Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 臨床牙醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90225
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曾琬瑜zh_TW
dc.contributor.advisorWan-Yu Tsengen
dc.contributor.author林建仰zh_TW
dc.contributor.authorChien-Yang Linen
dc.date.accessioned2023-09-22T17:55:52Z-
dc.date.available2023-11-09-
dc.date.copyright2023-09-22-
dc.date.issued2023-
dc.date.submitted2023-07-31-
dc.identifier.citation參考文獻
1. Denry, I. and J.R. Kelly, Emerging ceramic-based materials for dentistry. J Dent Res, 2014. 93(12): p. 1235-42.
2. Galante, R., C.G. Figueiredo-Pina, and A.P. Serro, Additive manufacturing of ceramics for dental applications: A review. Dent Mater, 2019. 35(6): p. 825-846.
3. Kelly, J.R. and I. Denry, Stabilized zirconia as a structural ceramic: an overview. Dent Mater, 2008. 24(3): p. 289-98.
4. Denry, I. and J.R. Kelly, State of the art of zirconia for dental applications. Dent Mater, 2008. 24(3): p. 299-307.
5. Gautam, C., et al., Zirconia based dental ceramics: structure, mechanical properties, biocompatibility and applications. Dalton Trans, 2016. 45(48): p. 19194-19215.
6. Elsayed, A., et al., Influence of the yttrium content on the fracture strength of monolithic zirconia crowns after artificial aging. Quintessence Int, 2019. 50(5): p. 344-348.
7. Hofmann, N., et al., Comparison of photo-activation versus chemical or dual-curing of resin-based luting cements regarding flexural strength, modulus and surface hardness. J Oral Rehabil, 2001. 28(11): p. 1022-8.
8. Puppin-Rontani, J., et al., Effect of Hydrofluoric Acid Concentration and Etching Time on Bond Strength to Lithium Disilicate Glass Ceramic. Oper Dent, 2017. 42(6): p. 606-615.
9. El-Damanhoury, H.M. and M.D. Gaintantzopoulou, Self-etching ceramic primer versus hydrofluoric acid etching: Etching efficacy and bonding performance. J Prosthodont Res, 2018. 62(1): p. 75-83.
10. Souza, R.O., et al., Air-particle abrasion on zirconia ceramic using different protocols: effects on biaxial flexural strength after cyclic loading, phase transformation and surface topography. J Mech Behav Biomed Mater, 2013. 26: p. 155-63.
11. Mehari, K., et al., Assessing the Effects of Air Abrasion with Aluminum Oxide or Glass Beads to Zirconia on the Bond Strength of Cement. J Contemp Dent Pract, 2020. 21(7): p. 713-717.
12. Chintapalli, R.K., et al., Effect of sandblasting and residual stress on strength of zirconia for restorative dentistry applications. J Mech Behav Biomed Mater, 2014. 29: p. 126-37.
13. Xie, Z.G., et al., Effect of air abrasion and dye on the surface element ratio and resin bond of zirconia ceramic. Biomed Mater, 2011. 6(6): p. 065004.
14. Fonseca, R.G., et al., Effect of surface and heat treatments on the biaxial flexural strength and phase transformation of a Y-TZP ceramic. J Adhes Dent, 2014. 16(5): p. 451-8.
15. Xia, Y., et al., [Effect of different surface zirconium oxide treatments on binding strength between zirconia and veneering ceramics]. Zhong Nan Da Xue Xue Bao Yi Xue Ban, 2019. 44(1): p. 53-58.
16. Kosmac, T., et al., The effect of surface grinding and sandblasting on flexural strength and reliability of Y-TZP zirconia ceramic. Dent Mater, 1999. 15(6): p. 426-33.
17. Inokoshi, M., et al., Impact of sandblasting on the flexural strength of highly translucent zirconia. J Mech Behav Biomed Mater, 2021. 115: p. 104268.
18. Nagaoka, N., et al., Chemical interaction mechanism of 10-MDP with zirconia. Sci Rep, 2017. 7: p. 45563.
19. Amarante, J.E.V., et al., Roughness and its effects on flexural strength of dental yttria-stabilized zirconia ceramics. Materials Science and Engineering: A, 2019. 739: p. 149-157.
20. Pissaia, J.F., et al., Color stability of ceramic veneers as a function of resin cement curing mode and shade: 3-year follow-up. PLoS One, 2019. 14(7): p. e0219183.
21. Elkhishen, E.A., et al., Effect of ceramic and resin cement type on color stability and translucency of ceramic laminate veneers for diastema closure: an in vitro study. Sci Rep, 2022. 12(1): p. 22082.
22. Eltoukhy, R.I., et al., Indirect Resin Composite Inlays Cemented with a Self-adhesive, Self-etch or a Conventional Resin Cement Luting Agent: A 5 Years Prospective Clinical Evaluation. J Dent, 2021. 112: p. 103740.
23. Miotti, L.L., et al., Is Conventional Resin Cement Adhesive Performance to Dentin Better Than Self-adhesive? A Systematic Review and Meta-Analysis of Laboratory Studies. Oper Dent, 2020. 45(5): p. 484-495.
24. Teyagirwa, P.F., et al., Operator versus material influence on film thickness using adhesive resin cement or pre-heated resin composite. J Esthet Restor Dent, 2023. 35(3): p. 517-524.
25. Weiner, R.S., The effect of post-cure heat treatment systems on composite resin restorations. J Am Dent Assoc, 1997. 128(1): p. 88.
26. Prasanna, N., et al., Degree of conversion and residual stress of preheated and room-temperature composites. Indian J Dent Res, 2007. 18(4): p. 173-6.
27. Gonzalez Lopez, S., et al., Influence of cavity type and size of composite restorations on cuspal flexure. Med Oral Patol Oral Cir Bucal, 2006. 11(6): p. E536-40.
28. Deb, S., et al., Pre-warming of dental composites. Dent Mater, 2011. 27(4): p. e51-9.
29. Marcondes, R.L., et al., Viscosity and thermal kinetics of 10 preheated restorative resin composites and effect of ultrasound energy on film thickness. Dent Mater, 2020. 36(10): p. 1356-1364.
30. Prieto, L.T., et al., Knoop hardness and effectiveness of dual-cured luting systems and flowable resin to bond leucite-reinforced ceramic to enamel. J Prosthodont, 2013. 22(1): p. 54-8.
31. Tomaselli, L.O., et al., Influence of Pre-Heating Regular Resin Composites and Flowable Composites on Luting Ceramic Veneers with Different Thicknesses. Braz Dent J, 2019. 30(5): p. 459-466.
32. Spazzin, A.O., et al., Strengthening of Porcelain Provided by Resin Cements and Flowable Composites. Oper Dent, 2016. 41(2): p. 179-88.
33. Shenoy, A. and N. Shenoy, Dental ceramics: An update. J Conserv Dent, 2010. 13(4): p. 195-203.
34. Ferro, F., R. Spelat, and C.S. Baheney, Dental pulp stem cell (DPSC) isolation, characterization, and differentiation. Methods Mol Biol, 2014. 1210: p. 91-115.
35. Imazato, S., et al., Degree of conversion of composites measured by DTA and FTIR. Dent Mater, 2001. 17(2): p. 178-83.
36. Rueggeberg, F.A., D.T. Hashinger, and C.W. Fairhurst, Calibration of FTIR conversion analysis of contemporary dental resin composites. Dent Mater, 1990. 6(4): p. 241-9.
37. Chrószcz, M.W., I.M. Barszczewska-Rybarek, and P. Wori, The Relationship between the Degree of Conversion in Dental Dimethacrylate Polymers Determined by Infrared Spectroscopy and Polymerization Shrinkage, in The 2nd International Electronic Conference on Applied Sciences. 2021.
38. Markaki, A., AlamarBlue Assay for Assessment of Cell Proliferation using the FLUOstar OPTIMA. Offenburg: BMG Lab Tech, 2009.
39. Eruslanov, E. and S. Kusmartsev, Identification of ROS using oxidized DCFDA and flow-cytometry. Methods Mol Biol, 2010. 594: p. 57-72.
40. Halliwell, B. and M. Whiteman, Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol, 2004. 142(2): p. 231-55.
41. Luciano, M., et al., Lithium disilicate posterior overlays: clinical and biomechanical features. Clin Oral Investig, 2020. 24(2): p. 841-848.
42. Sasse, M., et al., Influence of restoration thickness and dental bonding surface on the fracture resistance of full-coverage occlusal veneers made from lithium disilicate ceramic. Dent Mater, 2015. 31(8): p. 907-15.
43. Weigl, P., et al., In-vitro performance and fracture strength of thin monolithic zirconia crowns. J Adv Prosthodont, 2018. 10(2): p. 79-84.
44. Moreira, A., et al., Aesthetic Rehabilitation of a Patient with Bruxism Using Ceramic Veneers and Overlays Combined with Four-Point Monolithic Zirconia Crowns for Occlusal Stabilization: A 4-Year Follow-Up. Case Rep Dent, 2019. 2019: p. 1640563.
45. Novais, V.R., et al., Degree of conversion and bond strength of resin-cements to feldspathic ceramic using different curing modes. J Appl Oral Sci, 2017. 25(1): p. 61-68.
46. David-Perez, M., et al., Degree of conversion of resin-cements (light-cured/dual-cured) under different thicknesses of vitreous ceramics: systematic review. J Prosthodont Res, 2022. 66(3): p. 385-394.
47. Passos, S.P., et al., Effect of ceramic shade on the degree of conversion of a dual-cure resin cement analyzed by FTIR. Dent Mater, 2013. 29(3): p. 317-23.
48. Lopes Cde, C., et al., Degree of Conversion and Mechanical Properties of Resin Cements Cured Through Different All-Ceramic Systems. Braz Dent J, 2015. 26(5): p. 484-9.
49. Borges, L.P.S., et al., Effect of lithium disilicate ceramic thickness, shade and translucency on transmitted irradiance and knoop microhardness of a light cured luting resin cement. J Mater Sci Mater Med, 2021. 32(8): p. 90.
50. Furuse, A.Y., et al., Degree of conversion of a flowable composite light-activated through ceramics of different shades and thicknesses. Brazilian Journal of Oral Sciences, 2015. 14(3): p. 230-233.
51. Blatz, M.B., et al., Postoperative tooth sensitivity with a new self-adhesive resin cement--a randomized clinical trial. Clin Oral Investig, 2013. 17(3): p. 793-8.
52. Okabe, T., et al., Effects of pH on mineralization ability of human dental pulp cells. J Endod, 2006. 32(3): p. 198-201.
53. Hirose, Y., et al., Effects of Extracellular pH on Dental Pulp Cells In Vitro. J Endod, 2016. 42(5): p. 735-41.
54. Kambara, K., et al., Effect of smear layer treatment on dentin bond of self-adhesive cements. Dent Mater J, 2012. 31(6): p. 980-7.
55. Schneider, T.R., et al., Effects of dental composite resin monomers on dental pulp cells. Dent Mater J, 2019. 38(4): p. 579-583.
56. Rampersad, S.N., Multiple applications of Alamar Blue as an indicator of metabolic function and cellular health in cell viability bioassays. Sensors (Basel), 2012. 12(9): p. 12347-60.
57. Huang, F.M., et al., Cytotoxicity and genotoxicity of triethyleneglycol-dimethacrylate in macrophages involved in DNA damage and caspases activation. Environ Toxicol, 2015. 30(5): p. 581-8.
58. Mikulas, K., et al., Bioenergetic Impairment of Triethylene Glycol Dimethacrylate- (TEGDMA-) Treated Dental Pulp Stem Cells (DPSCs) and Isolated Brain Mitochondria are Amended by Redox Compound Methylene Blue (dagger). Materials (Basel), 2020. 13(16).
59. Janani, K., et al., Monomer Elution from Three Resin Composites at Two Different Time Interval Using High Performance Liquid Chromatography-An In-Vitro Study. Polymers (Basel), 2021. 13(24).
60. Krifka, S., et al., Oxidative stress and cytotoxicity generated by dental composites in human pulp cells. Clin Oral Investig, 2012. 16(1): p. 215-24.
61. Chen, C., et al., H2O2 gel bleaching induces cytotoxicity and pain conduction in dental pulp stem cells via intracellular reactive oxygen species on enamel/dentin disc. PLoS One, 2021. 16(9): p. e0257221.
62. Vermelin, L., et al., Apoptosis in human and rat dental pulp. Eur J Oral Sci, 1996. 104(5-6): p. 547-53.
63. Chen, R.S., et al., The effects of low-dose 2-hydroxyethyl methacrylate on apoptosis and survival in human dental pulp cells. J Formos Med Assoc, 2021. 120(6): p. 1332-1339.
64. Drozdz, K., et al., Bisphenol A-glycidyl methacrylate induces a broad spectrum of DNA damage in human lymphocytes. Arch Toxicol, 2011. 85(11): p. 1453-61.
65. Saad Del, D., O. Atta, and O. El-Mowafy, The postoperative sensitivity of fixed partial dentures cemented with self-adhesive resin cements: a clinical study. J Am Dent Assoc, 2010. 141(12): p. 1459-66.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90225-
dc.description.abstract近年來,牙科陶瓷已被廣泛地應用於牙體復形治療,加上各類樹脂材料的問世,使得在臨床治療上有更多選擇。二矽酸鋰(lithium disilicate)與氧化鋯(zirconia dioxide)為目前市面上以及臨床端最常用的陶瓷材料,二矽酸鋰其良好的透光性以及與牙釉質相近的物理性質,常做局部復形的材料,但仍有機械強度不足的問題,而氧化鋯同樣為牙科陶瓷,透光性較差但有較良好的機械強度。

這兩類材料均需要利用以樹脂為基底的黏合劑進行黏著,臨床上常用的選項包含樹脂黏合劑(resin cement)、流動性複合樹脂(flowable composite resin)與預加熱複合樹脂(preheated composite resin),並利用光照射使其固化,然而不同陶瓷的厚度與顏色搭配不同的黏合劑顏色都有可能影響光照效率進而導致黏合劑聚合不全、黏著效果不佳,進而導致成黏著介面變質並對牙髓細胞產生影響。

因此本研究將測試二矽酸鋰與氧化鋯在不同厚度與顏色的條件下對於光照的影響與對不同種類黏合劑聚合度的改變,並延伸探討各類黏合劑的聚合度改變對於牙髓細胞的影響。

本研究中使用厚度分別為0.5 mm、1.0 mm與2.0 mm,顏色為A1及A3的二矽酸鋰與氧化鋯試片,其中氧化鋯組別又分為3Y-TZP與ML,測試各種材料與厚度及顏色的組合對於光照效率的影響,後續搭配三種黏合劑(RelyX U200 self-adhesive resin cement、Grandio-So heavy flow、Viscalor bulk),測試黏合劑聚合度及其對細胞的影響;實驗方法包含光照效率的測試、FT-IR聚合度測試、酸鹼值測試、Alamar blue細胞活性測試、活性氧檢測以及流式細胞儀。

由以上的的實驗得知,二矽酸鋰的透光率優於氧化鋯,同時顏色與厚度也皆會影響材料透光度,同時也反映在黏合劑聚合度上,在相同的照光時間下,二矽酸鋰組別的聚合度優於氧化鋯,再以二矽酸鋰搭配各種黏合劑進行細胞實驗,會發現樹脂黏合劑組(resin cement)的酸鹼值最低,影響細胞的生長最明顯,並且在24小時內就會造成大部分細胞死亡。

綜合以上實驗結果,材料的種類、厚度與顏色皆會影響透光度與黏合劑聚合度,但在光照時間足夠的情形之下,相同種類的材料所呈現的黏合劑聚合度則不受厚度與顏色影響,而在各類的黏合劑中,其中又以樹脂黏合劑呈現出來的細胞毒性最明顯,所以在臨床上使用的時候應綜合考量實際狀況,選擇最理想的材料與黏合劑組合。
zh_TW
dc.description.abstractIn recent years, dental ceramics have been widely used in restorative treatment, and the advent of various resin materials has provided more options for clinical treatment. Lithium disilicate and zirconia dioxide are currently the most used dental ceramic materials on the market and clinically. Lithium disilicate has good light transmission and physical properties like tooth enamel, so it is often used as a partial restoration. But it still has the problem of insufficient mechanical strength, and zirconia dioxided is also a kind of dental ceramic, which has poor light transmission but good mechanical strength.

These two types of materials need to be adhered with resin-based luting cement. The commonly used clinical options include resin cement, flowable composite resin and preheated composite resin., and use light cure unit to cure it. However, different thicknesses and colors of ceramics and different cement colors may affect the light intensity, resulting in incomplete polymerization of the cement, poor adhesion, and easy to cause deterioration of the adhesive interface and damage to the pulp tissue.

Therefore, this study will test the influence of lithium disilicate and zirconia dioxide on the light intensity and the changes in the degree of conversion of different types of cement under the conditions of different thicknesses and colors and extend to explore the effect of changes in the degree of conversion of various cements on dental pulp cells.

In this study, lithium disilicate and zirconia dioxide specimens with thicknesses of 0.5 mm, 1.0 mm and 2.0 mm and colors of A1 and A3 were used. The zirconia group was further divided into 3Y-TZP and ML. The effect of the combination of thickness and color on the light intensity, followed by matching with three cements (RelyX U200 self-adhesive resin cement, Grandio-So heavy flow, Viscalor bulk) to test the degree of polymerization of the cement and its effect on dental pulp cells. The experimental method includes lighting intensity test, test of degree of conversion by FT-IR, pH value test, Alamar blue cell viability assay, ROS detection assay and flow cytometry.

According to the above experiments, the light transmittance of lithium disilicate is better than that of zirconia. At the same time, the color and thickness will also affect the light transmittance of the material, and it is also reflected in the degree of polymerization of the cement. Under the same lighting time, the degree of the lithium disilicate group is better than that of zirconia, and then the cell experiment is carried out with lithium disilicate and various cemenet. It will be found that the pH value of the resin cement group (resin cement) is the lowest, which affects the growth of the cells the most. significantly, and causes most of the cell death within 24 hours.

Based on the above experimental results, the type, thickness, and color of the material will all affect the light transmittance and the degree of conversion of the cement. Among all kinds of adhesives, the cytotoxicity of resin cement is the most obvious. Therefore, when using clinically, the actual situation should be considered comprehensively, and the most ideal combination of materials and adhesives should be selected.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T17:55:52Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-22T17:55:52Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents目錄
摘要 I
ABSTRACT III
目錄 V
圖表目錄 VIII
第 1 章 文獻回顧 1
1.1 陶瓷材料的演進 1
1.1.1歷史 1
1.1.2 二矽酸鋰的發展 2
1.1.3 氧化鋯 2
1.2 牙科陶瓷的黏著 4
1.2.1 牙科陶瓷的表面處理 4
1.2.2 氧化鋯的表面處理 5
1.2.3 樹脂黏合劑(resin cement) 7
1.2.4 預加熱複合樹脂(pre-heated composite resin) 9
1.2.5 流動性複合樹脂(Flowable composite resin) 10
1.3 牙科陶瓷於臨床上之應用 10
第 2 章 研究動機與目的 11
2.1 研究動機 11
2.2 研究目的 11
第 3 章 實驗材料及方法 12
3.1 各項名詞縮寫 12
3.2 實驗流程圖 12
3.3 實驗材料製備 13
3.4 實驗細胞及培養環境 16
3.5 光照強度測試 16
3.5.1 說明 16
3.5.2 實驗步驟 16
3.6 FT-IR聚合度測試 17
3.6.1 說明 17
3.6.2 實驗步驟 19
3.7 細胞毒性與酸鹼值測試 19
3.7.1 說明 19
3.7.2實驗步驟 19
3.8 ALAMAR BLUE ASSAY與顯微影像 21
3.8.1 說明 21
3.8.2 實驗步驟 22
3.9 活性氧檢測(ROS DETECTION ASSAY) 23
3.9.1 說明 23
3.9.2 實驗步驟 24
3.10 流式細胞儀 ( FLOW CYTOMETRY ) 25
3.10.1說明 25
3.10.2 實驗步驟 26
第 4 章 實驗結果 29
4.1 光照強度測試 29
4.1.1 二矽酸鋰組內比較 31
4.1.2 氧化鋯組內比較 32
4.1.3 二矽酸鋰與氧化鋯組別比較 34
4.2 FT-IR聚合度測試 36
4.3 酸鹼值測試 39
4.4 ALAMAR BLUE ASSAY 與顯微影像 41
4.5 活性氧檢測 ( ROS DETECTION ASSAY ) 52
4.6 流式細胞儀(FLOW CYTOMETRY) 53
第 5 章 討論 59
5.1 材料特性對於光照效率的影響 59
5.2 黏合劑聚合度 60
5.3 細胞實驗 62
5.3.1條件培養基pH值測定 62
5.3.2細胞毒性 63
5.4 活性氧檢測(ROS DECTION ASSAY) 64
5.5 流式細胞儀(FLOW CYTOMETRY ) 65
第 6 章 結論與未來研究方向 68
6.1 材料特性對於光照效率的影響: 68
6.2 黏合劑聚合度 68
6.3酸鹼值測試 69
6.4 ALAMAR BLUE ASSAY 69
6.5 活性氧檢測(ROS DETECTION ASSAY ) 69
6.6 流式細胞儀(FLOW CYTOMETRY) 70
6.7 總結 70
6.8 未來研究方向 70
參考文獻 72
-
dc.language.isozh_TW-
dc.title不同厚度與顏色的陶瓷材料對於樹脂黏合劑光聚合表現之影響zh_TW
dc.titleThe curing performance of resin-based luting cement in photo-polymerized mode with various thickness and color of ceramics.en
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳敏慧;陳克恭zh_TW
dc.contributor.oralexamcommitteeMin-Huey Chen;Ker-Kong Chenen
dc.subject.keyword二矽酸鋰,氧化鋯,光照強度,聚合度,細胞毒性,生物相容性,zh_TW
dc.subject.keywordlithium disilicate,zirconia dioxide,light intensity,degree of conversion,cytotoxicity,biocompatibility,en
dc.relation.page76-
dc.identifier.doi10.6342/NTU202302223-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-07-31-
dc.contributor.author-college醫學院-
dc.contributor.author-dept臨床牙醫學研究所-
顯示於系所單位:臨床牙醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
11.87 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved