Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90163
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂榮祥zh_TW
dc.contributor.advisorRong-Shyang Luen
dc.contributor.author陳柔安zh_TW
dc.contributor.authorJou-An Chenen
dc.date.accessioned2023-09-22T17:40:44Z-
dc.date.available2023-11-09-
dc.date.copyright2023-09-22-
dc.date.issued2023-
dc.date.submitted2023-08-12-
dc.identifier.citation[1] S. L. Glashow. “Partial Symmetries of Weak Interactions”. In: Nucl. Phys. 22 (1961), pp. 579–588. DOI: 10.1016/0029-5582(61)90469-2.
[2] Steven Weinberg. “A Model of Leptons”. In: Phys. Rev. Lett. 19.21 (Nov. 20, 1967). Publisher: American Physical Society, pp. 1264–1266. DOI: 10 . 1103 /PhysRevLett.19.1264.
[3] Abdus Salam and J. C. Ward. “Weak and electromagnetic interactions”. In: Nuovo Cim 11.4 (Feb. 1, 1959), pp. 568–577. ISSN: 1827-6121. DOI: 10.1007/BF02726525.
[4] Steven Weinberg. “The Making of the Standard Model”. In: Eur. Phys. J. C 34.1 (May 2004), pp. 5–13. ISSN: 1434-6044, 1434-6052. DOI: 10.1140/epjc/s2004-01761-1. arXiv: hep-ph/0401010.
[5] Benjamin W. Lee, C. Quigg, and H. B. Thacker. “Strength of Weak Interactions at Very High Energies and the Higgs Boson Mass”. In: Phys. Rev. Lett. 38.16 (Apr. 18, 1977). Publisher: American Physical Society, pp. 883–885. DOI: 10.1103/PhysRevLett.38.883.
[6] Benjamin W. Lee, C. Quigg, and H. B. Thacker. “Weak interactions at very high energies: The role of the Higgs-boson mass”. In: Phys. Rev. D 16.5 (Sept. 1, 1977). Publisher: American Physical Society, pp. 1519–1531. DOI: 10.1103/PhysRevD.16.1519.
[7] Marta Felcini. Searches for Dark Matter Particles at the LHC. Sept. 17, 2018. DOI:10.48550/arXiv.1809.06341. arXiv: 1809.06341[hep- ex, physics:hep-ph].
[8] L3 Collaboration. “Study of the e^+e^- –> Z gamma Process at LEP and Limits on Triple Neutral-Gauge-Boson Couplings”. In: Physics Letters B 597.2 (Sept. 2004), pp. 119–130. ISSN: 03702693. DOI: 10.1016/j.physletb.2004.07.002. arXiv:hep-ex/0407012.
[9] ATLAS Collaboration. “Measurement of the $Z\gamma\rightarrow\nu\bar{\nu}\gamma$ production cross section in $pp$ collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector and limits on anomalous triple gauge-boson couplings”. In: J. High Energ. Phys. 2018.12 (Dec. 2018), p. 10. ISSN: 1029-8479. DOI: 10.1007/JHEP12(2018) 010. arXiv: 1810.04995[hep-ex].
[10] CMS Collaboration. “Measurement of the Z gamma production cross section in pp collisions at 8 TeV and search for anomalous triple gauge boson couplings”. In: J. High Energ. Phys. 2015.4 (Apr. 2015), p. 164. ISSN: 1029-8479. DOI: 10.1007 / JHEP0 (2015)164. arXiv: 1502.05664[hep-ex].
[11] ATLAS Collaboration. “Evidence for electroweak production of two jets in associ- ation with a $Z\gamma$ pair in $pp$ collisions at $\sqrt{s} = 13$ TeV with the AT- LAS detector”. In: Physics Letters B 803 (Apr. 2020), p. 135341. ISSN: 03702693. DOI: 10.1016/j.physletb.2020.135341. arXiv: 1910.09503[hep-ex].
[12] CMS Collaboration. “Measurement of the cross section for electroweak production of a Z boson, a photon and two jets in proton-proton collisions at $\sqrt{s} =$ 13 TeV and constraints on anomalous quartic couplings”. In: J. High Energ. Phys. 2020.6 (June 2020), p. 76. ISSN: 1029-8479. DOI: 10.1007/JHEP06(2020)076. arXiv: 2002.09902[hep-ex].
