請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90191
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳永芳 | zh_TW |
dc.contributor.advisor | Yang-Fang Chen | en |
dc.contributor.author | 李念修 | zh_TW |
dc.contributor.author | Nian-Xiu Li | en |
dc.date.accessioned | 2023-09-22T17:47:31Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-09-22 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-10 | - |
dc.identifier.citation | Smith. The Prospects for Multivalued Logic: A Technology and Applications View. IEEE Trans. Comput. 1981, 3 (9), 619–634.
Waho, T, Chen, K.J., Yamamoto, M. Resonant-Tunneling Diode and HEMT Logic Circuits with Multiple Thresholds and Multilevel Output. IEEE J. Solid-State Circuits 1998, 33 (2), 268–274. Paul Inbaraj, C. R.; Mathew, R. J.; Ulaganathan, R. K.; Sankar, R.; Kataria, M.; Lin, H. Y.; Chen, Y. T.; Hofmann, M.; Lee, C. H.; Chen, Y. F. A Bi-Anti-Ambipolar Field Effect Transistor. ACS Nano 2021, 15 (5), 8686–8693. Lim, J. H.; Shim, J.; Kang, B. S.; Shin, G.; Kim, H.; Andreev, M.; Jung, K. S.; Kim, K. H.; Choi, J. W.; Lee, Y.; Park, J. H. Double Negative Differential Transconductance Characteristic: From Device to Circuit Application toward Quaternary Inverter. Adv. Funct. Mater. 2019, 29 (48), 1–8. Li, Y.; Wang, Y.; Huang, L.; Wang, X.; Li, X.; Deng, H. X.; Wei, Z.; Li, J. Anti-Ambipolar Field-Effect Transistors Based on Few-Layer 2D Transition Metal Dichalcogenides. ACS Appl. Mater. Interfaces 2016, 8 (24), 15574–15581. Wakayama, Y.; Hayakawa, R. Antiambipolar Transistor: A Newcomer for Future Flexible Electronics. Adv. Funct. Mater. 2020, 30 (20), 1–11. Li, T.; Li, X.; Tian, M.; Hu, Q.; Wang, X.; Li, S.; Wu, Y. Negative Transconductance and Negative Differential Resistance in Asymmetric Narrow Bandgap 2D-3D Heterostructures. Nanoscale 2019, 11 (11), 4701–4706. Andreev, M.; Choi, J. W.; Koo, J.; Kim, H.; Jung, S.; Kim, K. H.; Park, J. H. Negative Differential Transconductance Device with a Stepped Gate Dielectric for Multi-Valued Logic Circuits. Nanoscale Horizons 2020, 5 (10), 1378–1385. Bellus, M. Z.; Li, M.; Lane, S. D.; Ceballos, F.; Cui, Q.; Zeng, X. C.; Zhao, H. Type-I van Der Waals Heterostructure Formed by MoS2 and ReS2 Monolayers. Nanoscale Horizons 2017, 2 (1), 31–36. Roy, T.; Tosun, M.; Cao, X.; Fang, H.; Lien, D. H.; Zhao, P.; Chen, Y. Z.; Chueh, Y. L.; Guo, J.; Javey, A. Dual-Gated MoS2/WSe2van Der Waals Tunnel Diodes and Transistors. ACS Nano 2015, 9 (2), 2071–2079. Yan, R.; Fathipour, S.; Han, Y.; Song, B.; Xiao, S.; Li, M.; Ma, N.; Protasenko, V.; Muller, D. A.; Jena, D.; Xing, H. G. Esaki Diodes in van Der Waals Heterojunctions with Broken-Gap Energy Band Alignment. Nano Lett. 2015, 15 (9), 5791–5798. Shim, J.; Oh, S.; Kang, D. H.; Jo, S. H.; Ali, M. H.; Choi, W. Y.; Heo, K.; Jeon, J.; Lee, S.; Kim, M.; Song, Y. J.; Park, J. H. Phosphorene/Rhenium Disulfide Heterojunction-Based Negative Differential Resistance Device for Multi-Valued Logic. Nat. Commun. 2016, 7, 1–8. Kim, S.; Du, H.; Kim, T.; Shin, S.; Song, H. kyo; Kim, H.; Kang, D.; Lee, C. W.; Seo, S. Gate-Switchable Rectification in Isotype van Der Waals Heterostructure of Multilayer MoTe2/SnS2 with Large Band Offsets. npj 2D Mater. Appl. 2020, 4 (1), 1–7. Zhou, X.; Hu, X.; Zhou, S.; Song, H.; Zhang, Q.; Pi, L.; Li, L.; Li, H.; Lü, J.; Zhai, T. Tunneling Diode Based on WSe2/SnS2 Heterostructure Incorporating High Detectivity and Responsivity. Adv. Mater. 