請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90253完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳佳堃 | zh_TW |
| dc.contributor.advisor | Jia-Kun Chen | en |
| dc.contributor.author | 楊立安 | zh_TW |
| dc.contributor.author | Li-An Yang | en |
| dc.date.accessioned | 2023-09-25T16:06:54Z | - |
| dc.date.available | 2023-11-10 | - |
| dc.date.copyright | 2023-09-25 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-07 | - |
| dc.identifier.citation | Sundell, J., On the history of indoor air quality and health. Indoor air, 2004. 14(s 7): p.51-58.
Klepeis, N.E., et al., The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants. Journal of Exposure Science & Environmental Epidemiology, 2001. 11(3): p. 231-252. Seppanen, O., W.J. Fisk, and Q. Lei, Ventilation and work performance in office work. 2005. Redlich, C.A., J. Sparer, and M.R. Cullen, Sick-building syndrome. The Lancet, 1997. 349(9057): p. 1013-1016. Jones, A.P., Indoor air quality and health. Atmospheric environment, 1999. 33(28): p. 4535-4564. Akbarzadeh, M.A., et al., The association between exposure to air pollutants including PM10, PM2. 5, ozone, carbon monoxide, sulfur dioxide, and nitrogen dioxide concentration and the relative risk of developing STEMI: A case-crossover design. Environmental research, 2018. 161: p. 299-303. Breysse, P.N., et al., Indoor air pollution and asthma in children. Proceedings of the American Thoracic Society, 2010. 7(2): p. 102-106. Ma, C.-J., G.-U. Kang, and M. Hamada, Behavior and Exposure of Chalk Dust during Classroom Teaching. Asian Journal of Atmospheric Environment (AJAE), 2019. 13(4). Maruthi, Y., S. Ramprasad, and N. Lakshmana Das, Trace elemental characterization of chalk dust and their associated health risk assessment. Biological trace element research, 2017. 175: p. 466-474. Lin, C.-C., M.-K. Lee, and H.-L. Huang, Effects of chalk use on dust exposure and classroom air quality. Aerosol and Air Quality Research, 2015. 15(7): p. 2596-2608. Simoni, M., et al., School air quality related to dry cough, rhinitis and nasal patency in children. European Respiratory Journal, 2010. 35(4): p. 742-749. Azodo, A.P., I.S. Olasunkanmi, and U.V. Akpan, Effect of Exposure to Airborne Chalk Dust Particles on Students’ Respiratory Function. Mindanao Journal of Science and Technology, 2020. 18(2). Wargocki, P., et al., The relationships between classroom air quality and children’s performance in school. Building and Environment, 2020. 173: p. 106749. Wargocki, P. and D.P. Wyon, Providing better thermal and air quality conditions in school classrooms would be cost-effective. Building and Environment, 2013. 59: p. 581-589. Shendell, D.G., et al., Associations between classroom CO2 concentrations and student attendance in Washington and Idaho. 2004. Rudnick, S. and D.K. Milton, Risk of indoor airborne infection transmission estimated from carbon dioxide concentration. Indoor air, 2003. 13(3): p. 237-245. Pavilonis, B., et al., Estimating aerosol transmission risk of SARS-CoV-2 in New York City public schools during reopening. Environmental Research, 2021. 195: p. 110805. Lu, C.-Y., et al., Building-related symptoms among office employees associated with indoor carbon dioxide and total volatile organic compounds. International journal of environmental research and public health, 2015. 12(6): p. 5833-5845. Teleszewski, T. and K. Gładyszewska-Fiedoruk, Changes of carbon dioxide concentrations in classrooms: simplified model and experimental verification. Pol. J. Environ. Stud, 2018. 27(5): p. 1-7. Chiu, C.-F., M.-H. Chen, and F.-H. Chang, Carbon dioxide concentrations and temperatures within tour buses under real-time traffic conditions. PLoS One, 2015. 10(4): p. e0125117. Marques, G., C.R. Ferreira, and R. Pitarma, Indoor air quality assessment using a CO 2 monitoring system based on internet of things. Journal of medical systems, 2019. 43: p. 1-10. Apte, M.G., W.J. Fisk, and J.M. Daisey. Indoor carbon dioxide concentrations and SBS in office workers. in Proceedings of Healthy Buildings. 2000. Citeseer. Kwon, S.-B., et al., Measurement of natural ventilation rate in Seoul metropolitan subway cabin. Indoor and Built Environment, 2010. 19(3): p. 366-374. Zuraimi, M., et al., The effect of ventilation strategies of child care centers on indoor air quality and respiratory health of children in Singapore. Indoor air, 2007. 17(4): p. 317-327. St-Jean, M., et al., Indoor air quality in Montréal area day-care centres, Canada. Environmental Research, 2012. 118: p. 1-7. Al-Rashidi, K., D. Loveday, and N. Al-Mutawa, Impact of ventilation modes on carbon dioxide concentration levels in Kuwait classrooms. Energy and Buildings, 2012. 47: p. 540-549. Chen, J.-W. and W.-C. Shao. The Indoor Air Quality of Karaoke Club’s Hall and Box. in 2018 IEEE International Conference on Advanced Manufacturing (ICAM). 2018. IEEE. Demianiuk, A., et al., The changes of carbon dioxide concentration in a cinema auditorium. Budownictwo i Inżynieria Środowiska, 2010. 1(2): p. 105-110. Zhang, Y., et al., Investigation of fine chalk dust particles’ chemical compositions and toxicities on alveolar macrophages in vitro. Chemosphere, 2015. 120: p. 500-506. Majumdar, D. and S.P. William, Chalk dustfall during classroom teaching: particle size distribution and morphological characteristics. Environmental monitoring and assessment, 2009. 148(1-4): p. 343-351. Liu, C., et al., Influence of natural ventilation rate on indoor PM2. 5 deposition. Building and Environment, 2018. 144: p. 357-364. Papakonstantis, I.G., E.A. Hathway, and W. Brevis, An experimental study of the flow induced by the motion of a hinged door separating two rooms. Building and Environment, 2018. 131: p. 220-230. Xie, C., et al., A dynamic processes study of PM retention by trees under different wind conditions. Environmental Pollution, 2018. 233: p. 315-322. Andrade, A., et al., Infection risk in gyms during physical exercise. Environmental Science and Pollution Research, 2018. 25: p. 19675-19686. Morawska, L., et al., How can airborne transmission of COVID-19 indoors be minimised? Environment international, 2020. 142: p. 105832. Zhu, S., et al., An advanced numerical model for the assessment of airborne transmission of influenza in bus microenvironments. Building and Environment, 2012. 47: p. 67-75. Du, C.R., et al., Effect of ventilation improvement during a tuberculosis outbreak in underventilated university buildings. Indoor Air, 2020. 30(3): p. 422-432. Srivastava, S., et al., Effective ventilation and air disinfection system for reducing coronavirus disease 2019 (COVID-19) infection risk in office buildings. Sustainable Cities and Society, 2021. 75: p. 103408. Park, S., et al., Natural ventilation strategy and related issues to prevent coronavirus disease 2019 (COVID-19) airborne transmission in a school building. Science of the total environment, 2021. 789: p. 147764. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90253 | - |
| dc.description.abstract | 在過去的十年之內,國內註冊的補習班數量急遽增加,現行新興的補習班教室空間相對較小,再加上補習文化的盛行,學生和老師長時間待在補習班內。
國內補習班大部分還是使用黑板和粉筆做為教學工具,再加上補習班內部終日緊閉門窗會開著冷氣,卻也大幅了降低通風率,造成環境內部的室內空氣品質不佳,尤其以二氧化碳和PM2.5的濃度居高不下。 在研究中使用GEE分析場域內二氧化碳和PM2.5濃度與教室使用狀況的相關性,結果顯示:上課期間的二氧化碳濃度與人數的增加、窗戶的關閉、門的關閉呈現高度相關性;PM2.5濃度與人數、門的開關未有顯著相關,與粉筆的使用種類、窗戶的開關呈現高度相關,空調開啟的部分在不同教室尺寸中產生差異。下課行為對於二氧化碳濃度的下降與門的開啟、門的常開、人員的離開有顯著的相關;PM2.5在下課過程中其濃度的變化和門是否常開與二氧化碳的結果截然不同:統計結果表示,PM2.5在隨著人員進出的同時不斷開關的行為對於濃度的下降有著高度的相關,與人員是否離開並沒有顯著的相關性,窗戶的開啟以及是否開啟空調與濃度下降的相關性在不同教室間的表現不同。 在研究中以儀器獲取二氧化碳濃度的數值代入Wells-Riley的感染傳輸方程式,針對不同通風狀態與暴露時間,評估Influenza、Tuberculosis和SARS-CoV-2傳染的風險,結果顯示:隨著通風狀態變佳以及暴露的時間縮短,可以有效的降低疾病傳染的風險。 | zh_TW |
| dc.description.abstract | In the past decade, the number of registered cram schools in our country has rapidly increased. The emerging cram schools currently have relatively small classroom spaces, and combined with the prevalent culture of cramming, students and teachers spend long hours inside these cram schools. Most domestic cram schools still use blackboards and chalks as teaching tools. Additionally, the cram school environment is often sealed with air conditioning, which significantly reduces ventilation rates, resulting in poor indoor air quality. Particularly, the concentrations of carbon dioxide and PM2.5 remain high.
Using GEE, the correlation between carbon dioxide and PM2.5 concentrations within the classroom and the usage conditions was examined. The results indicate that during class hours, carbon dioxide concentration is highly correlated with an increase number of people, closed windows, and closed doors. PM2.5 concentration does not show significant correlation with the number of people and door, but it exhibits a strong correlation with the type of chalk and window. The air conditioning varies among different classroom sizes. Breaktime behavior is significantly correlated with the decrease in carbon dioxide concentration, specifically with door opening, doors being left open, and people leaving the room. In contrast, the change in PM2.5 concentration during breaktime exhibits different results from carbon dioxide: statistical analysis suggests that the frequent opening and closing of doors while people enter and exit the room are highly correlated with the decrease in PM2.5 concentration, whereas there is no significant correlation with people leaving the room. The correlation between window, air conditioning usage, and concentration decrease varies across different classrooms. Using instruments, carbon dioxide concentration values were used in the Wells-Riley equation for infection transmission to assess the risk of Influenza, Tuberculosis, and SARS-CoV-2 transmission under different ventilation conditions and exposure times. The results indicate that improving ventilation conditions and reducing exposure time effectively lowers the risk of disease transmission. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-25T16:06:53Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-25T16:06:54Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 I
摘要 II Abstract III 目錄 V 表目錄 VII 圖目錄 VIII 縮寫說明 IX 符號說明 X 第一章 前言 1 1.1研究動機 1 1.2 文獻探討 2 1.2.1 室內空氣品質 2 1.2.2 教室場域 3 1.2.3 Wells-Riley模型 3 第二章 研究方法與材料 5 2.1 研究設計與架構 5 2.2 研究使用儀器 5 2.3 Wells-Riley模型 5 2.4 統計分析 6 第三章 結果 7 3.1 補習班教室內二氧化碳的積累情形 7 3.1.1 不同尺寸教室在不同時間二氧化碳的累積狀況 7 3.1.2 比較不同尺寸教室內各項因子與二氧化碳的關係 8 3.1.3 補習班教室內現場Wells-Riley計算結果 9 3.2 補習班教室內PM2.5的積累情形 11 3.2.1 不同尺寸教室在不同時間PM2.5的積累情形 11 3.2.2 比較不同尺寸教室內各項因子與PM2.5的關係 12 3.3 下課行為帶來的影響 14 3.3.1 比較下課行為和不同教室尺寸中二氧化碳的影響 14 3.3.2 比較下課行為和不同教室尺寸中PM2.5的影響 14 3.4 粉筆種類與PM2.5和PM10的相關性 16 3.4.1 不同粉筆在不同教室中PM2.5和PM10的產生狀況 16 3.4.2 比較不同粉筆在不同教室中PM2.5和PM10的關係 16 第四章 討論 18 4.1 人員的流動以及良好通風可以有效降低空間內二氧化碳濃度 18 4.2 門的頻繁開關以及良好通風可以有效降低空間內PM2.5的濃度 19 4.3 通風量與中堂下課時間可以有效降低疾病感染風險 21 第五章 結論與建議 23 第六章 參考文獻 25 附錄一 教室使用情形紀錄表 52 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 疾病感染風險 | zh_TW |
| dc.subject | 補習班 | zh_TW |
| dc.subject | 室內空氣品質 | zh_TW |
| dc.subject | 通風策略 | zh_TW |
| dc.subject | cram school | en |
| dc.subject | indoor air quality | en |
| dc.subject | ventilation | en |
| dc.subject | infection risk of airborne diseases | en |
| dc.title | 課堂中與中堂休息的通風策略對於補習班CO2、PM2.5和空氣傳染疾病風險的影響 | zh_TW |
| dc.title | The Impact of Ventilation Strategies during Classtime and Breaktime on CO2, PM2.5 and Infection Risk of Airborne Diseases in the Cram School | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 梁佑全;黃盛修;曾子彝 | zh_TW |
| dc.contributor.oralexamcommittee | Yu-Chuan Liang;Sheng-Hsiu Huang;Tzu-Yi Tseng | en |
| dc.subject.keyword | 補習班,室內空氣品質,疾病感染風險,通風策略, | zh_TW |
| dc.subject.keyword | cram school,indoor air quality,infection risk of airborne diseases,ventilation, | en |
| dc.relation.page | 52 | - |
| dc.identifier.doi | 10.6342/NTU202303230 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-08-07 | - |
| dc.contributor.author-college | 公共衛生學院 | - |
| dc.contributor.author-dept | 環境與職業健康科學研究所 | - |
| dc.date.embargo-lift | 2028-07-31 | - |
| 顯示於系所單位: | 環境與職業健康科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 此日期後於網路公開 2028-07-31 | 1.49 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
