Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90222
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor劉旻禕zh_TW
dc.contributor.advisorHelene Minyi Liuen
dc.contributor.author林緯晨zh_TW
dc.contributor.authorWei-Cheng Linen
dc.date.accessioned2023-09-22T17:55:09Z-
dc.date.available2023-11-09-
dc.date.copyright2023-09-22-
dc.date.issued2023-
dc.date.submitted2023-03-29-
dc.identifier.citation1. Roers, A., B. Hiller, and V. Hornung, Recognition of Endogenous Nucleic Acids by the Innate Immune System. Immunity, 2016. 44(4): p. 739-754.
2. Yang, Y.G., T. Lindahl, and D.E. Barnes, Trex1 exonuclease degrades ssDNA to prevent chronic checkpoint activation and autoimmune disease. Cell, 2007. 131(5): p. 873-86.
3. Mazur, D.J. and F.W. Perrino, Identification and expression of the TREX1 and TREX2 cDNA sequences encoding mammalian 3'-->5' exonucleases. Journal of Biological Chemistry, 1999. 274(28): p. 19655-60.
4. Mazur, D.J. and F.W. Perrino, Excision of 3′ Termini by the Trex1 and TREX2 3′→5′ Exonucleases. Journal of Biological Chemistry, 2001. 276(20): p. 17022-17029.
5. De Silva, U., et al., The Crystal Structure of TREX1 Explains the 3′ Nucleotide Specificity and Reveals a Polyproline II Helix for Protein Partnering. Journal of Biological Chemistry, 2007. 282(14): p. 10537-10543.
6. Orebaugh, C.D., et al., The TREX1 C-terminal region controls cellular localization through ubiquitination. Journal of Biological Chemistry, 2013. 288(40): p. 28881-92.
7. Brucet, M., et al., Structural and biochemical studies of TREX1 inhibition by metals. Identification of a new active histidine conserved in DEDDh exonucleases. Protein Science, 2008. 17(12): p. 2059-2069.
8. Yuan, F., et al., Human DNA Exonuclease TREX1 Is Also an Exoribonuclease That Acts on Single-stranded RNA. Journal of Biological Chemistry, 2015. 290(21): p. 13344-13353.
9. Huang, K.-W., et al., Structural basis for overhang excision and terminal unwinding of DNA duplexes by TREX1. PLOS Biology, 2018. 16(5): p. e2005653.
10. Cavlar, T., A. Ablasser, and V. Hornung, Induction of type I IFNs by intracellular DNA‐sensing pathways. Immunology & Cell Biology, 2012. 90(5): p. 474-482.
11. Samuel, C.E., Antiviral Actions of Interferons. Clinical Microbiology Reviews, 2001. 14(4): p. 778-809.
12. Fenton, S.E., D. Saleiro, and L.C. Platanias, Type I and II Interferons in the Anti-Tumor Immune Response. Cancers, 2021. 13(5): p. 1037.
13. Takeuchi, O. and S. Akira, Pattern Recognition Receptors and Inflammation. Cell, 2010. 140(6): p. 805-820.
14. Sun, L., et al., Cyclic GMP-AMP Synthase Is a Cytosolic DNA Sensor That Activates the Type I Interferon Pathway. Science, 2013. 339(6121): p. 786-791.
15. Wu, J., et al., Cyclic GMP-AMP Is an Endogenous Second Messenger in Innate Immune Signaling by Cytosolic DNA. Science, 2013. 339(6121): p. 826-830.
16. Diner, E.J., et al., The innate immune DNA sensor cGAS produces a noncanonical cyclic dinucleotide that activates human STING. Cell Report, 2013. 3(5): p. 1355-61.
17. Zhang, X., et al., Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING. Molecular Cell, 2013. 51(2): p. 226-35.
18. Xiao, T.S. and K.A. Fitzgerald, The cGAS-STING pathway for DNA sensing. Molecular Cell, 2013. 51(2): p. 135-9.
19. Zanin, N., et al., Interferon Receptor Trafficking and Signaling: Journey to the Cross Roads. Frontiers in Immunology, 2020. 11: p. 615603.
