Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90165
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor馬劍清zh_TW
dc.contributor.advisorChien-Ching Maen
dc.contributor.author李承融zh_TW
dc.contributor.authorCheng-Jung Lien
dc.date.accessioned2023-09-22T17:41:14Z-
dc.date.available2023-11-09-
dc.date.copyright2023-09-22-
dc.date.issued2023-
dc.date.submitted2023-08-10-
dc.identifier.citation[1] Hill, K. O., Fujii, Y., Johnson, D. C., & Kawasaki, B. S. (1978). Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication. Applied Physics Letters, vol. 32, 647-649.
[2] Meltz, G., Morey, W., & Glenn, W. H. (1989). Formation of Bragg gratings in optical fibers by a transverse holographic method. Optics Letters, vol. 14, 823-825.
[3] Hill, K. O., Malo, B., Bilodeau, F., Johnson, D. C., & Albert, J. (1993). Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask. Applied Physics Letters, vol. 62, 1035-1037.
[4] Anderson, D. Z., Mizrahi, V., Erdogan, T., & White, A. E. (1993). Production of in-fiber gratings using a diffractive optical element. Electronics Letters, vol. 29, 566-568.
[5] Bennion, I., Williams, J. A. R., Zhang L., Doran, S. K., & Doran, N. J. (1996). Tutorial review, UV-written in-fiber Bragg gratings. Optics Quantum Electronics, vol. 28, 93-135.
[6] Hill, K. O., & Meltz, G. (1997). Fiber Bragg grating technology fundamentals and overview. Journal of Lightwave Technology, vol. 15, 1263-1276.
[7] Kashyap, R. (1999). Fiber Bragg Gratings. Academic press.
[8] Erdogan, T. (1997). Fiber grating spectra. Journal of Lightwave Technology, vol. 15, 1277-1294.
[9] Nye, J. F. (1957).Physical Properties of Crystals: Their Representation by Tensors and Matrices. Oxford university press.
[10] Bertholds, A., & Dandliker, R. (1988). Determination of the individual strain-optic coefficients in single-mode optical fibres. Journal of Lightwave Technology, vol. 6, 17-20.
[11] Takahashi, S., & Shibata, S. (1979). Thermal variation of attenuation for optical fibers. Journal of Non-Crystalline Solids, vol. 30, 359-370.
[12] Tao, X., Tang, L., Du, W. C., & Choy, C. L. (2000). Internal strain measurement by fiber Bragg grating sensors in textile composites. Composites Science and Technology, vol. 60, 657-669.
[13] Kersey, A. D., Berkoff, T. A., & Morey, W. W. (1993). Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry–Perot wavelength filter. Optics Letters, vol. 18, 1370-1372.
[14] Sun, Q., Liu, D., Xia, L., Wang, J., Liu, H., & Shum, P. (2008). Experimental demonstration of multipoint temperature warning sensor using a multichannel matched fiber Bragg grating. Photonics Technology Letters, IEEE, vol. 20, 933-935.
[15] Murukeshan, V. M., Chan, P. Y., Ong, L. S., & Seah, L. K. (2000). Cure monitoring of smart composites using fiber Bragg grating based embedded sensors. Sensors and Actuators A: Physical, vol. 79, 153-161.
[16] Zhao, X., Song, G., Fernandez, M., & Ou, J. (2009). One kind of fiber Bragg grating displacement sensor using micro-elastic spring. Second International Conference on Smart Materials and Nanotechnology in Engineering, 74932X-74932X-6.
[17] Biswas, P., Bandyopadhyay, S., Kesavan, K., Parivallal, S., Sundaram, B. A., Ravisankar, K., & Dasgupta, K. (2010). Investigation on packages of fiber Bragg grating for use as embeddable strain sensor in concrete structure. Sensors and Actuators A: Physical, vol. 157, 77-83.
[18] Ball, G. A., & Morey, W. W. (1992). Continuously tunable single-mode erbium fiber laser. Optics Letters, vol. 17, 420-422.
[19] Ball, G., & Morey, W. W. (1994). Compression-tuned single-frequency Bragg grating fiber laser. Optics Letters, vol. 19, 1979-1981.
[20] YoonKim, S., BaeLee, S., WonKwon, S., & SamChoi, S. (1998). Channel-switching active add/drop multiplexer with tunable gratings. Electronics Letters, vol. 34, 104-105.
[21] Mavoori, H., Jin, S., Espindola, R. P., & Strasser, T. A. (1999). Enhanced thermal and magnetic actuations for broad-range tuning of fiber Bragg grating based reconfigurable add drop devices. Optics Letters, vol. 24, 714-716.
[22] Inui, T., Komukai, T., & Nakazawa, M. (2001). Highly efficient tunable fiber Bragg grating filters using multilayer piezoelectric transducers. Optics Communications, vol. 190, 1-4.
[23] Yoffe, G. W., Krug, P. A, Ouellette, F., & Thorncraft, D. A. (1995). Passive temperature-compensation package for optical fiber gratings. Applied Optics, vol. 34, 6859-6861.
[24] Melle, S. M., & Liu, K. (1992). A passive wavelength demodulation system for guided-wave Bragg grating sensors. IEEE Photonics Technology Letters, vol. 4, 516-518.
[25] Kersey, A. D., Berkoff, T. A., & Morey, W. W. (1993). Two-channel fiber Bragg-grating strain sensor with high-resolution interferometric wavelength-shift detection. Fibers', vol. 92, 48-55.
[26] 葉耀文,馬劍清,"短週期光纖光柵在動態系統的量測與應用",碩士論文,機械工程研究所,台灣大學,2004。
[27] 龔瑞清,馬劍清,"開發布拉格光纖光柵感測器於多點與即時量測系統並應用在高速內藏式主軸與銑削工件之溫升、變形及轉速之精密量測",碩士論文,機械工程學研究所,臺灣大學,2017。
[28] 凃哲維,馬劍清,"應用布拉格光纖光柵感測器於加工系統之溫升、變形與動態特性之精密量測與遠端監控",碩士論文,機械工程學研究所,臺灣大學,2019。
[29] 廖尉翔,馬劍清,"布拉格光纖光柵於固體結構多點動態應變及熱學量測之技術開發及資料解析",碩士論文,機械工程學研究所,臺灣大學,2022。
[30] Tien, C. L., Cheng, T. C., Chen, L. C., Lin, G. R., & Liu, W. F. (2009). Simultaneous measurement of bending curvature and axial stress using D-shaped fiber Bragg gratings. Advanced Sensor Technologies and Applications. SPIE.
[31] Zheng, Y., Huang, D., & Shi, L. (2018). A new deflection solution and application of a fiber Bragg grating-based inclinometer for monitoring internal displacements in slopes. Measurement Science and Technology, vol. 29, 055088.
[32] Yang, S., Li, J., Tang, Y., Sun, M., Gao, G., Liu, X. A., Shi, B., & Dong, F. Z. (2018). Analysis of the performance of strain magnification using uniform rectangular cantilever beam with fiber Bragg gratings. Sensors Actuators A: Physics, vol. 273, 266-275.
[33] Theodosiou, A., Komodromos, M., & Kalli, K. (2018). Carbon Cantilever Beam Health Inspection Using a Polymer Fiber Bragg Grating Array. Journal of Lightwave Technology, vol. 36, no. 4.
[34] Abushagar, A. A. G., Arsad, N., & Bakar, A. A. A. (2021). Cantilever Beam with a Single Fiber Bragg Grating to Measure Temperature and Transversal Force Simultaneously. Sensor, vol. 21.
[35] Zeng, B., Zheng, Y., Yu, J., & Yang, C. (2021). Deformation calculation method based on FBG technology and conjugate beam theory and its application in landslide monitoring. Optical Fiber Technology, vol. 63.
[36] Westergaard, H. M. Deflections of beams by the conjugate beam method, 26 (1921). pp. 369–396.
[37] Romero, M. A. T., Gomez, M. D., & Uribe, L. E. L. (2020). Prony series calculation for viscoelastic behavior modeling of structural adhesives from DMA data. Ingeniería Investigación y Tecnología, vol. 21.
[38] 吳冠甫,馬劍清,"應用特徵圖像匹配於數位影像相關法之三維全場形貌及變形量測",碩士論文,機械工程學研究所,臺灣大學,2023。
[39] ASTM International, (2014). Standard Test Method for Tensile Properties of Plastics, ASTM D638.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90165-
dc.description.abstract布拉格光纖光柵(Fiber Bragg Grating, FBG)作為感測器已發展數十年,其傳輸能力優異、靈敏度高、質量輕盈半徑小、不受電磁波影響,且具有良好訊雜比等優點,無論在學界或工業界都相當受人青睞。作為一個多功能的感測器,可以同時量測應變量與溫度變化,並且搭配相關技術可以達到多點的同時量測。光纖光柵感測器具有出色的量測能力與實用性,隨著科技的發展,這個世代對於巨量資料的掌握也愈發重要。
本文中除了應用光纖光柵感測器進行應變與溫度的量測外,亦結合共軛梁理論,開發用於量測懸臂梁位移的多點量測系統,同時使用數位影像相關法以及雷射位移計量測位移訊號,以及透過模態展開法與有限元素法進行更精確的驗證。
現今綠色能源發展蓬勃,風力發電機為其中最重要的一員,本文將透過光纖光柵感測器,量測風力發電機葉片的應變分布,並針對螺絲的鬆弛行為,探討用應變量與共振頻率判斷螺絲鬆弛的情況,並結合雲端監測與通報系統,建立風力發電機葉片的即時監測系統。
zh_TW
dc.description.abstractThe Fiber Bragg Grating (FBG) has been developed as a sensor for several decades. It has excellent transmission capabilities, high sensitivity, lightweight, small radius, is not affected by electromagnetic waves, and has a good signal-to-noise ratio. It is highly favored in both academia and industry. As a multifunctional sensor, it can simultaneously measure strain and temperature, and with related technologies, it can achieve simultaneous multi-point measurement. The fiber Bragg grating sensor has outstanding measurement capabilities and practicality, with the development of technology, mastering large amounts of data in this generation is becoming increasingly important.
In addition to using fiber Bragg grating sensors for strain and temperature measurements in this paper, we also combine conjugate beam theory to develop a multi-point measurement system for measuring cantilever beam displacement. We use digital image correlation and laser displacement sensors to measure displacement signals, and normal mode expansion and finite element methods for more accurate verification.
With the vigorous development of green energy today, wind turbines are one of the most important members. This paper will use fiber Bragg grating sensors to measure the strain distribution of wind turbine blades, and explore the relaxation behavior of screws, using strain and resonance frequency to determine the relaxation of screws. Combined with a cloud monitoring and notification system, we establish a real-time monitoring system for wind turbine blades.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T17:41:14Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-22T17:41:14Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要 I
Abstract III
目錄 V
圖目錄 XI
表目錄 XXV
第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 3
1.3 論文內容簡介 7
第二章 光纖光柵基本原理與製作方法 11
2.1 光纖光學原理 11
2.2 光纖光柵基本原理 14
2.3 光彈效應與熱光效應 15
2.3.1 光彈效應 15
2.3.2 熱光效應 18
2.4 共振波長飄移理論 19
2.4.1 共振波長飄移原理 19
2.4.2 承受平面應力 21
2.4.3 承受單軸向應力 22
2.4.4 承受溫度影響 23
2.5 光纖光柵的種類 23
2.5.1 短週期光纖光柵(Short Period Fiber Grating) 23
2.5.2 長週期光纖光柵(Long Period Fiber Grating) 24
2.5.3 本文所使用的光纖光柵 25
2.6 光纖光柵製作方法 25
2.6.1 光纖的光感性 26
2.6.2 內部寫入法 26
2.6.3 橫向全像法 27
2.6.4 相位光罩法 27
第三章 實驗量測技術與儀器設備 35
3.1 布拉格光纖光柵量測系統 35
3.1.1 光纖光柵感測器的事前準備工作 35
3.1.2 波長解調器(I-MON)量測系統 36
3.1.3 多光柵多點量測之I-MON系統 36
3.2 光纖光柵量測系統所需之相關儀器 37
3.2.1 寬頻光源 37
3.2.2 光隔離器與光循環器 38
3.2.3 光耦合器 38
3.2.4 波長解調器(I-MON 256 USB) 38
3.2.5 高速波長解調器(I-MON 256 High Speed) 39
3.3 溫度記錄器與熱電偶 40
3.4 加熱型電磁攪拌器與控制器 41
3.5 雷射位移計(Laser Displacement Sensor) 41
3.6 熱像儀 41
3.7 數位影像相關法(DIC) 42
3.7.1 時間參數 43
3.7.2 空間參數 43
3.7.3 樣板子集合與半窗格 44
3.7.4 搜尋子集合與搜尋窗格 44
3.8 Nikon D800 單眼相機 45
3.9 高速攝影機 45
第四章 應用光纖光柵感測器於懸臂梁之面外位移量測 65
4.1 共軛梁理論之演算法 66
4.2 懸臂梁之穩態應變與位移量測 68
4.2.1 懸臂梁之穩態理論解析 68
4.2.2 實驗架設 71
4.2.3 實驗結果分析 72
4.3 懸臂梁移除負載之自由振動量測 73
4.3.1 懸臂梁之動態理論解析 74
4.3.2 實驗架設 75
4.3.3 實驗結果分析 75
4.4 懸臂梁之動態量測 76
4.4.1 實驗架設 77
4.4.2 實驗結果分析:時間域訊號 77
4.4.3 實驗結果分析:頻率域訊號 78
4.5 應用有限元素法於共軛梁演算法之位移量測可靠度分析 79
4.5.1 有限元素法模擬設定 80
4.5.2 有限元素法模擬結果 80
第五章 風力發電機葉片動態應變量測與螺絲鬆弛分析 129
5.1 風力發電機葉片之基本規格及光纖光柵與螺絲資訊 130
5.1.1 風力發電機葉模型規格尺寸 130
5.1.2 光纖光柵與螺絲資訊 131
5.2 風力發電機葉片之穩態與自由振動量測 131
5.2.1 實驗架設 131
5.2.2 實驗結果分析 132
5.3 風力發電機葉片鬆弛與鎖緊之應變量測 135
5.3.1 實驗架設 135
5.3.2 實驗結果分析 136
5.3.3 螺絲鬆弛情形之標準定義 138
5.4 風力發電機葉片之動態量測 139
5.4.1 實驗架設 139
5.4.2 實驗結果分析:初步分析 139
5.4.3 實驗結果分析:時間域訊號 140
5.4.4 實驗結果分析:頻率域訊號 141
5.4.5 螺絲鬆弛情形之標準定義 142
5.5 風力發電機葉片之受風加載動態量測 144
5.5.1 實驗架設 144
5.5.2 實驗結果分析 144
5.6 風力發電機葉片之即時量測與通報系統 145
5.6.1 雲端監測系統(Cloud Monitoring System, CMS) 146
5.6.2 簡訊警報系統 146
5.6.3 風機葉片訊號之實際結果 147
5.7 風力發電機葉片長距離訊號傳輸與量測 148
5.7.1 實驗架設 149
5.7.2 實驗結果分析 149
5.8 風力發電機葉片面外位移量測 149
5.9 風力發電機葉片之熱學量測 150
5.9.1 光纖光柵之熱學簡介 151
5.9.2 實驗架設 152
5.9.3 實驗結果分析 152
第六章 應用有限元素法於揚聲器緩衝圈之振動分析 245
6.1 動圈式揚聲器之運作原理 245
6.2 線黏彈性理論 245
6.3 有限元素法模擬分析 247
6.3.1 揚聲器模型 247
6.3.2 材料參數設定 247
6.3.3 固體力學基本設定 248
6.3.4 網格設定 249
6.3.5 模擬結果 249
第七章 結論與未來展望 267
7.1 結論 267
7.2 未來展望 271
參考文獻 273
-
dc.language.isozh_TW-
dc.subject即時監測zh_TW
dc.subject布拉格光纖光柵zh_TW
dc.subject共軛梁法zh_TW
dc.subject風力發電機葉片zh_TW
dc.subject應變zh_TW
dc.subject位移zh_TW
dc.subjectstrainen
dc.subjectFiber Bragg Gratingen
dc.subjectreal time monitoringen
dc.subjectdisplacementen
dc.subjectconjugate beam methoden
dc.subjectwind turbine bladeen
dc.title應用布拉格光纖光柵感測器於懸臂梁應變與位移多點量測及風力發電機葉片監測系統開發zh_TW
dc.titleApplication of Fiber Bragg Grating Sensor in Multi-Point Measurement for Strain and Displacement of Cantilever Beam and Development of the Wind Turbine Blade Monitoring Systemen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee黃育熙;楊宜恒zh_TW
dc.contributor.oralexamcommitteeYu-Hsi Huang;Yi-Heng Yangen
dc.subject.keyword布拉格光纖光柵,共軛梁法,風力發電機葉片,應變,位移,即時監測,zh_TW
dc.subject.keywordFiber Bragg Grating,conjugate beam method,wind turbine blade,strain,displacement,real time monitoring,en
dc.relation.page277-
dc.identifier.doi10.6342/NTU202303937-
dc.rights.note未授權-
dc.date.accepted2023-08-12-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
29.99 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved