請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90234
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李文宗 | zh_TW |
dc.contributor.advisor | Wen-Chung Lee | en |
dc.contributor.author | 莊景榮 | zh_TW |
dc.contributor.author | Jing-Rong Jhuang | en |
dc.date.accessioned | 2023-09-24T16:08:08Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-09-23 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-08 | - |
dc.identifier.citation | 1.Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209-249. doi:10.3322/caac.21660
2.Thun MJ, DeLancey JO, Center MM, Jemal A, Ward EM. The global burden of cancer: priorities for prevention. Carcinogenesis. 2010;31(1):100-110. doi:10.1093/carcin/bgp263 3.Jemal A, Center MM, DeSantis C, Ward EM. Global patterns of cancer incidence and mortality rates and trends. Cancer Epidemiol Biomarkers Prev. 2010;19(8):1893-1907. doi:10.1158/1055-9965.EPI-10-0437 4.Chiang CJ, You SL, Chen CJ, Yang YW, Lo WC, Lai MS. Quality assessment and improvement of nationwide cancer registration system in Taiwan: a review. Jpn J Clin Oncol. 2015;45(3):291-296. doi:10.1093/jjco/hyu211 5.Chiang CJ, Wang YW, Lee WC. Taiwan's Nationwide Cancer Registry System of 40 years: Past, present, and future. J Formos Med Assoc. 2019;118(5):856-858. doi:10.1016/j.jfma.2019.01.012 6.Kao CW, Chiang CJ, Lin LJ, et al. Accuracy of long-form data in the Taiwan cancer registry. J Formos Med Assoc. 2021;120(11):2037-2041. doi:10.1016/j.jfma.2021.04.022 7.Jhuang JR, Chiang CJ, Su SY, Yang YW, Lee WC. Reduction in the Incidence of Urological Cancers after the Ban on Chinese Herbal Products Containing Aristolochic Acid: An Interrupted Time-Series Analysis. Sci Rep. 2019;9(1):19860. Published 2019 Dec 27. doi:10.1038/s41598-019-56394-y 8.Jhuang JR, Su SY, Chiang CJ, et al. Forecast of peak attainment and imminent decline after 2017 of oral cancer incidence in men in Taiwan. Sci Rep. 2022;12(1):5726. Published 2022 Apr 6. doi:10.1038/s41598-022-09736-2 9.Jhuang JR, Chiu PC, Hsieh TC, Chen CH, Pu YS, Lee WC. Latency period of aristolochic acid-induced upper urinary tract urothelial carcinoma. Front Public Health. 2023;11:1072864. Published 2023 Mar 9. doi:10.3389/fpubh.2023.1072864 10.Clayton D, Schifflers E. Models for temporal variation in cancer rates. I: Age-period and age-cohort models. Stat Med. 1987;6(4):449-467. doi:10.1002/sim.4780060405 11.Clayton D, Schifflers E. Models for temporal variation in cancer rates. II: Age-period-cohort models. Stat Med. 1987;6(4):469-481. doi:10.1002/sim.4780060406 12.Holford TR. The estimation of age, period and cohort effects for vital rates. Biometrics. 1983;39(2):311-324. 13.Yang Y, Land KC. Age-Period-Cohort Analysis: New Models, Methods, and Empirical Applications. 1st ed. Chapman and Hall/CRC; 2013. doi:10.1201/b13902 14.Bell A. Age, Period and Cohort Effects: Statistical Analysis and the Identification Problem. 1st ed. Routledge; 2020. doi:10.4324/9780429056819 15.Fosse E, Winship C. Analyzing Age-Period-Cohort Data: A Review and Critique. Annu Rev Sociol. 