請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90172完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳中明 | zh_TW |
| dc.contributor.advisor | Chung-Ming Chen | en |
| dc.contributor.author | 周姵妤 | zh_TW |
| dc.contributor.author | Pei-Yu Chou | en |
| dc.date.accessioned | 2023-09-22T17:42:55Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-09-22 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-09 | - |
| dc.identifier.citation | [1] F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre, and A. Jemal, “Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries,” CA: A Cancer Journal for Clinicians, vol. 68, no. 6, pp. 394–424, 2018.
[2] R. L. Siegel, K. D. Miller, H. E. Fuchs, and A. Jemal, “Cancer statistics, 2022,” CA: A Cancer Journal for Clinicians, vol. 72, no. 1, pp. 7–33, 2022. [3] D. Planchard et al., “Metastatic non-small cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up†,” Annals of Oncology, vol. 29, pp. iv192–iv237, 2018. [4] M. Reck et al., “Pembrolizumab versus Chemotherapy for PD-L1–Positive Non–Small-Cell Lung Cancer,” New England Journal of Medicine, vol. 375, no. 19, pp. 1823–1833, 2016. [5] R. S. Herbst et al., “Atezolizumab for First-Line Treatment of PD-L1–Selected Patients with NSCLC,” New England Journal of Medicine, vol. 383, no. 14, pp. 1328–1339, 2020. [6] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding.” arXiv, 2019. [7] Y. Ishida, Y. Agata, K. Shibahara, and T. Honjo, “Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death.,” The EMBO Journal, vol. 11, no. 11, pp. 3887–3895, Nov. 1992. [8] H. Nishimura, M. Nose, H. Hiai, N. Minato, and T. Honjo, “Development of Lupus-like Autoimmune Diseases by Disruption of the PD-1 Gene Encoding an ITIM Motif-Carrying Immunoreceptor,” Immunity, vol. 11, no. 2, pp. 141–151, 1999. [9] G. J. Freeman et al., “Engagement of the Pd-1 Immunoinhibitory Receptor by a Novel B7 Family Member Leads to Negative Regulation of Lymphocyte Activation,” Journal of Experimental Medicine, vol. 192, no. 7, pp. 1027–1034, 2000. [10] H. Dong et al., “Tumor-associated B7-H1 promotes T-cell apoptosis: A potential mechanism of immune evasion,” Nat Med, vol. 8, no. 8, Art. no. 8, 2002. [11] G. L. Banna et al., “Are anti-PD1 and anti-PD-L1 alike? The non-small-cell lung cancer paradigm,” Oncol Rev, vol. 14, no. 2, p. 490, 2020. [12] R. Brody et al., “PD-L1 expression in advanced NSCLC: Insights into risk stratification and treatment selection from a systematic literature review,” Lung Cancer, vol. 112, pp. 200–215, 2017. [13] A. N. Niemeijer et al., “Whole body PD-1 and PD-L1 positron emission tomography in patients with non-small-cell lung cancer,” Nat Commun, vol. 9, no. 1, Art. no. 1, 2018. [14] M. Mathew, R. A. Safyan, and C. A. Shu, “PD-L1 as a biomarker in NSCLC: challenges and future directions,” Ann Transl Med, vol. 5, no. 18, p. 375, 2017. [15] R. Sun et al., “A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study,” The Lancet Oncology, vol. 19, no. 9, pp. 1180–1191, 2018. [16] M. Jiang et al., “Assessing PD-L1 Expression Level by Radiomic Features From PET/CT in Nonsmall Cell Lung Cancer Patients: An Initial Result,” Academic Radiology, vol. 27, no. 2, pp. 171–179, 2020. [17] S. Bracci et al., “Quantitative CT texture analysis in predicting PD-L1 expression in locally advanced or metastatic NSCLC patients,” Radiol med, vol. 126, no. 11, pp. 1425–1433, 2021. [18] Q. Wen, Z. Yang, H. Dai, A. Feng, and Q. Li, “Radiomics Study for Predicting the Expression of PD-L1 and Tumor Mutation Burden in Non-Small Cell Lung Cancer Based on CT Images and Clinicopathological Features,” Frontiers in Oncology, vol. 11, 2021. [19] Y. Zhu et al., “A CT-derived deep neural network predicts for programmed death ligand-1 expression status in advanced lung adenocarcinomas,” Ann Transl Med, vol. 8, no. 15, p. 930, 2020. [20] P. Tian et al., “Assessing PD-L1 expression in non-small cell lung cancer and predicting responses to immune checkpoint inhibitors using deep learning on computed tomography images,” Theranostics, vol. 11, no. 5, pp. 2098–2107, 2021. [21] C. Wang et al., “Non-Invasive Measurement Using Deep Learning Algorithm Based on Multi-Source Features Fusion to Predict PD-L1 Expression and Survival in NSCLC,” Front Immunol, vol. 13, p. 828560, 2022. [22] H. Bao, L. Dong, S. Piao, and F. Wei, “BEiT: BERT Pre-Training of Image Transformers.” arXiv, 2022. [23] K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick, “Masked Autoencoders Are Scalable Vision Learners,” presented at the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 16000–16009. [24] L. Zhou, H. Liu, J. Bae, J. He, D. Samaras, and P. Prasanna, “Self Pre-training with Masked Autoencoders for Medical Image Analysis.” arXiv, 2022. [25] J. Xu and S. Stirenko, “Self-supervised Model Based on Masked Autoencoders Advance CT Scans Classification,” IJIGSP, vol. 14, no. 5, pp. 1–9, 2022. [26] H. Quan et al., “Global Contrast Masked Autoencoders Are Powerful Pathological Representation Learners.” arXiv, 2022. [27] A. Vaswani et al., “Attention is All you Need,” in Advances in Neural Information Processing Systems, Curran Associates, Inc., 2017. [28] A. Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale.” arXiv, 2021. [29] I. Tsimafeyeu et al., “Agreement between PDL1 immunohistochemistry assays and polymerase chain reaction in non-small cell lung cancer: CLOVER comparison study,” Sci Rep, vol. 10, no. 1, Art. no. 1, 2020. [30] Z. Xie et al., “SimMIM: A Simple Framework for Masked Image Modeling.” arXiv, 2022. [31] 黃瑋傑, “以生成對抗網路生成電腦斷層掃描三維肺結節樣本: 基於 Gabor 函數之紋理相似性量度與模型選擇指標,” 國立臺灣大學, 2021. [32] 陳稜鎔, “電腦斷層掃描肺腫瘤良惡性判別之深度學習影像特徵擷取,” 國立臺灣大學, 2018. [33] S. Abnar and W. Zuidema, “Quantifying Attention Flow in Transformers.” arXiv, 2020. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90172 | - |
| dc.description.abstract | 肺癌是全球常見且致死率最高的癌症,儘管醫學科學在肺癌的治療方面取得了一些重大進展,晚期肺癌的五年存活率仍然很低。近年來,針對晚期肺癌的治療中引入了標靶治療和免疫療法,這些新的治療方法為患者帶來了一些希望。目前在非小細胞肺癌治療中應用最廣的是PD-1/PD-L1抑制劑,透過反制腫瘤的逃脫機制,利用自身免疫反應排除腫瘤。使用PD-1/PD-L1抑制劑在晚期治療上的顯著效果,但仍然需要識別可以獲益於此治療的病患族群。然而,目前用於判定免疫療法適用性的PD-L1表現量檢測方法存在問題(例如腫瘤異質性、染色標準不一),其準確度尚有進步空間。
因此,本研究希望利用非侵入性且能夠整體判讀腫瘤的CT影像來建立電腦輔助診斷(CAD),進而幫助PD-L1表現量的檢測。目前建立CAD系統的方法可分為機器學習以及深度學習,深度學習模型在訓練過程中可自行提取特徵,但需要大量的標記樣本,而醫學影像樣本相對不足。近年來,自監督學習提出新的訓練架構,可以使用未標記的數據進行訓練,降低樣本門檻。縱使目前基於自監督學習的遮蓋圖像模型在自然影像尚有著不錯的成績,面對醫學影像這種目標較不明確的資料仍存在一些限制。 為了克服上述醫學影像不足與目標物不明確的問題,進而提高PD-L1表達的預測準確性,本研究針對醫學影像的特性提出了一Multi-task Masked Autoencoder(MTMAE)方法。MTMAE具有以下三個特點:(1)使用基於自監督學習的遮蓋圖像模型,使模型具有較高的遷移能力;(2)在多任務學習中加入分割任務,使模型在提取特徵時能夠區分前景和背景,更好地捕捉腫瘤的特徵;(3)使用生成對抗網絡(GAN)生成影像,使模型能夠學習到大量多樣的特徵,以克服學習受限的問題。 通過實驗驗證,在本研究共188個PD-L1樣本上使用上述提出的模型進行PD-L1 50%表現量分類,AUC為0.735,準確率為0.724。相比於傳統的監督式預訓練(AUC : 0.695)和訓練單一重建任務的MAE(AUC : 0.712),本研究提出的MTMAE模型在實驗中表現更好。本研究結合了自監督學習、多任務學習和GAN生成影像的特點,針對醫學影像特性與資料量依賴性進行改善,進而應用於幫助分類PD-L1表現量。 | zh_TW |
| dc.description.abstract | Lung cancer is a common and highly fatal malignancy worldwide. Despite significant advancements in medical science, the five-year survival rate for advanced-stage lung cancer remains low. Recent therapeutic strategies, such as targeted therapy and immunotherapy, have brought hope to patients with advanced lung cancer. Immunotherapy, specifically the use of PD-1/PD-L1 inhibitors, has shown promising results in late-stage treatments by counteracting the tumor's evasion mechanisms and harnessing the body's immune response to eliminate the tumor. However, accurately identifying patients who are likely to benefit from this therapy remains challenging. The current methods used to assess PD-L1 expression levels, which are crucial in determining the suitability of immunotherapy, suffer from issues such as tumor heterogeneity and inconsistent staining standards, leading to suboptimal accuracy.
To address these limitations and improve the accuracy of predicting PD-L1 expression levels, this study proposes a computer-aided diagnosis (CAD) system that utilizes non-invasive CT imaging to comprehensively analyze tumors. CAD systems can be broadly categorized into machine learning and deep learning approaches. While deep learning models have the advantage of automatically extracting features during training, they require a substantial amount of annotated data, which is often lacking in medical imaging. In recent years, Self-Supervised Learning has introduced a new training framework that can leverage unlabeled data, thus reducing the dependency on annotated samples. However, applying existing Self-Supervised Learning-based masked image models to medical imaging, which involves less-defined targets, poses certain limitations. To overcome the challenges associated with limited medical imaging data and unclear target objects, and to enhance the prediction accuracy of PD-L1 expression levels, this study introduces the Multi-task Masked Autoencoder (MTMAE) method, specifically tailored to the characteristics of medical imaging. The MTMAE method incorporates the following three key features: (1) harnessing a Self-Supervised Learning-based masked image model with enhanced capability in transfer learning, (2) the inclusion of a segmentation task in the multi-task learning framework to better distinguish foreground and background and capture tumor features effectively, and (3) the integration of a generative adversarial network (GAN) to generate diverse images, enabling the model to overcome learning constraints by learning a wide range of features. Experimental validation on a dataset comprising 188 PD-L1 samples demonstrates the effectiveness of the proposed model in classifying PD-L1 expression levels using a 50% threshold, achieving an AUC of 0.735 and an accuracy of 0.724. Compared to traditional supervised pretraining (AUC: 0.695) and single-task reconstruction-based MAE (AUC: 0.712), the MTMAE model exhibits superior performance in the experiments. By combining the characteristics of Self-Supervised Learning, multi-task learning, and GAN-generated images, this study aims to address the challenges associated with medical imaging characteristics and data dependency, ultimately assisting in the accurate classification of PD-L1 expression levels. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T17:42:55Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-22T17:42:55Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 摘要 I
Abstract III 目錄 VI 圖目錄 VIII 表目錄 X 第一章 緒論 1 1.1 研究背景 1 1.2 PD-L1介紹 3 1.3 研究動機與目的 6 第二章 文獻回顧 11 2.1 PD-L1 expression 分類 11 2.1.1 放射體學模型 11 2.1.2 深度學習與結合其他模型 13 2.2 遮蓋圖像模型 15 第三章 模型基礎理論 18 3.1 Vision Transformer 18 3.1.1 Embedding 19 3.1.2 Transformer encoder and Classification layer 20 第四章 研究方法 24 4.1 研究材料 24 4.2 研究方法 25 4.2.1 影像處理 25 4.2.2 遮蓋圖像模型 27 4.2.3 Multi-task Masked autoencoder (MTMAE) 29 4.2.4 生成對抗網路模型生成影像 34 4.2.5 Attention Visualization 36 4.2.6 性能指標 37 第五章 研究結果與討論 39 5.1 MTMAE 分類結果 39 5.2 消融實驗 41 5.2.1 預訓練方法 42 5.2.2 預訓練任務 44 5.2.3 預訓練資料集大小 47 5.3 重現文獻之方法 51 第六章 結論與未來展望 56 參考文獻 58 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 自監督學習 | zh_TW |
| dc.subject | 深度學習 | zh_TW |
| dc.subject | 非小細胞肺癌 | zh_TW |
| dc.subject | 免疫治療 | zh_TW |
| dc.subject | PD-L1表現量 | zh_TW |
| dc.subject | 生成對抗網路 | zh_TW |
| dc.subject | 遮蓋圖像模型 | zh_TW |
| dc.subject | Masked Image Modeling | en |
| dc.subject | Self-Supervised Learning | en |
| dc.subject | Deep learning | en |
| dc.subject | Non-small cell lung cancer | en |
| dc.subject | PD-L1 expression levels | en |
| dc.subject | Immunotherapy | en |
| dc.subject | Generative adversarial network | en |
| dc.title | 肺部電腦斷層掃描之非小細胞癌PD-L1表現預測 : 結合遮蓋圖像模型與生成對抗網路 | zh_TW |
| dc.title | Prediction of PD-L1 Expression in Non-Small Cell Lung Cancer on Chest CT Scans: A masked image model approach combined with a GAN method | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 李佳燕;林孟暐 | zh_TW |
| dc.contributor.oralexamcommittee | Jia-Yan Li;Meng-Wei Lin | en |
| dc.subject.keyword | 自監督學習,遮蓋圖像模型,生成對抗網路,PD-L1表現量,免疫治療,非小細胞肺癌,深度學習, | zh_TW |
| dc.subject.keyword | Self-Supervised Learning,Masked Image Modeling,Generative adversarial network,PD-L1 expression levels,Immunotherapy,Non-small cell lung cancer,Deep learning, | en |
| dc.relation.page | 60 | - |
| dc.identifier.doi | 10.6342/NTU202301777 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-08-10 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 醫學工程學系 | - |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 2.6 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