20. Prchal-Murphy, M., et al., TYK2 Kinase Activity Is Required for Functional Type I Interferon Responses In Vivo. PLOS ONE, 2012. 7(6).
21. de Weerd, N.A., S.A. Samarajiwa, and P.J. Hertzog, Type I interferon receptors: biochemistry and biological functions. Journal of Biological Chemistry, 2007. 282(28): p. 20053-7.
22. Platanitis, E., et al., A molecular switch from STAT2-IRF9 to ISGF3 underlies interferon-induced gene transcription. Nature Communications, 2019. 10(1): p. 2921.
23. Hervas-Stubbs, S., et al., Direct effects of type I interferons on cells of the immune system. Clinical Cancer Research, 2011. 17(9): p. 2619-27.
24. Michalska, A., et al., A Positive Feedback Amplifier Circuit That Regulates Interferon (IFN)-Stimulated Gene Expression and Controls Type I and type II IFN Responses. Frontiers in Immunology, 2018. 9.
25. Rusinova, I., et al., Interferome v2.0: an updated database of annotated interferon-regulated genes. Nucleic Acids Research, 2013. 41(Database issue): p. D1040-6.
26. Schneider, W.M., M.D. Chevillotte, and C.M. Rice, Interferon-stimulated genes: a complex web of host defenses. Annual Review of Immunology, 2014. 32: p. 513-45.
27. Schoggins, J.W. and C.M. Rice, Interferon-stimulated genes and their antiviral effector functions. Current Opinion in Virology, 2011. 1(6): p. 519-525.
28. Schoggins, J.W., Interferon-Stimulated Genes: What Do They All Do? Annual Review of Virology, 2019. 6(1): p. 567-584.
29. Tough, D.F., Type I interferon as a link between innate and adaptive immunity through dendritic cell stimulation. Leukemia & Lymphoma, 2004. 45(2): p. 257-264.
30. Demaria, S. and C. Vanpouille-Box, TREX1 is a checkpoint for innate immune sensing of DNA damage that fosters cancer immune resistance. Emerging Topics in Life Sciences, 2017. 1(5): p. 509-515.
31. Chen, J., et al., Type I IFN protects cancer cells from CD8+ T cell–mediated cytotoxicity after radiation. The Journal of Clinical Investigation, 2019. 129(10): p. 4224-4238.
32. Zhou, W., et al., Structure of the Human cGAS-DNA Complex Reveals Enhanced Control of Immune Surveillance. Cell, 2018. 174(2): p. 300-311 e11.
33. Kranzusch, P.J., et al., Structure of human cGAS reveals a conserved family of second-messenger enzymes in innate immunity. Cell Report, 2013. 3(5): p. 1362-8.
34. Civril, F., et al., Structural mechanism of cytosolic DNA sensing by cGAS. Nature, 2013. 498(7454): p. 332-7.
35. Sun, L.J., et al., Cyclic GMP-AMP Synthase Is a Cytosolic DNA Sensor That Activates the Type I Interferon Pathway. Science, 2013. 339(6121): p. 786-791.
36. Zhang, X., X.-C. Bai, and Z.J. Chen, Structures and Mechanisms in the cGAS-STING Innate Immunity Pathway. Immunity, 2020. 53(1): p. 43-53.
37. Wang, D., et al., A Variety of Nucleic Acid Species Are Sensed by cGAS, Implications for Its Diverse Functions. Frontiers in Immunology, 2022. 13: p. 826880.
38. Hopfner, K.-P. and V. Hornung, Molecular mechanisms and cellular functions of cGAS–STING signalling. Nature Reviews Molecular Cell Biology, 2020. 21(9): p. 501-521.
39. Li, X.D., et al., Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects. Science, 2013. 341(6152): p. 1390-4.
40. Gao, D., et al., Cyclic GMP-AMP Synthase Is an Innate Immune Sensor of HIV and Other Retroviruses. Science, 2013. 341(6148): p. 903-906.