2019;45:467-492. doi:10.1146/annurev-soc-073018-022616 16.Bell A. Age period cohort analysis: a review of what we should and shouldn't do. Ann Hum Biol. 2020;47(2):208-217. doi:10.1080/03014460.2019.1707872 17.Su SY, Lee WC. Age-period-cohort analysis with a constant-relative-variation constraint for an apportionment of period and cohort slopes. PLoS One. 2019;14(12):e0226678. Published 2019 Dec 19. doi:10.1371/journal.pone.0226678 18.Su SY, Chen WT, Chiang CJ, Yang YW, Lee WC. Oral cancer incidence rates from 1997 to 2016 among men in Taiwan: Association between birth cohort trends and betel nut consumption. Oral Oncol. 2020;107:104798. doi:10.1016/j.oraloncology.2020.104798 19.Chiang CJ, Jhuang JR, Yang YW, et al. Association of Nationwide Hepatitis B Vaccination and Antiviral Therapy Programs With End-Stage Liver Disease Burden in Taiwan. JAMA Netw Open. 2022;5(7):e2222367. Published 2022 Jul 1. doi:10.1001/jamanetworkopen.2022.22367 20.Liu HI, Chiang CJ, Su SY, et al. Incidence trends and spatial distributions of lung adenocarcinoma and squamous cell carcinoma in Taiwan. Sci Rep. 2023;13(1):1655. Published 2023 Jan 30. doi:10.1038/s41598-023-28253-4 21.Lee PJ, Jhuang JR, Chen YC, et al. Urban-Rural Disparity in Birth Cohort Effects on Breast Cancer Incidence. J Urban Health. 2023;100(2):341-354. doi:10.1007/s11524-023-00718-x 22.Lawson AB, Biggeri A, Bohning D, Lesaffre E, Viel JF, Bertollini R. Disease Mapping and Risk Assessment for Public Health. Wiley; 1999. 23.MORAN PA. Notes on continuous stochastic phenomena. Biometrika. 1950;37(1-2):17-23. 24.Anselin L. Local Indicators of Spatial Association—LISA. Geographical Analysis. 1995;27:93-115. doi:10.1111/j.1538-4632.1995.tb00338.x 25.De Oliveira V, Song JJ. Bayesian analysis of simultaneous autoregressive models. Sankhyā: The Indian Journal of Statistics, Series B (2008-). 2008;70(2):323-350. 26.De Oliveira V. Bayesian analysis of conditional autoregressive models. Ann Inst Stat Math. 2012;64:107-133. doi:10.1007/s10463-010-0298-1 27.Goodchild MF. The Validity and Usefulness of Laws in Geographic Information Science and Geography. Annals of the Association of American Geographers. 2004;94(2):300-303. doi:10.1111/j.1467-8306.2004.09402008.x 28.Zhu AX, Guonian L, Liu J, Qin CZ, Zhou C. Spatial prediction based on Third Law of Geography. Annals of GIS. 2018;24(4):225-240. doi:10.1080/19475683.2018.1534890 29.Clayton D, Kaldor J. Empirical Bayes estimates of age-standardized relative risks for use in disease mapping. Biometrics. 1987;43(3):671-681. 30.Marshall RJ. Mapping disease and mortality rates using empirical Bayes estimators. J R Stat Soc Ser C Appl Stat. 1991;40(2):283-294. 31.Wen TH. Spatial Analysis: Methods and Applications. Yeh Yeh Book Gallery, Taipei; 2015. [In Chinese] 32.Lu GY, Wong DW. An adaptive inverse-distance weighting spatial interpolation technique. Computers & Geosciences. 2008;34(9):1044-1055. doi:10.1016/j.cageo.2007.07.010 33.Liaw YP, Lee WC, Chen CJ. Trend surface analysis for cancer mapping: application to breast cancer mortality in Taiwan. Taiwan Journal of Public Health. 1998;17(6):474-484. 34.Parzen E. On Estimation of a Probability Density Function and Mode. The Annals of Mathematical Statistics. 1962;33(3):1065-1076. 35.Carrat F, Valleron AJ. Epidemiologic mapping using the "kriging" method: application to an influenza-like illness epidemic in France. Am J Epidemiol. 1992;135(11):1293-1300. doi:10.1093/oxfordjournals.aje.a116236 36.Berke O. Exploratory disease mapping: kriging the spatial risk function from regional count data. Int J Health Geogr. 