2018, 30 (7), 1–8. Jin, Y.; Li, X.; Yang, J. Single layer of MX3 (M= Ti, Zr; X= S, Se, Te): A new platform for nano-electronics and optics. Physical Chemistry Chemical Physics 2015, 17 (28), 18665-18669. Drozdowska, K.; Rehman, A.; Rumyantsev, S.; Wurch, M.; Bartels, L.; Balandin, A.; Cywiński, G. Study of ZrS3-based field-effect transistors toward the understanding of the mechanisms of light-enhanced gas sensing by transition metal trichalcogenides. Materials Today Communications 2023, 34, 105379. Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature nanotechnology 2012, 7 (11), 699-712. Butler, S. Z.; Hollen, S. M.; Cao, L.; Cui, Y.; Gupta, J. A.; Gutiérrez, H. R.; Goldberger, J. E. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS nano 2013, 7 (4), 2898-2926. Fan, C.; Li, Y.; Lu, F.; Deng, H. X.; Wei, Z.; Li, J. Wavelength dependent UV-Vis photodetectors from SnS2 flakes. RSC advances 2016, 6 (1), 422-427. Sriv, T.; Kim, K.; Cheong, H. Low-Frequency Raman Spectroscopy of Few-Layer 2H-SnS2. Scientific reports 2018, 8 (1), 10194. Fu, Y.; Gou, G.; Wang, X.; Chen, Y.; Wan, Q.; Sun, J.; Dai, G. High-performance photodetectors based on CVD-grown high-quality SnS2 nanosheets. Applied Physics A 2017, 123, 1-8. Queisser, H. J. Nonexponential relaxation of conductance near semiconductor interfaces. Physical review letters 1985, 54 (3), 234. Poltarak, P.; Poltarak, A.; Artemkina, S.; Podlipskaya, T.; Asanov, I.; Fedorov, V. ZrS3: From Crystalline Samples to Colloid Dispersions. Colloids Surfaces A Physicochem. Eng. Asp. 2019, 579 (May), 123667. Li, J.; Shen, J.; Ma, Z.; Wu, K. Thickness-Controlled Electronic Structure and Thermoelectric Performance of Ultrathin SnS2 Nanosheets. Sci. Rep. 2017, 7 (1), 1–9. Sriv, T.; Kim, K.; Cheong, H. Low-Frequency Raman Spectroscopy of Few-Layer 2H-SnS2. Sci. Rep. 2018, 8 (1), 2–8. Guo, J.; Tao, J.; Zhang, Z.; Fei, L.; Li, D.; Jadwiszczak, J.; Wang, X.; Guo, Y.; Liao, X.; Zhou, Y. Controllable Thermal Oxidation and Photoluminescence Enhancement in Quasi-1D van Der Waals ZrS3 Flakes. ACS Appl. Electron. Mater. 2020, 2 (11), 3756–3764. Özçelik, V. O.; Azadani, J. G.; Yang, C.; Koester, S. J.; Low, T. Band Alignment of Two-Dimensional Semiconductors for Designing Heterostructures with Momentum Space Matching. Phys. Rev. B 2016, 94 (3). Paul Inbaraj, C. R.; Gudelli, V. K.; Mathew, R. J.; Ulaganathan, R. K.; Sankar, R.; Lin, H. Y.; Lin, H.-I.; Liao, Y.-M.; Cheng, H.-Y.; Lin, K.-H.; Chou, F. C.; Chen, Y.-T.; Lee, C.-H.; Guo, G.-Y.; Chen, Y.-F. Sn-Doping Enhanced Ultrahigh Mobility In 1–x SnxSe Phototransistor. ACS Appl. Mater. Interfaces 2019, 11 (27), 24269–24278. Paul Inbaraj, C. R.; Mathew, R. J.; Haider, G.; Chen, T. P.; Ulaganathan, R. K.; Sankar, R.; Bera, K. P.; Liao, Y. M.; Kataria, M.; Lin, H. I.; Chou, F. C.; Chen, Y. T.; Lee, C. H.; Chen, Y. F. Ultra-High Performance Flexible Piezopotential Gated In1-: XSnxSe Phototransistor. Nanoscale 2018, 10 (39), 18642–18650. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90191 | - |
dc.description.abstract | 二維半導體異質結構在光電子學領域中為眾多令人興奮的現象鋪平了道路。其中,具有多個閾值的非線性電流-電壓特性在多值邏輯中找到了應用,可以增加電子器件的密度。這種載流子傳輸行為被稱為負差分電阻(NDR),其在能帶對能帶隧道效應的幫助下在能帶間斷的能帶對齊異質結構中實現。在這裡,我們展示了在室溫下第III型ZrS3/SnS2異質結構中的這種能帶間隧道效應。在室溫下測量的電流-電壓特性曲線中觀察到了明顯的NDR效應,其峰谷比(PVR)為1.7。通過製備具有不同幾何形狀和厚度的ZrS3器件,我們仔細研究了電極和2D材料之間界面處金屬誘導的能帶狀態對室溫下實現NDR效應的影響。結果表明,為了觀察到NDR效應,選擇適當的金屬電極非常重要。在雷射照射下,NDR效應更加顯著,並且在較低的閘極電位下觀察到。由於兩種材料中存在相當小的光學能隙,ZrS3/SnS2異質結構可作為光探測器。該器件的光響應度被估計為300 mA W-1,用於非常低功率的激光,並且檢測性能的數量級為10^10 Jones。因此,所提出的ZrS3/SnS2異質結構展示出顯著的NDR效應和合理的光響應度,在近期的奈米電子學領域具有廣泛的應用前景。 | zh_TW |
dc.description.abstract | Two-dimensional (2D) semiconductor heterojunction has paved the way for numerous exciting phenomena in the field of optoelectronics. Among them, a non-linear current-voltage behavior with multiple threshold values finds its application in multi-valued logic, which can increase the device density in electronics. This carrier transport behavior termed negative differential resistance (NDR) is aided by band-to-band tunneling in the broken-gap energy band-aligned heterostructures. Here, we demonstrate this interband tunneling effect in type-III ZrS3/SnS2 heterostructure at room temperature. A prominent NDR effect with a peak-to-valley ratio (PVR) of 1.7 was observed in the current-voltage characteristic curves measured at room temperature. The effect of the metal-induced gap states at the interface between electrode and 2D material in the realization of the NDR effect at room temperature has been meticulously studied by fabricating ZrS3 devices with different geometry and thickness. The results indicate that in order to observe NDR effect, the choice of a suitable metal electrode is very important. Under the illumination of a laser, the effect of NDR becomes more pronounced and observed at lower gate potential. The ZrS3/SnS2 heterostructure works as a photodetector due to a considerable optical band gap in both materials. The photoresponsivity of the device was estimated to be 300 mA W-1 for a very low laser power and the detectivity was determined to be in the order of 1010 Jones. Hence, the proposed ZrS3/SnS2 heterostructure exhibiting a significant NDR effect and reasonable photoresponsivity has a wide scope in the field of nanoelectronics in the near future. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T17:47:31Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-09-22T17:47:31Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii Abstract iv Chapter 1 Introduction 1 Reference 4 Chapter 2 Theoretical Background 7 2.1 ZrS3 7 2.2 SnS2 8 2.3 Raman scattering 9 Reference 11 Chapter 3 Experimental Details 13 3.1 Thermal Evaporation System 13 3.2 Chemical Vapour Transport (CVT) 14 3.3 I-V curve Measurement 16 3.4 Atomic Force Microscopy (AFM) 17 3.5 Device Fabrication 18 Chapter 4 Results and Discussion 20 Reference 35 Chapter 5 Conclusion 37 | - |
dc.language.iso | en | - |
dc.title | 基於斷帶能隙n-n異質結構之三硫族化合物的負差分電阻 | zh_TW |
dc.title | Negative Differential Resistance in Trichalcogenide Based Broken-Gap n−n Heterostructures | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 沈志霖;許芳琪 | zh_TW |
dc.contributor.oralexamcommittee | Ji-Lin Shen;Fang-Chi Hsu | en |
dc.subject.keyword | n-n異質結構,三硫族化合物,負差分電阻,光探測器,費米能階釘札, | zh_TW |
dc.subject.keyword | n-n heterostructure,trichalcogenides,negative differential resistance,photodetector,Fermi level pinning, | en |
dc.relation.page | 37 | - |
dc.identifier.doi | 10.6342/NTU202303256 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2023-08-11 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 物理學系 | - |
顯示於系所單位: | 物理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf | 2.85 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。