[13] ATLAS Collaboration. Observation of electroweak production of two jets in asso- ciation with an isolated photon and missing transverse momentum, and search for a Higgs boson decaying into invisible particles at 13 TeV with the ATLAS detector. Dec. 8, 2022. DOI: 10.1140/epjc/s10052- 021- 09878- z. arXiv: 2109.00925[hep-ex].
[14] C. S. Wu et al. “Experimental Test of Parity Conservation in Beta Decay”. In: Phys. Rev. 105.4 (Feb. 15, 1957). Publisher: American Physical Society, pp. 1413–1415. DOI: 10.1103/PhysRev.105.1413.
[15] Peter W. Higgs. “Broken Symmetries and the Masses of Gauge Bosons”. In: Phys. Rev. Lett. 13.16 (Oct. 19, 1964). Publisher: American Physical Society, pp. 508–509. DOI: 10.1103/PhysRevLett.13.508.
[16] Peter W. Higgs. “Broken symmetries, massless particles and gauge fields”. In: Phys. Lett. 12 (1964), pp. 132–133. DOI: 10.1016/0031-9163(64)91136-9.
[17] Peter W. Higgs. “Spontaneous Symmetry Breakdown without Massless Bosons”. In: Phys. Rev. 145.4 (May 27, 1966). Publisher: American Physical Society, pp. 1156–1163. DOI: 10.1103/PhysRev.145.1156.
[18] The CMS Collaboration. “Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC”. In: Physics Letters B 716.1 (Sept. 2012), pp. 30–61. ISSN: 03702693. DOI: 10.1016/j.physletb.2012.08.021. arXiv: 1207.7235[hep-ex].
[19] The ATLAS Collaboration. “Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC”. In: Physics Let- ters B 716.1 (Sept. 2012), pp. 1–29. ISSN: 03702693. DOI:10.1016/j.physletb.2012.08.020. arXiv: 1207.7214[hep-ex].
[20] Michael Rauch. Vector-Boson Fusion and Vector-Boson Scattering. Oct. 26, 2016. DOI: 10.48550/arXiv.1610.08420. arXiv: 1610.08420[hep- ex, physics:hep-ph].
[21] Martin Weber. Measurement of Boson Self Couplings at LEP and Search for Anomalies. June 12, 2002. DOI: 10 . 48550 / arXiv . hep - ex / 0205024. arXiv: hep-ex/0205024.
[22] Ana Alboteanu, Wolfgang Kilian, and Juergen Reuter. “Resonances and Unitarity in Weak Boson Scattering at the LHC”. In: J. High Energy Phys. 2008.11 (Nov. 5,2008), pp. 010–010. ISSN: 1029-8479. DOI: 10.1088/1126-6708/2008/11/010. arXiv:0806.4145[hep-ph].
[23] Jon Butterworth and Lisa Randall. Most Wanted Particle: The Inside Story of the Hunt for the Higgs, the Heart of the Future of Physics. Mar. 8, 2016. 304 pp. ISBN:978-1-61519-301-1.
[24] ATLAS Collaboration. “Evidence for Electroweak Production of $W^{\pm}W^{\pm} jj$ in $pp$ Collisions at $\sqrt{s}=8$ TeV with the ATLAS Detector”. In: Phys. Rev. Lett. 113.14 (Oct. 3, 2014), p. 141803. ISSN: 0031-9007, 1079-7114. DOI: 10.1103/PhysRevLett.113.141803. arXiv: 1405.6241[hep-ex].
[25] ATLAS Collaboration. “Measurement of $W^{\pm}W^{\pm}$ vector-boson scat- tering and limits on anomalous quartic gauge couplings with the ATLAS detector”. In: Phys. Rev. D 96.1 (July 28, 2017), p. 012007. ISSN: 2470-0010, 2470-0029. DOI:10.1103/PhysRevD.96.012007. arXiv: 1611.02428[hep-ex].
[26] CMS Collaboration. “Measurement of electroweak-induced production of W gamma with two jets in pp collisions at sqrt(s) = 8 TeV and constraints on anomalous quar- tic gauge couplings”. In: J. High Energ. Phys. 2017.6 (June 2017), p. 106. ISSN:1029-8479. DOI: 10.1007/JHEP06(2017)106. arXiv: 1612.09256[hep-ex].
[27] ATLAS collaboration. “Studies of $Z\gamma$ production in association with a high-mass dijet system in $pp$ collisions at $\sqrt{s}$ = 8 TeV with the ATLAS detector”. In: J. High Energ. Phys. 2017.7 (July 2017), p. 107. ISSN: 1029-8479. DOI: 10.1007/JHEP07(2017)107. arXiv: 1705.01966[hep-ex].
[28] CMS Collaboration. “Observation of electroweak production of same-sign W boson pairs in the two jet and two same-sign lepton final state in proton-proton collisions at $\sqrt{s} = $ 13 TeV”. In: Phys. Rev. Lett. 120.8 (Feb. 22, 2018), p. 081801. ISSN: 0031-9007, 1079-7114. DOI: 10.1103/PhysRevLett.120.081801. arXiv:1709.05822[hep-ex].
[29] ATLAS Collaboration. “Observation of electroweak $W^{\pm}Z$ boson pair pro- duction in association with two jets in $pp$ collisions at $\sqrt{s} =$ 13 TeV with the ATLAS detector”. In: Physics Letters B 793 (June 2019), pp. 469–492. ISSN:03702693. DOI: 10.1016/j.physletb.2019.05.012. arXiv: 1812.09740[hep-ex].
[30] CMS Collaboration. “Measurements of production cross sections of WZ and same-sign WW boson pairs in association with two jets in proton-proton collisions at $\sqrt{s} =$ 13 TeV”. In: Physics Letters B 809 (Oct. 2020), p. 135710. ISSN:03702693. DOI: 10.1016/j.physletb.2020.135710. arXiv: 2005.01173[hep-ex].
[31] CMS Collaboration. “Evidence for electroweak production of four charged leptons and two jets in proton-proton collisions at $\sqrt{s} =$ 13 TeV”. In: Physics Letters B 812 (Jan. 2021), p. 135992. ISSN: 03702693. DOI:10.1016/j.physletb.2020.135992. arXiv: 2008.07013[hep-ex].
[32] CMS Collaboration. “Measurement of the electroweak production of Z$\gamma$ and two jets in proton-proton collisions at $\sqrt{s} =$ 13 TeV and constraints on anomalous quartic gauge couplings”. In: Phys. Rev. D 104.7 (Oct. 5, 2021),p. 072001. ISSN: 2470-0010, 2470-0029. DOI: 10.1103/PhysRevD.104.072001. arXiv: 2106.11082[hep-ex].
[33] The Large Hadron Collider: Conceptual design - INSPIRE. URL: [https://inspirehep](https://inspirehep/). net/literature/402898 (visited on 08/06/2023).
[34] Fabienne Marcastel. CERN’s Accelerator Complex. La chaîne des accélérateurs du CERN. 2013.
[35] The CMS Collaboration. “CMS Physics Technical Design Report, Volume II: Physics Performance”. In: J. Phys. G: Nucl. Part. Phys. 34.6 (Apr. 2007), p. 995. ISSN: 0954-3899. DOI: 10.1088/0954-3899/34/6/S01.
[36] J. Alwall et al. “The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations”. In: J. High Energ. Phys. 2014.7 (July 2014), p. 79. ISSN: 1029-8479. DOI: 10.1007/JHEP07(2014)079. arXiv: 1405.0301[hep-ph].
[37] Torbjörn Sjöstrand et al. “An Introduction to PYTHIA 8.2”. In: Computer Physics Communications 191 (June 2015), pp. 159–177. ISSN: 00104655. DOI: 10.1016/j. cpc.2015.01.024. arXiv: 1410.3012[hep-ph].
[38] CMS Collaboration. “Particle-flow reconstruction and global event description with the CMS detector”. In: J. Inst. 12.10 (Oct. 6, 2017), P10003–P10003. ISSN: 1748-0221. DOI: 10 . 1088 / 1748 - 0221 / 12 / 10 / P10003. arXiv: 1706 . 04965[hep -ex,physics:physics].
[39] CMS Collaboration. “Electron and photon reconstruction and identification with the CMS experiment at the CERN LHC”. In: J. Inst. 16.5 (May 1, 2021), P05014. ISSN: 1748-0221. DOI: 10 . 1088 / 1748 - 0221 / 16 / 05 / P05014. arXiv: 2012 .0688 [hep-ex,physics:physics].
[40] Matteo Cacciari, Gavin P. Salam, and Gregory Soyez. “The anti-k_t jet clustering algorithm”. In: J. High Energy Phys. 2008.4 (Apr. 16, 2008), pp. 063–063. ISSN:1029-8479. DOI: 10.1088/1126-6708/2008/04/063. arXiv: 0802.1189[hep-ph].
[41] Matteo Cacciari, Gavin P. Salam, and Gregory Soyez. “FastJet user manual”. In: Eur. Phys. J. C 72.3 (Mar. 2012), p. 1896. ISSN: 1434-6044, 1434-6052. DOI: 10.1140/epjc/s10052-012-1896-2. arXiv: 1111.6097[hep-ex,physics:hep-ph].
[42] CMS Collaboration. “Pileup mitigation at CMS in 13 TeV data”. In: J. Inst. 15.9 (Sept. 15, 2020), P09018–P09018. ISSN: 1748-0221. DOI: 10.1088/1748-0221/15/09/P09018. arXiv: 2003.00503[hep-ex,physics:physics].
[43] CMS Collaboration. “Performance of missing transverse momentum reconstruction in proton-proton collisions at $\sqrt{s} =$ 13 TeV using the CMS detector”. In: J. Inst. 14.7 (July 4, 2019), P07004–P07004. ISSN: 1748-0221. DOI: 10.1088/1748-0221/14/07/P07004. arXiv: 1903.06078[hep-ex,physics:physics].
[44] Daniele Bertolini et al. “Pileup Per Particle Identification”. In: Journal of High Energy Physics 2014.10 (Oct. 2014). arXiv:1407.6013 [hep-ex, physics:hep-ph], p. 59. ISSN: 1029-8479. DOI: 10.1007/JHEP10(2014)059.
[45] CMS Collaboration. “Performance of the CMS muon detector and muon recon- struction with proton-proton collisions at $\sqrt{s}=$ 13 TeV”. In: J. Inst. 13.6 (June 19, 2018), P06015–P06015. ISSN: 1748-0221. DOI: 10.1088/1748- 0221/13/06/P06015. arXiv: 1804.04528[hep-ex,physics:physics].
[46] Joseph Boudreau, ATLAS, et al. “Instrumental Backgrounds to tt̄ and Single Top Production at Hadron Colliders”. In: Journal of Physics: Conference Series 452.1 (July 2013), p. 012013. ISSN: 1742-6596. DOI: 10 . 1088 / 1742 - 6596 / 452 / 1 /012013.
[47] Kelly Stifter. The CMS Beam Halo Monitor Detector System. Nov. 1, 2015. DOI:10 . 48550 / arXiv . 1511 . 00264. arXiv: 1511 . 00264[hep - ex , physics :physics].
[48] Tommaso Dorigo et al. Muon Energy Measurement from Radiative Losses in a Calorimeter for a Collider Detector. arXiv:2008.10958 [hep-ex, physics:physics]. Aug. 2020. DOI: 10.48550/arXiv.2008.10958.
[49] D. A. Petyt and For the CMS collaboration). “Mitigation of Anomalous APD sig- nals in the CMS Electromagnetic Calorimeter”. In: J. Phys.: Conf. Ser. 404.1 (Feb.2012), p. 012043. ISSN: 1742-6596. DOI: 10.1088/1742-6596/404/1/012043.
[50] D. Rainwater, R. Szalapski, and D. Zeppenfeld. “Probing color-singlet exchange in $Z+2$-jet events at the LHC”. In: Phys. Rev. D 54.11 (Dec. 1, 1996), pp. 6680–6689. ISSN: 0556-2821, 1089-4918. DOI: 10 . 1103 / PhysRevD . 54 . 6680. arXiv:hep-ph/9605444.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90163-
dc.description.abstract本篇論文陳述測量經由弱電作用生成之Z 玻色子與光子且Z 玻色子衰變成微中子-反微中子對的方法。此測量方法應用於利用緊湊秒子線圈在2017-2018 年,大型強子對撞機第二期運轉期間收集的"缺失橫向能量數據集"。數據全數經由質子-質子於對撞質心能量13 兆電子福特中生成,加總積分亮度101.24 fb−1。目標訊號是透過向量玻色子散射產生,因此,終態特徵是有兩個高能量噴流極前向射出,且兩個噴流有相當大的贗快度夾角。相對於前向,較中心生成的Z 玻色子與光子主要由探測器筒狀區域偵測。然而,由Z 衰變產生的微中子-反微中子對是以缺失橫向能量形式被量測而非粒子物件形式。所有背景事件貢獻源於標準例子模型已知過程皆由蒙地卡羅法產生模擬數據樣本。無法被模擬或模擬效果不佳的背景事件將採用真實數據估算結果,因真實數據已考量探測器效應。基準體積中橫截面量利用"缺失橫向能量數據集"成功量測,在領頭項精準度測得0.69±0.12fb。zh_TW
dc.description.abstractThe thesis presents the approach for EW Z(νν)γ+2jets measurement with the MET dataset collected with the CMS detector during the LHC Collider Run2 in 2017-2018, with a proton-proton collision at √s = 13 TeV and the integrated luminosity corresponds to a total of 101.24 fb−1. The target signal is procured via the vector boson scattering process, therefore, the final state features two energetic jets shooting forwardly with a large separation in the pseudorapidity. The photon and Z boson are generated centrally and mostly detected in the barrel region of the CMS detector. However, the neutrino-antineutrino pair which decays from the Z boson appears as a quantity of missing energy instead of particle objects in the detector. All background contributions from standard model benchmark processes sharing the same final state signature are estimated by Monte Carlo simulated samples. Non-simulated or not well-simulated backgrounds are estimated from real data including all detector effects. The fiducial cross-section measurement for this process only succeded in the MET dataset, with measured 0.69±0.12 fb at the accuracy of the leading order.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T17:40:44Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-22T17:40:44Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 iii
摘要 v
Abstract vii
Contents ix
List of Figures xi
List of Tables xv
Chapter 1 Introduction 1
Chapter 2 Physics behind the vector boson scattering 5
2.1 The elementary ingredients of the universe 5
2.2 The weak force 6
2.3 The electroweak sector 7
2.4 Chronicles of vector boson scattering 8
Chapter 3 The Large Hadron Collider and the Compact Muon Solenoid experiment 13
3.1 The Large Hadron Collider 13
3.2 The Compact Muon Solenoid experiment 14
Chapter 4 Dataset and Monte Carlo simulation 17
4.1 Dataset 17
4.2 Monte Carlo simulation 18
4.2.1 Vγ+jets processes 19
4.2.2 V+jets and top-quark processes 20
4.2.3 Electroweak (EW) single and multi-boson processes 20
Chapter 5 Object reconstruction and selection 21
5.1 Primary vertex 21
5.2 Photon 21
5.3 Jets 22
5.4 Missing transverse momentum 23
5.5 Electrons and Muons 24
Chapter 6 Data analysis 27
6.1 Event selection 27
6.1.1 Signal region 28
6.1.2 Wγ control region 30
6.2 Background estimation 31
6.2.1 Non-collision background contribution 31
6.2.2 Jet-photon misidentification 38
6.2.3 Wγ control region 42
6.3 Cross section measurement 46
6.4 Outlook 52
Conclusion 53
References 55
Appendix A — Kinematic and angular variable distributions of events passing signal selection using MET primary dataset 61
Appendix B — Photon-based data analysis 77
B.1 Introduction 77
B.2 Event selection 77
B.3 Background estimation 78
B.4 Summary 98
B.5 Outlook 100
-
dc.language.isoen-
dc.subject弱電作用zh_TW
dc.subjectZ 玻色子zh_TW
dc.subject向量玻色子散射zh_TW
dc.subject微中子zh_TW
dc.subject緊湊秒子線圈zh_TW
dc.subjectVector boson scatteringen
dc.subjectZ bosonen
dc.subjectNeutrinosen
dc.subjectElectroweak interactionsen
dc.subjectCMSen
dc.title在緊湊渺子線圈探測器透過隱形產物衰變通道量測弱電作用生成之Z 玻色子與光子伴隨兩束噴流於質心能量13 兆電子福特的質子-質子對撞過程zh_TW
dc.titleMeasurement of electroweak Zγ plus two jets production through invisible decay channel in a proton-proton collision at √s = 13 TeV with the CMS detectoren
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee郭家銘;陳凱風;裴斯達zh_TW
dc.contributor.oralexamcommitteeChia-Ming Kuo;Kai-Feng Chen;Stathes Paganisen
dc.subject.keyword弱電作用,向量玻色子散射,Z 玻色子,微中子,緊湊秒子線圈,zh_TW
dc.subject.keywordElectroweak interactions,Vector boson scattering,Z boson,Neutrinos,CMS,en
dc.relation.page100-
dc.identifier.doi10.6342/NTU202303205-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-08-12-
dc.contributor.author-college理學院-
dc.contributor.author-dept物理學系-
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf10.08 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved