Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90171
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor葉丙成zh_TW
dc.contributor.advisorPing-Cheng Yehen
dc.contributor.author林晧鈺zh_TW
dc.contributor.authorHao-Yu Linen
dc.date.accessioned2023-09-22T17:42:40Z-
dc.date.available2023-11-09-
dc.date.copyright2023-09-22-
dc.date.issued2023-
dc.date.submitted2023-08-11-
dc.identifier.citationla marzocco. history of espresso & la marzocco. Available from:https://international.lamarzoccohome.com/en/about/history-of-espresso/.
International Coffee Organization. World Coffee Consumption. 2021; Available from:http://www.ico.org/trade_statistics.asp?section=Statistics
International Trade Centre(ITC). Coffee, whether or not roasted or decaffeinated; coffee husks and skins; coffee substitutes containing coffee in any proportion. 2022; Available from: https://www.trademap.org/Product_SelCountry_TS.aspx?nvpm=1%7c490%7c%7c%7c%7c0901%7c%7c%7c4%7c1%7c1%7c1%7c2%7c1%7c1%7c1%7c1%7c1
Ministry of Economic Affairs R.O.C. 黑金商機持續發酵,咖啡館家數穩定成長. Available from:https://www.moea.gov.tw/MNS/populace/news/News.aspx?kind=1&menu_id=40&news_id=103553
ncausa.org. Coffee continues reign as America’s favorite beverage: Spring 2023 National Coffee Data Trends report. 2023; Available from:https://www.ncausa.org/Newsroom/Coffee-continues-to-reign-as-Americas-favorite-beverage.
Yaqub M. How Many People Drink Coffee in the World 2023; Available from:https://www.businessdit.com/how-many-people-drink-coffee/#how-many-people-drink-coffee-in-the-world.
iDrip. 平刀、鬼恥、錐刀?各類型磨豆機介紹.Available from:https://blog.idrip.coffee/coffee-grinders/.
Coffee Hunter. 台灣知名磨豆機推薦及介紹. 2016;Available from:https://coffeehunter.tw/coffee-grinder-recommend/.
Specialty Coffee Association of America. SCAA Standard | Golden Cup. 2015;Available from:https://www.scaa.org/PDF/resources/golden-cup-standard.pdf.
Specialty Coffee Association. Coffee Standards. 2018;Available from:https://static1.squarespace.com/static/584f6bbef5e23149e5522201/t/5d936fa1e29d4d5342049d74/1569943487417/Coffee+Standards-compressed.pdf.
Specialty Coffee Association. Protocols & Best Practices.Available from:https://sca.coffee/research/protocols-best-practices.
Coffee Quality Institute. Fine Robusta Standards and Protocols.Available from:https://cdn.coffeestrategies.com/wp-content/uploads/2015/04/compiled-standards-distribute1.1.pdf.
LEWIS V. JUDSON, A Study of Sieve Specifications, N.I.o.S.a. Technology, Editor. 1926.
Specialty Coffee Association. Home Coffee Brewers: Specifications and Test Methods 2021;Available from:https://static1.squarespace.com/static/584f6bbef5e23149e5522201/t/627a7d573a312660afa06f53/1652194648151/SCA_Standard_310-2021_Dev03.pdf?utm_campaign=SCA+Standards.
Specialty Coffee Association. Home Coffee Grinders:Specifications and Test Methods. 2021; Available from:https://static1.squarespace.com/static/584f6bbef5e23149e5522201/t/62d9543f0e07340de360a397/1658410047733/SCA_Standard_320-2021.pdf.
Scott Rao. Fines: Fine for Espresso, Not So Fine For Filter. 2017;Available from:https://www.scottrao.com/blog/2017/8/27/fines-fine-for-espresso-not-so-fine-for-filter.