2004;3(1):18. Published 2004 Aug 26. doi:10.1186/1476-072X-3-18 37.Brunsdon C, Fotheringham AS, Charlton ME. Geographically weighted regression: a method for exploring spatial nonstationarity. Geographical Analysis. 1996;28:281-98. 38.Hengl T, Heuvelink G, Rossiter DG. About regression-kriging: from equations to case studies. Computers & Geosciences. 2007;33(10):1301-1315. doi:10.1016/j.cageo.2007.05.001 39.Hsu CC, Tsai DR, Su SY, et al. A Stabilized Kriging Method for Mapping Disease Rates. J Epidemiol. 2023;33(4):201-208. doi:10.2188/jea.JE20210276 40.Chernyavskiy P, Little MP, Rosenberg PS. A unified approach for assessing heterogeneity in age-period-cohort model parameters using random effects. Stat Meth Med Res. 2019;28:20-34. doi: 10.1177/0962280217713033 41.Chernyavskiy P, Little MP, Rosenberg PS. Spatially varying age-period-cohort analysis with application to US mortality, 2002-2016. Biostatistics. 2020;21:845-859. doi: 10.1093/biostatistics/kxz009 42.Jean JS, Bundschuh J, Chen CJ, Liu CW, Guo HR, Lin TF, Chen YH. The Taiwan crisis: a showcase of the global arsenic problem. CRC Press, Taylor & Francis Group, Leiden; 2010. 43.Yang CY, Chiu HF, Wu TN, Chuang HY, Ho SC. Reduction in kidney cancer mortality following installation of a tap water supply system in an arsenic-endemic area of Taiwan. Arch Environ Health. 2004;59(9):484-488. doi:10.1080/00039890409603430 44.Chiu HF, Ho SC, Yang CY. Lung cancer mortality reduction after installation of tap-water supply system in an arseniasis-endemic area in Southwestern Taiwan. Lung Cancer. 2004;46(3):265-270. doi:10.1016/j.lungcan.2004.05.012 45.Chiu HF, Ho SC, Wang LY, Wu TN, Yang CY. Does arsenic exposure increase the risk for liver cancer?. J Toxicol Environ Health A. 2004;67(19):1491-1500. doi:10.1080/15287390490486806 46.Su CC, Lu JL, Tsai KY, Lian IeB. Reduction in arsenic intake from water has different impacts on lung cancer and bladder cancer in an arseniasis endemic area in Taiwan. Cancer Causes Control. 2011;22(1):101-108. doi:10.1007/s10552-010-9679-2 47.Cheng PS, Weng SF, Chiang CH, Lai FJ. Relationship between arsenic-containing drinking water and skin cancers in the arseniasis endemic areas in Taiwan. J Dermatol. 2016;43(2):181-186. doi:10.1111/1346-8138.13058 48.Flanagan SV, Johnston RB, Zheng Y. Arsenic in tube well water in Bangladesh: health and economic impacts and implications for arsenic mitigation. Bull World Health Organ. 2012;90(11):839-846. doi:10.2471/BLT.11.101253 49.Steinmaus CM, Ferreccio C, Romo JA, et al. Drinking water arsenic in northern chile: high cancer risks 40 years after exposure cessation. Cancer Epidemiol Biomarkers Prev. 2013;22(4):623-630. doi:10.1158/1055-9965.EPI-12-1190 50.Smith AH, Marshall G, Roh T, Ferreccio C, Liaw J, Steinmaus C. Lung, Bladder, and Kidney Cancer Mortality 40 Years After Arsenic Exposure Reduction. J Natl Cancer Inst. 2018;110(3):241-249. doi:10.1093/jnci/djx201 51.Yang Q, Flanagan SV, Chillrud S, et al. Reduction in drinking water arsenic exposure and health risk through arsenic treatment among private well households in Maine and New Jersey, USA. Sci Total Environ. 2020;738:139683. doi:10.1016/j.scitotenv.2020.139683 52.Pál L, Jenei T, McKee M, et al. Health and economic gain attributable to the introduction of the World Health Organization's drinking water standard on arsenic level in Hungary: A nationwide retrospective study on cancer occurrence and ischemic heart disease mortality. Sci Total Environ. 