M Mice Model for the Study of Human Immune-related Diseases | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 莊雅惠;游益興;陳佑宗 | zh_TW |
dc.contributor.oralexamcommittee | Ya-Hui Chuang;I-Shing Yu;You-Tzung Chen | en |
dc.subject.keyword | MHC(主要組織相容性複合體),HLA(人類白血球抗原),β2-微球蛋白,CRISPR-Cas9,擬人化小鼠模式, | zh_TW |
dc.subject.keyword | MHC (major histocompatibility complex),HLA (human leukocyte antigen),β2-microglobulin,CRISPR-Cas9,humanized mouse model, | en |
dc.relation.page | 160 | - |
dc.identifier.doi | 10.6342/NTU202302937 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2023-08-07 | - |
dc.contributor.author-college | 醫學院 | - |
dc.contributor.author-dept | 基因體暨蛋白體醫學研究所 | - |
顯示於系所單位: | 基因體暨蛋白體醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 目前未授權公開取用 | 12.6 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。