Association, S.C. Home Coffee Grinders: Specifications and Test Methods 2021;Available from:https://static1.squarespace.com/static/584f6bbef5e23149e5522201/t/62d9543f0e07340de360a397/1658410047733/SCA_Standard_320-2021.pdf.
Wikipedia.org. diffusion. 2014;Available from:https://encyclopedia.thefreedictionary.com/diffusion.
baristahustle. Surface Area and Time. 2017;Available from:https://www.baristahustle.com/blog/surface-area-and-time/.
baristahustle. A Wide Thought Distribution About Grinding. 2017;Available from:https://www.baristahustle.com/blog/a-wide-thought-distribution-about-grinding/.
冠宇機械. 試驗篩 GY-200.Available from:https://www.guan-yu.net/zh-TW/product/GY-200.html.
baristahustle. The Ek43 Part2.Available from:https://www.baristahustle.com/blog/the-ek43-part-two/.
Alvin Wang. Application of Laser Diffraction Particle Size Analyzer in Coffee.Available from:https://www.bettersizeinstruments.com/uploads/file/btr001-application-of-laser-particle-size-analyzer-in-coffee.pdf.
Igathinathane, C. and U. Ulusoy, Machine vision methods based particle size distribution of ball- and gyro-milled lignite and hard coal. Powder Technology, 2016. 297: p. 71-80.
Meng, Y., et al., Automatic detection of particle size distribution by image analysis based on local adaptive canny edge detection and modified circular Hough transform. Micron, 2018. 106: p. 34-41.
Canny, J., A Computational Approach to Edge Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986. PAMI-8(6): p. 679-698.
Snowsill, W.L., Chapter 16 - Particle Sizing, in Instrumentation Reference Book (Fourth Edition), W. Boyes, Editor. 2010, Butterworth-Heinemann: Boston. p. 175-189.
Sobel, I., et al., Sobel-Feldman Operator. Preprint at https://www. researchgate. net/profile/Irwin-Sobel/publication/285159837. Accessed, 2022. 20.
Gupta, S., C. Gupta, and S. Chakarvarti, Image edge detection: a review. International Journal of Advanced Research in Computer Engineering & Technology (IJARCET), 2013. 2(7).
OpenCV. Image Gradients.Available from:https://docs.opencv.org/4.x/d5/d0f/tutorial_py_gradients.html.
李宏毅. 機器學習. 2022;Available from:https://speech.ee.ntu.edu.tw/~hylee/ml/2022-spring.php.
LeCun, Y., et al., Backpropagation applied to handwritten zip code recognition. Neural computation, 1989. 1(4): p. 541-551.
Pytorch. Pytorch Documentation.Available from:https://pytorch.org/docs/stable/index.html.
Ioffe, S. and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. in International conference on machine learning. 2015. pmlr.
Ba, J.L., J.R. Kiros, and G.E. Hinton, Layer normalization. arXiv preprint arXiv:1607.06450, 2016.
Ulyanov, D., A. Vedaldi, and V. Lempitsky, Instance normalization: The missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022, 2016.
Wu, Y. and K. He. Group normalization. in Proceedings of the European conference on computer vision (ECCV). 2018.
He, K., et al. Deep residual learning for image recognition. in Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
Bojanowski, P., et al., Optimizing the latent space of generative networks. arXiv preprint arXiv:1707.05776, 2017.
Hou, Q. and F. Liu. Context-aware image matting for simultaneous foreground and alpha estimation. in Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019.
Goodfellow, I., et al., Generative adversarial networks. Communications of the ACM, 2020. 63(11): p. 139-144.
Creswell, A., et al., Generative adversarial networks: An overview. IEEE signal processing magazine, 2018. 35(1): p. 53-65.
Zhu, J.-Y., et al. Unpaired image-to-image translation using cycle-consistent adversarial networks. in Proceedings of the IEEE international conference on computer vision. 2017.
Hu, X., et al. Mask-shadowgan: Learning to remove shadows from unpaired data. in Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019.