41. Paijo, J., et al., cGAS Senses Human Cytomegalovirus and Induces Type I Interferon Responses in Human Monocyte-Derived Cells. PLOS Pathogens, 2016. 12(4): p. e1005546.
42. Lio, C.-W.J., et al., cGAS-STING Signaling Regulates Initial Innate Control of Cytomegalovirus Infection. Journal of Virology, 2016. 90(17): p. 7789-7797.
43. Ahlers, L.R.H., et al., Invertebrate Iridescent Virus 6, a DNA Virus, Stimulates a Mammalian Innate Immune Response through RIG-I-Like Receptors. PLOS ONE, 2016. 11(11): p. e0166088.
44. Zhang, Y., et al., The DNA sensor, cyclic GMP-AMP synthase, is essential for induction of IFN-β during Chlamydia trachomatis infection. The Journal of Immunology 2014. 193(5): p. 2394-404.
45. Watson, R.O., et al., The Cytosolic Sensor cGAS Detects Mycobacterium tuberculosis DNA to Induce Type I Interferons and Activate Autophagy. Cell Host Microbe, 2015. 17(6): p. 811-819.
46. Collins, A.C., et al., Cyclic GMP-AMP Synthase Is an Innate Immune DNA Sensor for Mycobacterium tuberculosis. Cell Host Microbe, 2015. 17(6): p. 820-8.
47. Wassermann, R., et al., Mycobacterium tuberculosis Differentially Activates cGAS- and Inflammasome-Dependent Intracellular Immune Responses through ESX-1. Cell Host Microbe, 2015. 17(6): p. 799-810.
48. Storek, K.M., et al., cGAS and Ifi204 cooperate to produce type I IFNs in response to Francisella infection. The Journal of Immunology 2015. 194(7): p. 3236-45.
49. Hansen, K., et al., Listeria monocytogenes induces IFNβ expression through an IFI16-, cGAS- and STING-dependent pathway. The EMBO Journal, 2014. 33(15): p. 1654-66.
50. Andrade, W.A., et al., Type I Interferon Induction by Neisseria gonorrhoeae: Dual Requirement of Cyclic GMP-AMP Synthase and Toll-like Receptor 4. Cell Report, 2016. 15(11): p. 2438-48.
51. Nandakumar, R., et al., Intracellular bacteria engage a STING-TBK1-MVB12b pathway to enable paracrine cGAS-STING signalling. Nature Microbiology, 2019. 4(4): p. 701-713.
52. Diamond, J.M., et al., Exosomes Shuttle TREX1-Sensitive IFN-Stimulatory dsDNA from Irradiated Cancer Cells to DCs. Cancer Immunology Research, 2018. 6(8): p. 910-920.
53. Deng, L., et al., STING-Dependent Cytosolic DNA Sensing Promotes Radiation-Induced Type I Interferon-Dependent Antitumor Immunity in Immunogenic Tumors. Immunity, 2014. 41(5): p. 843-52.
54. Xu, M.M., et al., Dendritic Cells but Not Macrophages Sense Tumor Mitochondrial DNA for Cross-priming through Signal Regulatory Protein α Signaling. Immunity, 2017. 47(2): p. 363-373.e5.
55. West, A.P., et al., Mitochondrial DNA stress primes the antiviral innate immune response. Nature, 2015. 520(7548): p. 553-7.
56. Riley, J.S., et al., Mitochondrial inner membrane permeabilisation enables mtDNA release during apoptosis. The EMBO Journal, 2018. 37(17).
57. Sun, B., et al., Dengue virus activates cGAS through the release of mitochondrial DNA. Scientific Reports, 2017. 7(1): p. 3594.
58. Aguirre, S. and A. Fernandez-Sesma, Collateral Damage during Dengue Virus Infection: Making Sense of DNA by cGAS. Journal of Virology, 2017. 91(14).
59. Orzalli, M.H., et al., cGAS-mediated stabilization of IFI16 promotes innate signaling during herpes simplex virus infection. Proceedings of the National Academy of Sciences, 2015. 112(14): p. E1773-81.
60. Jiang, H., et al., Chromatin-bound cGAS is an inhibitor of DNA repair and hence accelerates genome destabilization and cell death. The EMBO Journal, 2019. 38(21): p. e102718.
61. Gentili, M., et al., The N-Terminal Domain of cGAS Determines Preferential Association with Centromeric DNA and Innate Immune Activation in the Nucleus. Cell Report, 2019. 26(9): p. 2377-2393.e13.
62. Volkman, H.E., et al., Tight nuclear tethering of cGAS is essential for preventing autoreactivity. Elife, 2019. 8.
63. Mackenzie, K.J., et al., cGAS surveillance of micronuclei links genome instability to innate immunity. Nature, 2017. 548(7668): p. 461-465.
64. Harding, S.M., et al., Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature, 2017. 548(7668): p. 466-470.
65. Gratia, M., et al., Bloom syndrome protein restrains innate immune sensing of micronuclei by cGAS. Journal of Experimental Medicine, 2019. 216(5): p. 1199-1213.
66. Ivanov, A., et al., Lysosome-mediated processing of chromatin in senescence. Journal of Cell Biology 2013. 202(1): p. 129-43.
67. Lan, Y.Y., et al., Extranuclear DNA accumulates in aged cells and contributes to senescence and inflammation. Aging Cell, 2019. 18(2): p. e12901.
68. Prata, L.G.P.L., et al., Senescent cell clearance by the immune system: Emerging therapeutic opportunities. Seminars in Immunology, 2018. 40: p. 101275.
69. Rice, G.I., M.P. Rodero, and Y.J. Crow, Human Disease Phenotypes Associated With Mutations in TREX1. Journal of Clinical Immunology, 2015. 35(3): p. 235-243.
70. Belyakova, N.V., et al., Proof-reading 3'5' exonucleases isolated from rat liver nuclei. European Journal of Biochemistry, 1993. 217(2): p. 493-500.
71. Morita, M., et al., Gene-Targeted Mice Lacking the Trex1 (DNase III) 3′→5′ DNA Exonuclease Develop Inflammatory Myocarditis. Molecular and Cellular Biology, 2004. 24(15): p. 6719-6727.
72. Rice, G., et al., Heterozygous Mutations in TREX1 Cause Familial Chilblain Lupus and Dominant Aicardi-Goutières Syndrome. The American Journal of Human Genetics, 2007. 80(4): p. 811-815.
73. Richards, A., et al., C-terminal truncations in human 3′-5′ DNA exonuclease TREX1 cause autosomal dominant retinal vasculopathy with cerebral leukodystrophy. Nature Genetics, 2007. 39(9): p. 1068-1070.
74. Stetson, D.B., et al., Trex1 Prevents Cell-Intrinsic Initiation of Autoimmunity. Cell, 2008. 134(4): p. 587-598.
75. Simpson, S.R., et al., TREX1 – Apex predator of cytosolic DNA metabolism. DNA Repair, 2020. 94: p. 102894.
76. Pépin, G. and M.P. Gantier, cGAS-STING Activation in the Tumor Microenvironment and Its Role in Cancer Immunity, in Regulation of Inflammatory Signaling in Health and Disease, D. Xu, Editor. 2017, Springer Singapore: Singapore. p. 175-194.
77. Härtlova, A., et al., DNA Damage Primes the Type I Interferon System via the Cytosolic DNA Sensor STING to Promote Anti-Microbial Innate Immunity. Immunity, 2015. 42(2): p. 332-343.
78. Dunn, G.P., et al., A critical function for type I interferons in cancer immunoediting. Nature Immunology, 2005. 6(7): p. 722-729.
79. Zitvogel, L., et al., Type I interferons in anticancer immunity. Nature Reviews Immunology, 2015. 15(7): p. 405-414.
80. Mittal, D., et al., New insights into cancer immunoediting and its three component phases—elimination, equilibrium and escape. Current Opinion in Immunology, 2014. 27: p. 16-25.
81. Prati, B., et al., Three Prime Repair Exonuclease 1 (TREX1) expression correlates with cervical cancer cells growth in vitro and disease progression in vivo. Scientific Reports, 2019. 9(1): p. 351.
82. Tomicic, M.T., et al., Human three prime exonuclease TREX1 is induced by genotoxic stress and involved in protection of glioma and melanoma cells to anticancer drugs. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2013. 1833(8): p. 1832-1843.
83. Vanpouille-Box, C., et al., DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nature Communications, 2017. 8(1): p. 15618.
84. Hemphill, W.O., et al., TREX1 as a Novel Immunotherapeutic Target. Frontiers in Immunology, 2021. 12: p. 660184.
85. Thanos, ENGINEERED IMMUNOSTIMULATORY BACTERIAL STRAINS AND USES THEREOF. Patent Application Publication, 2020.
86. Wu, C.-Y., Structure-based drug design of Three prime repair exonuclease 1(TREX1)in cancer immunotherapy. 2020.
87. Pear, W.S., et al., Production of high-titer helper-free retroviruses by transient transfection. Proceedings of the National Academy of Sciences, 1993. 90(18): p. 8392-8396.
88. Zhu, Y., A. Chidekel, and T.H. Shaffer, Cultured Human Airway Epithelial Cells (Calu-3): A Model of Human Respiratory Function, Structure, and Inflammatory Responses. Critical Care Research and Practice, 2010. 2010: p. 1-8.
89. Sainz, B., V. Tencate, and S.L. Uprichard, Three-dimensional Huh7 cell culture system for the study of Hepatitis C virus infection. Virology Journal, 2009. 6(1): p. 103.
90. Gao, D., et al., Activation of cyclic GMP-AMP synthase by self-DNA causes autoimmune diseases. Proceedings of the National Academy of Sciences, 2015. 112(42): p. E5699-E5705.
91. Cailleau, R., et al., Breast tumor cell lines from pleural effusions. Journal of the National Cancer Institute 1974. 53(3): p. 661-74.
92. Comşa, Ş., A.M. Cîmpean, and M. Raica, The Story of MCF-7 Breast Cancer Cell Line: 40 years of Experience in Research. Anticancer Research, 2015. 35(6): p. 3147-54.
93. Chavez, K.J., S.V. Garimella, and S. Lipkowitz, Triple negative breast cancer cell lines: one tool in the search for better treatment of triple negative breast cancer. Breast Disease, 2010. 32(1-2): p. 35-48.
94. Simpson, S.R., et al., T Cells Produce IFN-α in the TREX1 D18N Model of Lupus-like Autoimmunity. The Journal of Immunology 2020. 204(2): p. 348-359.
95. Esfahani, K., et al., A review of cancer immunotherapy: from the past, to the present, to the future. Current Oncology, 2020. 27(Suppl 2): p. S87-s97.
96. Berg, R.E. and J. Forman, The role of CD8 T cells in innate immunity and in antigen non-specific protection. Current Opinion in Immunology, 2006. 18(3): p. 338-43.
97. Boukhaled, G.M., S. Harding, and D.G. Brooks, Opposing Roles of Type I Interferons in Cancer Immunity. Annual Review of Pathology, 2021. 16: p. 167-198.
98. Kim, S.H., et al., TREX1 degrades the 3′ end of the small DNA oligonucleotide products of nucleotide excision repair in human cells. Nucleic Acids Research, 2022. 50(7): p. 3974-3984.
99. Ghosh, M., et al., Mutant p53 suppresses innate immune signaling to promote tumorigenesis. Cancer Cell, 2021. 39(4): p. 494-508.e5.
100. Ghosh, M., et al., p53 engages the cGAS/STING cytosolic DNA sensing pathway for tumor suppression. Molecular Cell, 2023. 83(2): p. 266-280 e6.
101. Zappasodi, R., et al., In vitro assays for effector T cell functions and activity of immunomodulatory antibodies. Methods in Enzymology, 2020. 631: p. 43-59.
102. Weiss, W.A., S.S. Taylor, and K.M. Shokat, Recognizing and exploiting differences between RNAi and small-molecule inhibitors. Nature Chemical Biology, 2007. 3(12): p. 739-44.
103. Vargason, A.M., A.C. Anselmo, and S. Mitragotri, The evolution of commercial drug delivery technologies. Nature Biomedical Engineering, 2021. 5(9): p. 951-967.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90222-
dc.description.abstract在抗病毒及抗腫瘤免疫反應中,第一型干擾素的產生扮演了相當重要的角色。而第一型干擾素可以藉由pattern recognition receptor (PRR) 辨識pathogen-associated molecular patterns (PAMPs) 或damage-associated molecular patterns (DAMPs) 後活化下游訊息傳遞路徑來生成。Cyclic GMP-AMP synthase (cGAS) 做為識別細胞質中ssDNA 和dsDNA的PRR,可以辨識例如從細胞核和粒線體釋放的病毒DNA或自身DNA來合成cyclic GMP-AMP (cGAMP)。cGAMP接著會活化stimulator of interferon genes (STING),最終使下游的轉錄因子interferon regulatory factor 3 (IRF3) 被磷酸化,從而促使第一型干擾素的表現。而被分泌出的第一型干擾素則會透過與interferon-α/β receptor (IFNAR) 結合,促進Interferon Stimulated Genes (ISGs) 的表達和T細胞的召集/活化。近年來,研究發現three prime repair exonuclease 1 (TREX1) 做為3'→5' 的DNA核酸外切酶,具有降解細胞質中DNA的功能,可以避免 cGAS-STING 訊息傳遞路徑產生不必要的活化。此外,也有研究指出細胞質中異常 DNA 的累積會上調TREX1基因剔除細胞株中第一型干擾素的表現。因此,我們假設 TREX1抑制劑可以促進由辨識細胞質 DNA傳遞路徑所誘導之第一型干擾素的表現。在本篇研究中,我們首先使用同時表現了TREX1、cGAS 和 STING 的 Calu-3 細胞作為細胞培養模型,以證明 TREX1 抑制劑能否增加 cGAS-STING介導之第一型干擾素的表現。並且,藉由測定細胞存活率來確認先前體外 (in vitro) 實驗中,透過抑制劑偶聯核酸酶活性測定所找到的TREX1 抑制劑是否會對 Calu-3 細胞造成細胞毒性。實驗結果發現, 所有TREX1 抑制劑皆具低細胞毒性,且其中三種抑制劑能夠增加由衣黴素 (tunicamycin) 誘導之第一型干擾素的表現。因此,我們初步選定此三種TREX1抑制劑用於進一步的研究。此外,我們也測定了TREX1抑制劑在乳腺癌細胞中的抑制效果。我們發現cGAS、STING 和 TREX1蛋白質的表現量在三種不同乳腺癌細胞系(包括MDA-MB-231、MCF-7 和HCC1395)中並不一致。在實驗中,我們證明了所篩選出的TREX1 抑制劑在這些乳腺癌細胞系中(除了MDA-MB-231無法測得第一型干擾素的表現)確實可以增加在UV誘導下由cGAS-STING介導之第一型干擾素的表現,藉此初步篩選出可能有效的TREX1抑制劑。而藉由比較異位表現野生型TREX1的細胞和表現核酸分解酶突變型TREX1 (hTREX1-D18N) 細胞中第一型干擾素的表現量,我們也驗證了所選之TREX1抑制劑的專一性。最終,我們篩選出兩種特定的TREX1抑制劑可開發為潛在的治療藥物,以增加cGAS-STING介導之第一型干擾素的表現,未來將應用在活體 (in vivo) 實驗中來驗證其抗腫瘤的治療效力。zh_TW
dc.description.abstractThe induction of type I interferon (IFN) plays important roles in antiviral as well as in anti-tumor immune responses. Type I IFN can be induced when pattern recognition receptors (PRRs) recognize the pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs) to activate the downstream signaling pathways. Cyclic GMP-AMP synthase (cGAS) is the PRR that recognizes cytoplasmic ssDNA and dsDNA, such as viral genomic DNAs or self-DNAs that released from the nucleus and mitochondria, to synthesize cyclic GMP-AMP (cGAMP). Stimulator of interferon genes (STING) is activated by cGAMP, the downstream transcription factor, interferon regulatory factor 3 (IRF3), will be phosphorylated and then promotes the expression of type I IFNs. The secreted type I IFNs will signal through interferon-α/β receptor (IFNAR) and drive the expression of Interferon Stimulated Genes (ISGs) and T cell recruitment/activation. Recently, three prime repair exonuclease 1 (TREX1) has been discovered as a 3’→5’ DNA exonuclease, which can degrade cytosolic DNA species to prevent the unnecessary activation of cGAS-STING pathways. In previous studies, type I IFNs have been found up-regulated in the TREX1 knock-out cells due to abnormal DNAs accumulation in the cytoplasm. We then hypothesize that TREX1 inhibitors can stimulate the production of type I IFNs driven by cytosolic DNA sensing pathways. We used Calu-3 cells which expresses all TREX1, cGAS, and STING at the protein level as our cell culture model to demonstrate whether TREX1 inhibitors may enhance cGAS-STING-mediated type I IFN induction. TREX1 inhibitors, which have been identified in vitro by inhibitor-coupled nuclease activity assay, were then determined their cytotoxicity in Calu-3 cells. We found that all TREX1 inhibitors have low cytotoxicity. Among them, three TREX1 inhibitors showed the ability to enhance tunicamycin-induced type I IFN expression and were selected for further studies. In addition, we determined the TREX1 inhibitory effects of these TREX1 inhibitors in breast cancer cells. The protein levels of cGAS, STING, and TREX1 were not ubiquitous among breast cancer cell-lines, including MDA-MB-231, MCF-7, and HCC1395. We demonstrated that selected TREX1 inhibitors could enhance cGAS-STING-mediated type I IFN induction in these breast cancer cell-lines. The specificity of selected inhibitors was determined by comparing the expression of type I IFN between ectopically expressing wild-type TREX1 or nuclease mutant TREX1 (hTREX1-D18N) cells. Finally, we selected two specific TREX1 inhibitors as therapeutic candidates to enhance cGAS-STING-mediated type I IFN expression, which will be validated in in vivo study for their anti-tumor effects.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T17:55:09Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-22T17:55:09Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents中文摘要 I
Abstract III
Table of Contents V
List of Figures X
List of Tables XII
Chapter 1: Introduction 1
1.1 Introduction to three prime repair exonuclease 1 (TREX1) 1
1.2 Introduction to the cGAS-STING-mediated type I IFN induction 2
1.3 Self DNA species in cytoplasm are sources of cGAS ligand 4
1.4 TREX1 deficiency is correlated to autoimmune diseases 7
1.5 High TREX1 expression disrupts cGAS-STING-mediated type I IFN pathway and tumor immunogenicity 9
1.6 Therapeutic strategy for cancer treatment by reducing TREX1 nuclease activity 11
1.7 Specific aim 13
Chapter 2: Materials and Methods 15
2.1 Materials 15
2.1.1 Cell lines 15
2.1.2 TREX1 inhibitors 15
2.1.3 Reagents 15
2.1.4 Antibodies 17
2.1.5 Competent cells 18
2.1.6 Plasmids 18
2.1.7 Viruses 18
2.1.8 Commercial kits 18
2.2 Methods 19
2.2.1 Cell culture 19
2.2.2 Cell treatment 20
2.2.3 Virus infection 21
2.2.4 Transformation 21
2.2.5 Site-directed mutagenesis 22
2.2.6 DNA plasmids transfection 23
2.2.7 Cell counting kit-8 (cck-8) assay 24
2.2.8 RNA extraction 24
2.2.9 Real-time qPCR 25
2.2.10 Immunoblot assay 26
2.2.11 Quantification and statistical analysis 28
Chapter 3: Results 29
3.1 Assessment of endogenous cGAS, STING, and TREX1 protein levels in Calu-3 cells 29
3.2 TREX1 inhibitors showed low cytotoxicity in Calu-3 cells 30
3.3 TREX1 immunosilencing were prevented by TREX1i treatment in Calu-3 cells 31
3.3.1 Tunicamycin treatment as an inducer to trigger type I IFN production in Calu-3 cells 31
3.3.2 IFNB1 mRNA induction levels by tunicamycin treatment were enhanced by co-treatment of TREX1i3, TREX1i5, and TREX1i9 treated in Calu-3 cells 32
3.3.3 UV-irradiation could function as an inducer to trigger type I IFN production in Calu-3 cells 33
3.3.4 UV-induced IFNB1 mRNA induction levels were further enhanced by treatment of TREX1i5 and TREX1i9 in Calu-3 cells 34
3.4 Endogenous cGAS, STING, and TREX1 protein expression levels varied in three different breast cancer cells 35
3.5 TREX1 inhibitors showed low cytotoxicity in breast cancer cells 37
3.6 The IFNB1 mRNA levels were undetectable in MDA-MB-231 cells 37
3.6.1 IFNB1 mRNA levels were not induced neither in MDA-MB-231 cells treated with UV-irradiation, tunicamycin nor in those infected with SeV and/or HSV 37
3.7 TREX1 immunosilencing was prevented by treatment of TREX1i3, TREX1i5, and TREX1i9 in UV-induced MCF-7 cells 39
3.8 TREX1i treatment prevented TREX1 immunosilencing in ectopically TREX1-expressing HCC1395 cells 41
3.8.1 IFNB1 mRNA levels were induced under UV-irradiation in a dose-dependent manner in HCC1395 cells 41
3.8.2 Cloning of the pcDNA3.1-FLAG-hTREX1-WT and pcDNA3.1-FLAG-hTREX1-D18N expression vectors 41
3.8.3 UV-induced IFNB1 mRNA levels were increased in ectopically TREX1-expressing HCC1395 cells treated with TREX1i3, TREX1i5, and TREX1i9 42
Chapter 4: Discussion 45
4.1 Achievement and pitfalls of the thesis study 45
4.2 Perspectives of the TREX1 inhibitors efficacy 47
4.2.1 Evaluation of TREX1 inhibitors efficacy in ionizing radiated-cancer cells 47
4.2.2 Evaluation of TREX1 inhibitor side effects and T-cell activation in tumor-injected mouse model 48
4.2.3 The advantages of TREX1 inhibitors against siRNA knockdown of TREX1 50
4.2.4 The delivery of TREX1 inhibitors in organisms 51
References 53
-
dc.language.isoen-
dc.subject抑制劑zh_TW
dc.subjectTREX1zh_TW
dc.subjectcGAS-STINGzh_TW
dc.subject第一型干擾素訊息傳遞路徑zh_TW
dc.subject免疫源性zh_TW
dc.subjectInhibitoren
dc.subjectcGAS-STINGen
dc.subjectType I IFN induction pathwayen
dc.subjectImmunogenicityen
dc.subjectTREX1en
dc.title探討TREX1抑制劑於抑止TREX1免疫沉默之功效zh_TW
dc.titleEvaluation of the TREX1 Inhibitors Efficacy in Preventing TREX1 Immunosilencingen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee蕭育源;林敬哲;林愷悌zh_TW
dc.contributor.oralexamcommitteeYu-Yuan Hsiao;Jing-Jer Lin;Kai-Ti Linen
dc.subject.keywordTREX1,cGAS-STING,第一型干擾素訊息傳遞路徑,免疫源性,抑制劑,zh_TW
dc.subject.keywordTREX1,cGAS-STING,Type I IFN induction pathway,Immunogenicity,Inhibitor,en
dc.relation.page91-
dc.identifier.doi10.6342/NTU202300688-
dc.rights.note未授權-
dc.date.accepted2023-03-29-
dc.contributor.author-college醫學院-
dc.contributor.author-dept生物化學暨分子生物學研究所-
Appears in Collections:生物化學暨分子生物學科研究所

Files in This Item:
File SizeFormat 
ntu-111-2.pdf
  Restricted Access
2.39 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved