請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90206完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳力騏 | zh_TW |
| dc.contributor.advisor | Richie L.C. Chen | en |
| dc.contributor.author | 賴胤皓 | zh_TW |
| dc.contributor.author | Yin-Hao Lai | en |
| dc.date.accessioned | 2023-09-22T17:51:16Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-09-22 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-07 | - |
| dc.identifier.citation | 台灣默克股份有限公司。2021。乙醯半胱胺酸安全資料表。CAS# 616-91-1。
台灣默克股份有限公司。2021。鄰苯二甲醛安全資料表。CAS# 643-79-8。 江雅嵐。2013。醉月湖的過去、現在與未來。杜風63期。網址:www.ntuce-newsletter.tw/vol.63/T4_1j.html。上網日期:2023-05-10。 行政院農委會家衛所水生動物疾病診斷輔助系統。2009。氨中毒。網址:aqua.nvri.gov.tw/disSheet.aspx?id=F8x0r9Zkd5M%3D。上網日期:2022-11-06。 行政院環保署全國環境水質監測資訊網。2020。有機氮。網址:wq.epa.gov.tw/EWQP/zh/Encyclopedia/NounDefinition/Pedia_35.aspx。 上網日期:2022-11-06。 行政院環保署環境檢驗所。2006。水中凱氏氮檢測方法。NIEA W451.51A。 行政院環保署環境檢驗所。2012。水中氨氮之流動分析法-靛酚法。NIEA W437.52C。 行政院環保署環境檢驗所。2020。水中氨氮檢測方法-靛酚比色法。NIEA W448.52B。 行政院環保署環境檢驗所。2015。水中氨氮檢測方法-分立分析系統比色法。NIEA W457.50B。 行政院環保署環境檢驗所。2010。水中氨氮檢測方法-氨選擇性電極法。NIEA W446.53C。 沼氣發電推動網。2022。糞尿水資源化技術—水蚤養殖應用簡介。網址:www.biogas.com.tw/technology/index?id=3aa40a47136241d88a468aa92ec88e24。上網日期:2022-11-06。 陳以容、侯文祥、周楚洋、林懿蘋。2016。結合生物水質管理法與物理曝氣法處理景觀湖水質之研究-以臺灣大學醉月湖為例。農業工程學報 62(3): 13-22。 陳國誠。1991。廢水生物處理學。臺北:茂昌。 張光華。2009。開發掌上型螢光檢測器用以評估茶水中之甘味與澀味。碩士論文。台北:國立臺灣大學生物產業機電工程學系所。 教育部、國立臺灣大學。2003。瑠公圳(臺大段)復原整體規劃設計。2003全國生態工法博覽會。網址:homepage.ntu.edu.tw/~cpo/plan/921013.pdf。上網日期:2023-05-10。 許晉榮。2003。耐高鹽性真骨魚類的滲透壓調節機制。水試專訊 42: 32-36。 植根法律網。2004。水中氨氮檢測方法-納氏比色法。網址:www.rootlaw.com.tw/LawRefS.aspx?LawID=A040300081044400-0930413。上網日期:2022-11-06。 廖一久、蘇惠美。1999。餌料生物之培養與利用。基隆:台灣省水產試驗所。 廖銳焯。2016。臺灣中部地區地下水中氨氮之探討。碩士論文。台中:國立中興大學環境工程學系所。 韓玉山、黃怡誠。2021。水產概論。臺北:國立臺灣大學出版中心。 顏旭亨、陳淑慧、黃美麗、林麗珍。2012。內視鏡高層次消毒液之使用及管理。感染控制雜誌 22(4): 163-169。 Merck Millipore。2019。鄰苯二甲醛。網址:www.merckmillipore.com/TW/zh/product/Phthaldialdehyde,MDA_CHEM-821027。上網日期:2023-05-21。 Merck Millipore。2019。N乙醯-L-半胱胺酸。網址:www.merckmillipore.com/TW/zh/product/NAcetyl-L-cysteine,MDA_CHEM-112422。上網日期:2023-05-21。 Merck Millipore。2019。磷酸氫二鈉。網址: www.merckmillipore.com/TW/zh/product/di-Sodium-hydrogen-phosphate,MDA_CHEM-106586。上網日期:2023-05-21。 Merck Millipore。2020。磷酸二氫鈉。網址: www.merckmillipore.com/TW/zh/product/Sodium-dihydrogen-phosphate-monohydrate,MDA_CHEM-106346。上網日期:2023-05-21。 Hach. 2022. Nitrogen, Ammonia Test Kit, Model NI-SA. Available at: www.hach.com/p-nitrogen-ammonia-test-kit-model-ni-sa/2428700. Accessed 4 August 2023. ThermoFisher. 2023. Orion™ High-Performance Ammonia Electrode. Available at: www.thermofisher.com/order/catalog/product/9512HPBNWP. Accessed 4 August 2023. 日本分析化学会北海道支部。1994。水の分析。第4版。京都:化学同人。 Avnimelech Y. 1999. Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture 176(3–4): 227-235. Benli A. Ç. K., Köksal G., and Özkul A. 2008. Sublethal ammonia exposure of nile tilapia (Oreochromis niloticus L.): effects on gill, liver and kidney histology. Chemosphere 72(9): 1355-1358. Bobby N. Brewer, Keith T. Mead, Charles U. Pittman, Jr., Kaitao Lu, and Peter C. Zhu. 2006. Smart solution chemistry: Prolonging the lifetime of ortho-phthalaldehyde disinfection solutions. Journal of Heterocyclic Chemistry 43(2): 361-363. Bower C. E., and Bidwell J. P. 1978. Ionization of ammonia in seawater: effects of temperature, pH, and salinity. Journal of the Fisheries Research Board of Canada 35(7): 1012-1016. Chan S. O., Runko E., Anyane-Yeboa K., Ko L., and Chiu, F. C. 1998. Calcium ionophore-induced degradation of neurofilament and cell death in MSN neuroblastoma cells. Neurochemical Research 23(3): 393–400. Cho K., Seo J. H., Heo G., and Choe S. W. 2019. An alternative approach to detecting cancer cells by multi-directional fluorescence detection system using cost-effective LED and photodiode. Sensors 19(10): 2301. Choi J. W., Kim J. Y., and Nam Y. J. 2013. Comparison of compositional characteristics of amino acids between livestock wastewater and carcass leachate. Environ Monit Assess 185: 9413–9418. Emerson K., Russo R. C., Lund R. E., and Thurston R. V. 1975. Aqueous ammonia equilibrium calculations: effect of pH and temperature. Journal of the Fisheries Research Board of Canada 32(12): 2379-2383. Evans T. D. 2006. Recovering ammonium and struvite fertilisers from digested sludge dewatering liquors. Fathana H., Iqhrammullah M., Rahmi R., Adlim M., and Lubis S. 2021. Tofu wastewater-derived amino acids identification using LC-MS/MS and their uses in the modification of chitosan/TiO2 film composite. Chemical Data Collections 35: 100754. García Alvarez-Coque M. C., Medina Hernández M. J., Villanueva Camañas R. M., and Mongay Fernández C. 1989. Formation and instability of o-phthalaldehyde derivatives of amino acids. Analytical Biochemistry 178(1): 1–7. Genfa Z., and Dasgupta P. K. 1989. Fluorometric measurement of aqueous ammonium ion in a flow injection system. Analytic Chemistry 61(5): 408-412. Goyal S. S., Rains D. W., and Huffaker R. C. 1988. Determination of ammonium ion by fluorometry or spectrophotometry after on-line derivatization with o-phthalaldehyde. Analytical Chemistry 60(2): 175–179. Grayson S. M.. 2012. A simple visualization of double bond properties: chemical reactivity and UV fluorescence. Journal of Chemistry Education 89(7): 925–927. Greenberg A. E., Clesceri L. S., and Eaton A. D. 1992. Standard Methods for the Examination of Water and Wastewater. Washington: American Public Health Association. Hach. 2022. Nitrogen, Ammonia Test Kit, Model NI-SA. Available at: www.hach.com/p-nitrogen-ammonia-test-kit-model-ni-sa/2428700. Accessed 4 August 2023. Hsieh M. M., and Chen S. M. 2007. Determination of amino acids in tea leaves and beverages using capillary electrophoresis with light-emitting diode-induced fluorescence detection. Talanta 73(2): 326-331. Huang G., Hou J., and Zhou X. 2009. A measurement method for atmospheric ammonia and primary amines based on aqueous sampling, OPA derivatization and HPLC analysis. Environmental Science & Technology 43(15): 5851–5856. Jacobs W. A., Leburg M. W., and Madaj E. J. 1986. Stability of o-phthalaldehyde-derived isoindoles. Analytical Biochemistry 156(2): 334–340. Jaffe H. H., and Miller A. L. 1966. The fates of electronic excitation energy. Journal of Chemistry Education 43 (9): 469. Kahn L., and Wayman C. 1964. Amino acids in raw sewage and sewage effluents. Journal (Water Pollution Control Federation) 36(11): 1368–1371. Kutlán D., Presits P., and Molnár-Perl I. 2002. Behavior and characteristics of amine derivatives obtained with o-phthaldialdehyde/3-mercaptopropionic acid and with o-phthaldialdehyde/Nacetyl-L-cysteine reagents. Journal of Chromatography A 949(1-2): 235–248. Lakowicz J. R. 2006. Principles of Fluorescence Spectroscopy. New York: Springer Science + Business Media, LLC. Libretexts chemistry 2023. Jablonski Diagram. Available at: chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Spectroscopy/Electronic_Spectroscopy/Jablonski_diagram. Accessed 23 May 2023. Lee M. H., Chen R. L. C., and Matsumoto K. 1996. Fluorometric biosensing of the total amino acid content and the glutamate content of green tea infusions using an automated multi-channel flow system. Bioscience, Biotechnology, and Biochemistry 60(1): 99–102. Læsaa S. 2019. In-situ measurement of ammonium in marine waters. Master Project. Department of Engineering, Arctic Research Center, Aarhus University. Novak L., Neuzil P., Pipper J., Zhang, Y., and Lee S. 2007. An integrated fluorescence detection system for lab-on-a-chip applications. Lab Chip 7(1): 27-29. Pedre B., Barayeu U., Ezeriņa D., and Dick T. P. 2021. The mechanism of action of Nacetylcysteine (NAC): The emerging role of H2S and sulfane sulfur species. Pharmacology & Therapeutics 228: 107916. Perucho J., Gonzalo-Gobernado R., Bazan E., Casarejos M. J., Jiménez-Escrig A., Asensio M. J., and Herranz A. S. 2015. Optimal excitation and emission wavelengths to analyze amino acids and optimize neurotransmitters quantification using precolumn OPA-derivatization by HPLC. Amino Acids 47(5): 963–973. Randall D. J., and Tsui T. K. 2002. Ammonia toxicity in fish. Marine Pollution Bulletin 45(1-12): 17–23. Roth M. 1971. Fluorescence reaction for amino acids Analytic Chemistry 43(7): 880-882. Stobaugh J. F., Repta A. J., Sternson L. A., and Garren K. W. 1983. Factors affecting the stability of fluorescent isoindoles derived from reaction of o-phthalaldehyde and hydroxyalkylthiols with primary amines. Analytical Biochemistry 135(2): 495–504. Svobodová Z., and Vykusová B. 1991. Diagnostics, Prevention and Therapy of Fish Diseases and Intoxications. Vodňany: Research Institute of Fish Culture and Hydrobiology. Ta H. Y., Collin F., Perquis L., Poinsot V., Ong-Meang V., and Couderc F. 2021. Twenty years of amino acid determination using capillary electrophoresis: A review. Analytica Chimica Acta 1174: 338233. ThermoFisher. 2023. Orion™ High-Performance Ammonia Electrode. Available at: www.thermofisher.com/order/catalog/product/9512HPBNWP. Accessed 4 August 2023. Timmons M. B., Guerdat T., and Vinci B. J. 2018. Recirculating Aquaculture. Ithaca: Ithaca Publishing Company. Wang D., He S., Wang X. et al. 2020. Rapid lateral flow immunoassay for the fluorescence detection of SARS-CoV-2 RNA. Nature Biomedical Engineering 4: 1150–1158. Westgate P. J., and Park C. 2010. Evaluation of proteins and organic nitrogen in wastewater treatment effluents. Environmental Science & Technology 44(14): 5352-5357. Whitfield M. 1974. The hydrolysis of ammonium ions in sea water-a theoretical study. Journal of the Marine Biological Association of the United Kingdom 54(3): 565-580. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90206 | - |
| dc.description.abstract | 水中氨氮對水生動物具有高度毒性,傳統檢測方法卻耗費人力、反應時間長,且反應試劑昂貴又含有酚或汞離子等毒物。本研究開發一高敏感性且具選擇性之螢光檢測方法,選用價格低且對環境友善的鄰苯二甲醛(OPA)與N-乙醯半胱氨酸(NAC)作為反應試劑,配合自動化軟體控制之序列注射系統與流動式螢光檢測儀搭配停流方法建立此快速且敏感的螢光檢測方法。
螢光檢測系統中,裝有5 mL注射筒的序列注射系統用於抽取水樣品或標準溶液,並與試劑混和,試劑為0.0160 M鄰苯二甲醛和0.0079M N-乙醯半胱氨酸分別溶於pH 6.8之0.1 M磷酸緩衝溶液,混和液由序列注射系統注入浸於63°C水浴槽之不鏽鋼反應管(內徑0.8 mm,長400 cm),再進入流動式螢光檢測儀,以激發光/吸收光波長410/470 nm或380/470 nm檢測螢光訊號。本研究亦開發停流檢測方法,混和液流入反應管中即停止流動,等待加熱一分鐘後再檢測反應完成的衍生物來提高螢光強度。本螢光檢測系統中控制作動與螢光數據監測收集等功能皆於LabVIEW軟體開發之使用者介面上完成。 為了用於檢測水中氨氮濃度,在激發光/吸收光波長為410/470 nm下繪製了範圍為0.1至2.0 ppm的檢量線,相關係數達0.9987,相對標準偏差(n=3)小於5%,最小檢測極限至0.04 ppm,且試樣處理通量高於每小時15個。由於氨氮和一級胺的衍生物螢光光譜明顯不同,採用雙激發光波長檢測方法(激發光波長為410和380nm)可排除雜訊。以甘胺酸作為一級胺代表,氨氮和一級胺的計算結果誤差均小於10%。與現有檢測方法相比,本研究開發了快速、敏感性高且具選擇性的檢測方法,往後配合開發微型閥上檢測系統即可執行此安全、環保又便宜的螢光反應,有望應用於水產養殖產業、污水和畜禽養殖廢水等領域的水質檢測。 | zh_TW |
| dc.description.abstract | Ammonium is highly toxic for aquatic animals, but its conventional detection methods are labor-intensive, time-consuming and involved using toxic or expensive reagents. In this approach, the rapid and unstable reaction with the cheap and eco-friendly reagents, o-phthalaldehyde (OPA) and N-acetylcysteine (NAC), was conducted with a software-controlled lab-on-valve (LOV) system to achieve a highly sensitive and selective analytical performance by a stopped-flow strategy.
A LOV system with a 5 mL syringe was used for sampling (pond water, the aqueous ammonium or glycine standard solutions for calibration) and mixing with the reagents (0.0160 M OPA and 0.0079 M NAC in 0.1 M phosphate buffer, pH 6.8); the mixture was then introduced through a stainless reaction coil (63°C, 0.8 mm i.d. × 400 cm) and then a flow-through fluorometer with the excitation/emission wavelengths at 410/470 or 380/470 nm. For the stopped-flow process, the flow was stopped and the reaction mixture was heated in the reaction coil for 1 minute, and the reacted mixture was propelled through the detector. The whole liquid-handling and fluorescence monitoring process were performed by user interfaces developed under LabVIEW platform. For ammonium determination, a calibration curve (410/470 nm) with the linear range from 0.1 to 2.0 ppm was obtained with the correlation coefficient of 0.9987; the relative standard deviation (n=3) for 1.0 ppm was less than 5%, and with limt of detection of 0.04 ppm. The sample throughput was higher than 15/hr. Since the fluorescence spectra of the OPA-adducts of ammonium and primary amines are distinctly different, two-wavelength (410/470 and 380/470) measurement was adopted when the sample solution contains residual primary amines such as amino acids. With glycine as the amine standard, both ammonium and primary amines can be calculated with the errors less than 10%. Compared with the prior arts, this quick, sensitive and selective approach used only a general-purpose mini-LOV system to execute a safe, green and economic reaction, which is promising for the water quality inspection of aquaculture, sewage and livestock wastewater. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T17:51:16Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-22T17:51:16Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iii 目錄 v 圖目錄 vii 表目錄 ix 第一章 前言 1 第二章 文獻探討 3 2.1 水中氨氮與其他含氮物質 3 2.1.1 水中氨解離與氨中毒 3 2.1.2 水中含氮物質與氮循環 6 2.2 現今氨氮濃度檢測 9 2.3 氨氮與鄰苯二甲醛的螢光反應 11 2.4 螢光檢測應用 13 第三章 材料與方法 15 3.1 實驗藥品與試劑製備 15 3.2 水樣品採樣與保存 16 3.3 螢光檢測系統 17 3.3.1 序列注射系統 17 3.3.2 流動式螢光檢測儀 17 3.3.3 水浴槽 18 3.3.4 螢光光譜儀 18 3.4 工作流程 20 第四章 結果與討論 22 4.1 系統訊號與雜訊排除 22 4.2 初步測試 25 4.3 實驗步驟優化 27 4.3.1 停流方法 27 4.3.2 試劑穩定性與保存方法 32 4.3.3 試劑與樣品比例 36 4.4 雙激發光波長檢測法 39 4.4.1 光譜掃描 39 4.4.2 雙激發光波長檢測法 42 4.5 檢量線繪製 44 4.6 水樣品實測 49 4.6.1 豐年蝦無節幼蟲孵化與收集 49 4.6.2 臺大校內水體檢驗 51 4.6.3 水產養殖場域檢驗 53 4.7 討論 56 4.7.1 檢量線檢測法與雙激發光波長檢測法之比較 56 4.7.2 螢光檢測試劑價格計算 57 4.7.3 螢光檢測試劑排放對環境影響之探討 57 第五章 結論與未來展望 58 第六章 參考文獻 60 附錄 藥品物質安全表 67 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 螢光檢測 | zh_TW |
| dc.subject | 氨氮濃度 | zh_TW |
| dc.subject | 自動化分析 | zh_TW |
| dc.subject | Ammonium-N concentration | en |
| dc.subject | Fluorescence detection | en |
| dc.subject | Automated analysis | en |
| dc.title | 水產養殖用水中氨氮的流動螢光檢測 | zh_TW |
| dc.title | Fluorometric Flow Analysis of Ammonium Content in Water for Aquaculture Industry | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 朱元南;周楚洋;侯文祥 | zh_TW |
| dc.contributor.oralexamcommittee | Yuan-Nan Chu;Chu-Yang Chou;Wen-Xiang Hou | en |
| dc.subject.keyword | 氨氮濃度,螢光檢測,自動化分析, | zh_TW |
| dc.subject.keyword | Ammonium-N concentration,Fluorescence detection,Automated analysis, | en |
| dc.relation.page | 67 | - |
| dc.identifier.doi | 10.6342/NTU202302819 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-08-09 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 生物機電工程學系 | - |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 2.54 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