Liu, Z., et al., Shadow removal by a lightness-guided network with training on unpaired data. IEEE Transactions on Image Processing, 2021. 30: p. 1853-1865.
Liu, Z., et al. From shadow generation to shadow removal. in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021.
Jin, Y., A. Sharma, and R.T. Tan. Dc-shadownet: Single-image hard and soft shadow removal using unsupervised domain-classifier guided network. in Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021.
Finlayson, G.D., M.S. Drew, and C. Lu, Entropy minimization for shadow removal. International Journal of Computer Vision, 2009. 85(1): p. 35-57.
Vaswani, A., et al., Attention is all you need. Advances in neural information processing systems, 2017. 30.
Cho, K., et al., Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.
Sutskever, I., O. Vinyals, and Q.V. Le, Sequence to sequence learning with neural networks. Advances in neural information processing systems, 2014. 27.
Luong, M.-T., H. Pham, and C.D. Manning, Effective approaches to attention-based neural machine translation. arXiv preprint arXiv:1508.04025, 2015.
Bahdanau, D., K. Cho, and Y. Bengio, Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.
Dosovitskiy, A., et al., An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.
Weng, C.-C., H. Chen, and C.-S. Fuh. A novel automatic white balance method for digital still cameras. in 2005 IEEE International Symposium on Circuits and Systems (ISCAS). 2005. IEEE.
Lam, H.-K., O. Au, and C.-W. Wong. Automatic white balancing using standard deviation of RGB components. in 2004 IEEE International Symposium on Circuits and Systems (ISCAS). 2004. IEEE.
Schettini, R., et al., Contrast image correction method. Journal of Electronic Imaging, 2010. 19(2): p. 023005-023005-11.
Palanisamy, G., P. Ponnusamy, and V.P. Gopi, An improved luminosity and contrast enhancement framework for feature preservation in color fundus images. Signal, Image and Video Processing, 2019. 13: p. 719-726.
Ubuntu. Available from:https://ubuntu.com.
macos. Available from:https://www.apple.com/tw/macos/ventura/.
Python. Available from:https://www.python.org.
Zhang, R., et al. The unreasonable effectiveness of deep features as a perceptual metric. in Proceedings of the IEEE conference on computer vision and pattern recognition. 2018.
C++. Available from:https://cplusplus.com.
QT. Available from:https://www.qt.io.
Apple. Model-View-Controller. Available from:https://developer.apple.com/library/archive/documentation/General/Conceptual/DevPedia-CocoaCore/MVC.html.
OpenCV contours. Available from:https://docs.opencv.org/4.x/d4/d73/tutorial_py_contours_begin.html.
咖啡研磨的目的. Available from:https://www.cometrue-coffee.com/blog/grindingforapurpose.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90171-
dc.description.abstract隨著精品咖啡的迅速發展,家庭沖煮咖啡已經變得非常普遍,不同的沖煮手法和沖煮參數會造就不一樣的咖啡表現方式,水粉比、水溫與咖啡粒徑是國際咖啡協會認定的最主要的沖煮變因。時至今日粒徑的測量仍然缺乏方便且準確的方式進行測量,影響咖啡師在實務上對於粒徑的控制問題。
為了解決這問題,本研貢獻兩個重要的創新。首先,開發一款粒徑檢測軟體 (CPASR System),只需一張白紙,上方撲滿咖啡粉,使用手機拍攝圖像並傳輸到 電腦中,透過本研究的軟體,即可得到粒徑分佈圖,使得咖啡師能夠有效地控制 粒徑,從而影響咖啡風味的表現。