2022;851(Pt 2):158305. doi:10.1016/j.scitotenv.2022.158305 53.Chiou HY, Chiou ST, Hsu YH, et al. Incidence of transitional cell carcinoma and arsenic in drinking water: a follow-up study of 8,102 residents in an arseniasis-endemic area in northeastern Taiwan. Am J Epidemiol. 2001;153(5):411-418. doi:10.1093/aje/153.5.411 54.Tsai TL, Kuo CC, Hsu LI, et al. Association between arsenic exposure, DNA damage, and urological cancers incidence: A long-term follow-up study of residents in an arseniasis endemic area of northeastern Taiwan. Chemosphere. 2021;266:129094. doi:10.1016/j.chemosphere.2020.129094 55.Chen CL, Chiou HY, Hsu LI, Hsueh YM, Wu MM, Chen CJ. Ingested arsenic, characteristics of well water consumption and risk of different histological types of lung cancer in northeastern Taiwan. Environ Res. 2010;110(5):455-462. doi:10.1016/j.envres.2009.08.010 56.Chen CL, Chiou HY, Hsu LI, et al. Arsenic in drinking water and risk of urinary tract cancer: a follow-up study from northeastern Taiwan. Cancer Epidemiol Biomarkers Prev. 2010;19(1):101-110. doi:10.1158/1055-9965.EPI-09-0333 57.Mao YK, Chi S. Agricultural and industrial development in Taiwan. Published for the International Food Policy Research Institute by Johns Hopkins University Press;1995: Chapter 2. Accessed April 1, 2023. https://www.ifpri.org/cdmref/p15738coll2/id/129337/filename/129548.pdf 58.Chiang CJ, Jhuang JR, Yang YW, et al. Association of Nationwide Hepatitis B Vaccination and Antiviral Therapy Programs With End-Stage Liver Disease Burden in Taiwan. JAMA Netw Open. 2022;5(7):e2222367. Published 2022 Jul 1. doi:10.1001/jamanetworkopen.2022.22367 59.Kee KM, Chen CH, Hu JT, et al. Secular Trends of Clinical Characteristics and Survival of Hepatocellular Carcinoma in Taiwan from 2011 to 2019. Viruses. 2022;15(1):126. Published 2022 Dec 31. doi:10.3390/v15010126 60.Su SY, Chiang CJ, Yang YW, Lee WC. Secular trends in liver cancer incidence from 1997 to 2014 in Taiwan and projection to 2035: An age-period-cohort analysis. J Formos Med Assoc. 2019;118(1 Pt 3):444-449. doi:10.1016/j.jfma.2018.07.001 61.Liao CI, Fang HC, Lee PT, et al. Trends in the incidence of urothelial carcinoma in Taiwan after the ban on aristolochic acid-containing Chinese herbal preparations, 2001-2018: a national population-based cohort study [published online ahead of print, 2023 Apr 15]. J Cancer Res Clin Oncol. 2023;10.1007/s00432-023-04771-6. doi:10.1007/s00432-023-04771-6 62.Liu HI, Chiang CJ, Su SY, et al. Incidence trends and spatial distributions of lung adenocarcinoma and squamous cell carcinoma in Taiwan. Sci Rep. 2023;13(1):1655. Published 2023 Jan 30. doi:10.1038/s41598-023-28253-4 63.Tsai DR, Jhuang JR, Su SY, Chiang CJ, Yang YW, Lee WC. A stabilized spatiotemporal kriging method for disease mapping and application to male oral cancer and female breast cancer in Taiwan. BMC Med Res Methodol. 2022;22(1):270. Published 2022 Oct 13. doi:10.1186/s12874-022-01749-9 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90234 | - |
dc.description.abstract | 烏腳病是1950至1990年台灣西南沿海地區的流行病。本文欲利用台灣癌症登記資料比較砷相關癌症在烏腳病流行地區與非流行地區的發生率。然而1995年起癌症登記資料的品質才趨於穩定,一般的發生率長期趨勢難以看出烏腳病防治成效。再者烏腳病是一種地方性流行病,發生率的地理分布也是重要的議題。本文提出一種時空地圖的繪製方法。我先使用隨機效應年齡-年代-世代模型得到各個行政區域的時空參數估計,再對時空參數進行內插,求得精細至經緯度的時空參數。歷經前述步驟可繪製出疾病率在年齡、年代、與世代的等高線地圖,還能製作影片播放疾病率的時空變化。我也進行電腦模擬比較經驗貝氏法、核密度估計法、克里金法、以及穩定克里金法等內插方法,結果顯示穩定克里金法的表現為最佳。最後,我使用本文的方法分析台灣癌症登記中的砷相關癌症資料,發現烏腳病流行地區與非流行地區的癌症發生率差距在1958-1962出生世代後逐漸消失,這個轉折點恰好是烏腳病防治的起始時間,時空地圖也顯示砷相關癌症發生率群聚在西南沿海地區,在1960出生世代後逐漸消失。本文的方法不僅在電腦模擬有優於傳統方法的表現,在實例應用中也展示具有公共衛生價值的發現。 | zh_TW |
dc.description.abstract | Blackfoot disease was endemic to southwestern Taiwan during the 20th century. This study aims to use the Taiwan Cancer Registry dataset to compare incidence rates of arsenic-related cancers between Blackfoot disease-endemic areas and the remaining areas of Taiwan. However, not until 1995 that the Taiwan Cancer Registry could provide high-quality data. Therefore, the long-term trend in the incidence rates cannot be used to evaluate the effectiveness of Blackfoot disease prevention. In addition, the geographical distribution of arsenic-related incidence rates is also an important issue. This study proposed a spatiotemporal mapping method. First, the random-effects age-period-cohort model is fitted to obtain spatiotemporal parameter estimations in each administration area. Then, these estimations are further interpolated to make predictions on each longitude and latitude. With the procedures, we can draw contour maps of disease rates according to age, period, and cohort and create a movie to show spatiotemporal dynamics vividly. The Monte-Carlo simulation compared interpolation methods, including empirical Bayes, kernel density estimation, kriging, and stabilized kriging. The stabilized kriging performed better among all. Finally, we analyzed arsenic-related cancers from the Taiwan Cancer Registry dataset. The incidence gap between Blackfoot disease-endemic areas and the remaining areas of Taiwan shrunk after the 1958-1962 birth cohort, coinciding with the initial prevention of Blackfoot disease. In addition, spatiotemporal clusters of high incidence rates were identified in southwestern Taiwan, and the clusters also started to dissipate after the 1960 birth cohort. Our method demonstrated appropriate ability and contributed to public health. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-24T16:08:08Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-09-24T16:08:08Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員審定書 #
誌謝 i 表目錄 iii 圖目錄 iv 中文摘要 v 英文摘要 vi 第一章 導論 1 第二章 研究方法 5 第三章 電腦模擬 10 第四章 實證資料應用 12 第五章 結論與展望 18 參考文獻 19 附錄 36 | - |
dc.language.iso | zh_TW | - |
dc.title | 疾病率時空分析方法:台灣砷相關癌症之應用 | zh_TW |
dc.title | Methods for Spatiotemporal Analysis of Disease Rates: Application to Arsenic-related Cancers in Taiwan | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 博士 | - |
dc.contributor.oralexamcommittee | 杜裕康;林菀俞;陳忠信;溫在弘;廖勇柏 | zh_TW |
dc.contributor.oralexamcommittee | Yu-Kang Tu;Wan-Yu Lin;Chung-Hsin Chen;Tzai-Hung Wen;Yung-Po Liaw | en |
dc.subject.keyword | 隨機效應年齡-年代-世代模型,內插,時空地圖,砷相關癌症,發生率, | zh_TW |
dc.subject.keyword | random-effects age-period-cohort model,interpolation,spatiotemporal mapping,arsenic-related cancers,incidence rate, | en |
dc.relation.page | 75 | - |
dc.identifier.doi | 10.6342/NTU202303510 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2023-08-08 | - |
dc.contributor.author-college | 公共衛生學院 | - |
dc.contributor.author-dept | 流行病學與預防醫學研究所 | - |
顯示於系所單位: | 流行病學與預防醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf | 10.48 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。