其次,本研究另一個重要貢獻是創建一個咖啡粉顆粒陰影與無陰影資料集,並公開分享給廣大研究者使用,這個資料集可供未來從事咖啡顆粒影像相關研究者使用,透過這個資料集研究者們可以更深入地研究,並進一步改進咖啡粉陰影去除的方法和技術。
而在獲得咖啡粉圖像時,由於拍攝角度問題和咖啡粉本身立體特性,可能會有陰影的產生,在分析上會產生誤差,本研究陰影去除模型:CPASR Net 結合深度學習與傳統影像處理方法,來消除咖啡粉圖像中的陰影,最後通過多種粒徑估計方式,來實現粒徑的準確計算。
總體而言,本研究不僅開發了一個實用的咖啡粒徑檢測軟體,讓咖啡師能夠更好地了解咖啡粉粒徑的分佈,也貢獻了一個咖啡顆粒影像的資料集,促進了咖啡相關研究的發展。同時,通過陰影去除模型的引入,我們提高了粒徑分析的準確性,使得咖啡師和研究者們在咖啡品質改進和研究方面更具信心和可行性。
zh_TW
dc.description.abstractWith the rapid development of specialty coffee, home brewing has become increasingly common. Different brewing techniques and parameters result in diverse coffee profiles, where water-to-coffee ratio, water temperature, and coffee particle size are recognized as the primary brewing variables by the International Coffee Association. However, to this day, measuring coffee particle size still lacks a convenient and accurate method, affecting baristas' ability to control particle size effectively in practice.
To address this issue, this research introduces two significant innovations. Firstly, we have developed a particle size detection software called CPASR System. By simply placing a sheet of paper covered with coffee grounds and capturing an image with a smartphone, users can transfer the image to a computer and obtain a particle size distribution chart using our software. This empowers baristas to control particle size more effectively, influencing the expression of coffee flavors.
Secondly, another important contribution of this study is the creation of a dataset containing coffee powder particles with and without shadows. This dataset is made publicly available for researchers in the field of coffee particle imaging. Researchers can utilize this dataset to delve deeper into the subject, improving methods and techniques for removing coffee powder shadows.
When capturing images of coffee grounds, the presence of shadows due to angles and the three-dimensional nature of the coffee powder may introduce errors during analysis. To tackle this issue, our research introduces the shadow removal model, CPASR Net, which combines deep learning with traditional image processing methods to eliminate shadows from coffee powder images. The accurate calculation of particle size is achieved through multiple particle size estimation techniques.
In conclusion, this research not only developed a practical coffee particle size detection software, enabling baristas to better understand the distribution of coffee particle sizes, but also contributed a dataset of coffee particle images, fostering advancements in coffee-related research. Furthermore, with the introduction of the shadow removal model, we have enhanced the accuracy of particle size analysis, instilling greater confidence and feasibility for baristas and researchers in improving coffee quality and conducting further studies.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T17:42:40Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-22T17:42:40Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
目次 v
圖目錄 x
表目錄 xv
Chapter 1 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 2
1.3 論文概述 3
Chapter 2 咖啡粒徑檢測技術與相關文獻 5
2.1 咖啡粒徑重要性 5
2.1.1 國際標準規範 5
2.1.2 粒徑與沖煮之間的關係 6
2.2 粒徑檢測技術與優缺點 7
2.2.1 篩網 7
2.2.2 雷射粒徑分析儀 10
2.3 影像粒徑分析相關研究 12
2.3.1 Machine vision methods based particle size distribution of ball- and gyro-milled lignite and hard coal[24] 12
2.3.2 Automatic detection of particle size distribution by image analysis based on local adaptive canny edge detection and modified circular Hough transform[25] 12
2.4 本章總結 14
Chapter 3 CPASR System構想與深度學習相關技術探討 15
3.1 CPASR System及陰影問題 15
3.1.1 CPASR System 構想 15
3.1.2 陰影問題 16
3.2 邊緣檢測 18
3.2.1 Sobel Operator 18
3.2.2 Scharr Operator 19
3.3 深度學習技術 20
3.3.1 CNN卷積神經網路 21
3.3.2 Residual Learning 27
3.3.3 Loss Function 28
3.4 生成對抗模型(GAN)於陰影消除介紹 30
3.4.1 GAN 30
3.4.2 Cycle GAN 33
3.4.3 Mask-Shadow GAN 35
3.4.4 DC-Shadow Net 37
3.5 Vision Transformer 39
3.5.1 Transformer 39
3.5.2 Vision Transformer 40
3.6 本章總結 41
Chapter 4 CPASR Net模型架構 42
4.1 圖像前處理 42
4.1.1 自動白平衡 42
4.1.2 對比度增強 45
4.2 CPASR Net模型架構與Loss Function 50
4.2.1 Adversarial Loss 50
4.2.2 Cycle-consistency Loss、Identity Loss 50
4.2.3 Classifier Loss 51
4.2.4 Total Loss 51
4.3 模型部件 54
4.3.1 OverlapPatchEmbed 54
4.3.2 TransformerBlock 55
4.3.3 Scharr Convolution 55
4.3.4 ResnetBlock 57
4.3.5 Upsampling 58
4.4 模型 59
4.4.1 Classifier 59
4.4.2 Generator 60
4.4.3 Discriminator 61
4.5 本章總結 63
Chapter 5 CPASR Net訓練與實現 64
5.1 咖啡粉圖像 64
5.2 訓練環境建構 66
5.2.1 硬體設備 66
5.2.2 作業系統及開發程式 66
5.3 訓練CPASR Net模型 67
5.4 CPASR Net模型評估指標 69
5.4.1 PSNR 70
5.4.2 SSIM 70
5.4.3 RMSE 71
5.4.4 LPIPS 72
5.5 CPASR Net模型評估成效 72
5.5.1 人工與判別器判別陰影去除 72
5.5.2 評估指標圖像品質 74
5.5.3 模型去除陰影前後比較 79
5.6 本章總結 82
Chapter 6 CPASR System 83
6.1 程式架構 83
6.1.1 開發語言 83
6.1.2 圖形介面框架 83
6.1.3 CPASR System架構 84
6.2 粒徑計算 86
6.2.1 比例尺計算 87
6.2.2 咖啡粉選取 87
6.2.3 粒徑計算 89
6.3 粒徑計算驗證 90
6.3.1 Adobe Illustrator 90
6.3.2 咖啡粉實際驗證 92
6.3.3 固定比例驗證 96
6.3.4 磨豆機驗證 99
6.4 本章總結 101
Chapter 7 結論與未來展望 102
7.1 結論 102
7.2 未來展望 104
Chapter 8 參考文獻 107
-
dc.language.isozh_TW-
dc.subject粒徑分析zh_TW
dc.subject陰影去除zh_TW
dc.subject邊緣檢測zh_TW
dc.subject咖啡zh_TW
dc.subject深度學習zh_TW
dc.subject影像辨識zh_TW
dc.subjectShadow Removalen
dc.subjectParticle size Analysisen
dc.subjectEdge Detectionen
dc.subjectDeep Learningen
dc.subjectCoffeeen
dc.subjectImage recognitionen
dc.title深度學習陰影去除之咖啡粒徑分析系統zh_TW
dc.titleCPASR System:Deep Learning-based Coffee Particle Size Analysis System with Shadow Removalen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee王鈺強;蔡炎龍;蔡宗翰zh_TW
dc.contributor.oralexamcommitteeYu-Chiang Wang;Yen-Lung Tsai;Tzong-Han Tsaien
dc.subject.keyword咖啡,深度學習,影像辨識,粒徑分析,邊緣檢測,陰影去除,zh_TW
dc.subject.keywordCoffee,Deep Learning,Image recognition,Particle size Analysis,Edge Detection,Shadow Removal,en
dc.relation.page113-
dc.identifier.doi10.6342/NTU202302859-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-08-12-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電信工程學研究所-
dc.date.embargo-lift2024-08-07-
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
18.61 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved