請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90162
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 周佳靚 | zh_TW |
dc.contributor.advisor | Chia-Ching Chou | en |
dc.contributor.author | 李岱蓉 | zh_TW |
dc.contributor.author | Dai-Rong Li | en |
dc.date.accessioned | 2023-09-22T17:40:30Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-09-22 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-11 | - |
dc.identifier.citation | 1. Lau, J.H. Evolution, challenge, and outlook of TSV, 3D IC integration and 3D silicon integration. in 2011 International symposium on advanced packaging materials (APM). 2011. IEEE.
2. Zhang, D., et al. Backside TSV protrusion induced by thermal shock and thermal cycling. in 2013 IEEE 63rd Electronic Components and Technology Conference. 2013. IEEE. 3. Tan, C.S., et al., Silicon layer stacking enabled by wafer bonding. MRS Online Proceedings Library (OPL), 2006. 970: p. 0970-Y04-01. 4. Kim, S.E. and S. Kim, Wafer level Cu–Cu direct bonding for 3D integration. Microelectronic Engineering, 2015. 137: p. 158-163. 5. Trong, D.N., V.C. Long, and Ş. Ţălu, Molecular dynamics simulation of bulk Cu material under various factors. Applied Sciences, 2022. 12(9): p. 4437. 6. Suga, T., et al., Direct Cu to Cu bonding and alternative bonding techniques in 3D packaging. 3D Microelectronic Packaging: From Architectures to Applications, 2021: p. 201-231. 7. Zhu, W., et al., Thermal conductivity of amorphous SiO2 thin film: A molecular dynamics study. Scientific reports, 2018. 8(1): p. 10537. 8. Amigo, N., G. Gutiérrez, and M. Ignat, Atomistic simulation of single crystal copper nanowires under tensile stress: Influence of silver impurities in the emission of dislocations. Computational Materials Science, 2014. 87: p. 76-82. 9. Sainath, G. and B. Choudhary, Molecular dynamics simulation of twin boundary effect on deformation of Cu nanopillars. Physics Letters A, 2015. 379(34-35): p. 1902-1905. 10. Gu, H. and H. Wang, Effect of strain on thermal conductivity of amorphous silicon dioxide thin films: A molecular dynamics study. Computational Materials Science, 2018. 144: p. 133-138. 11. Ohta, H., T. Watanabe, and I. Ohdomari, Strain distribution around SiO2/Si interface in Si nanowires: a molecular dynamics study. Japanese journal of applied physics, 2007. 46(5S): p. 3277. 12. Pedone, A., et al., Molecular dynamics studies of stress− strain behavior of silica glass under a tensile load. Chemistry of Materials, 2008. 20(13): p. 4356-4366. 13. Lai, M.-F., et al., Wafer-level three-dimensional integrated circuits (3D IC): Schemes and key technologies. Microelectronic Engineering, 2011. 88(11): p. 3282-3286. 14. Moore, G.E., Cramming more components onto integrated circuits, Reprinted from Electronics, volume 38, number 8, April 19, 1965, pp. 114 ff. IEEE solid-state circuits society newsletter, 2006. 11(3): p. 33-35. 15. Iyer, S.S., Three-dimensional integration: An industry perspective. MRS Bulletin, 2015. 40(3): p. 225-232. 16. Lau, J.H., Overview and outlook of three-dimensional integrated circuit packaging, three-dimensional Si integration, and three-dimensional integrated circuit integration. Journal of Electronic Packaging, 2014. 136(4): p. 040801. 17. Tu, K.-N., Reliability challenges in 3D IC packaging technology. Microelectronics Reliability, 2011. 51(3): p. 517-523. 18. Kim, T., et al. Multi-stack wafer bonding demonstration utilizing Cu to Cu hybrid bonding and TSV enabling diverse 3D integration. in 2021 IEEE 71st Electronic Components and Technology Conference (ECTC). 2021. IEEE. 19. Kim, B., et al. Advanced wafer bonding solutions for TSV integration with thin wafers. in 2009 IEEE International Conference on 3D System Integration. 2009. IEEE. 20. Liu, Y., Y. Lu, and K. Tu, Low temperature interfacial reaction in 3D IC nanoscale materials. Materials Science and Engineering: R: Reports, 2022. 151: p. 100701. 21. Xie, L., et al. 6um pitch high density Cu-Cu bonding for 3D IC stacking. in 2016 IEEE 66th Electronic Components and Technology Conference (ECTC). 2016. IEEE. 22. Ong, J.-J., et al., Low-temperature Cu/SiO2 hybrid bonding with low contact resistance using (111)-oriented Cu surfaces. Materials, 2022. 15(5): p. 1888. 23. Shie, K.-C., et al., A kinetic model of copper-to-copper direct bonding under thermal compression. Journal of Materials Research and Technology, 2021. 15: p. 2332-2344. 24. Tang, Y.-S., Y.-J. Chang, and K.-N. Chen, Wafer-level Cu–Cu bonding technology. Microelectronics Reliability, 2012. 52(2): p. 312-320. 25. Chen, K.-N., et al., Bonding parameters of blanket copper wafer bonding. Journal of electronic materials, 2006. 35: p. 230-234. 26. Panigrahy, A.K. and K.-N. Chen, Low temperature Cu–Cu bonding technology in three-dimensional integration: An extensive review. Journal of Electronic packaging, 2018. 140(1). 27. Xu, Y., et al. Molecular Dynamics Simulation on Grinding Process of Cu-Si and Cu-SiO 2 Composite Structures. in 2018 19th International Conference on Electronic Packaging Technology (ICEPT). 2018. IEEE. 28. Munetoh, S., et al., Interatomic potential for Si–O systems using Tersoff parameterization. Computational Materials Science, 2007. 39(2): p. 334-339. 29. Jelinek, B., et al., Modified embedded atom method potential for Al, Si, Mg, Cu, and Fe alloys. Physical Review B, 2012. 85(24): p. 245102. 30. Hünenberger, P.H., Thermostat algorithms for molecular dynamics simulations. Advanced computer simulation: Approaches for soft matter sciences I, 2005: p. 105-149. 31. Nosé, S., A molecular dynamics method for simulations in the canonical ensemble. Molecular physics, 1984. 52(2): p. 255-268. 32. Hoover, W.G., Canonical dynamics: Equilibrium phase-space distributions. Physical review A, 1985. 31(3): p. 1695. 33. Alan, M. and D. Tildesley, Computer Simulations of Liquids. 1987, Oxford, UK: Oxford University Press. 34. Sharma, S., Molecular Dynamics Simulation of Nanocomposites Using BIOVIA Materials Studio. Lammps and Gromacs, A Volume in Micro and Nano Technologies, Kidlington, UK: Elsevier, 2019. 35. Hirel, P., Atomsk: A tool for manipulating and converting atomic data files. Computer Physics Communications, 2015. 197: p. 212-219. 36. Thompson, A.P., et al., LAMMPS-a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Computer Physics Communications, 2022. 271: p. 108171. 37. Mozzi, R. and n.B. Warren, The structure of vitreous silica. Journal of Applied Crystallography, 1969. 2(4): p. 164-172. 38. Jain, A., et al., Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL materials, 2013. 1(1): p. 011002. 39. Stukowski, A., Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Modelling and simulation in materials science and engineering, 2009. 18(1): p. 015012. 40. Yang, Z., Q. Yang, and G. Zhang, Poisson's ratio and Young's modulus in single-crystal copper nanorods under uniaxial tensile loading by molecular dynamics. Physics Letters A, 2017. 381(4): p. 280-283. 41. Guo, Y.-B., T. Xu, and M. Li, Atomistic calculation of internal stress in nanoscale polycrystalline materials. Philosophical Magazine, 2012. 92(24): p. 3064-3083. 42. Egami, T., K. Maeda, and V. Vitek, Structural defects in amorphous solids A computer simulation study. Philosophical Magazine A, 1980. 41(6): p. 883-901. 43. Egami, T., Atomic level stresses. Progress in Materials Science, 2011. 56(6): p. 637-653. 44. Li, C., et al., Molecular dynamics simulation of diffusion bonding of Al–Cu interface. Modelling and Simulation in Materials Science and Engineering, 2014. 22(6): p. 065013. 45. Pishkenari, H.N., E. Mohagheghian, and A. Rasouli, Molecular dynamics study of the thermal expansion coefficient of silicon. Physics Letters A, 2016. 380(48): p. 4039-4043. 46. Lim, L. and S. Meguid, Examination of the effect of YSZ/α-Al2O3 interphase upon the thermo-mechanical behaviour of thermal barrier coating using hybrid MD-FE simulations. Ceramics International, 2022. 48(16): p. 22917-22927. 47. Byrne, C., et al., Physical, chemical and electrical characterisation of the diffusion of copper in silicon dioxide and prevention via a CuAl alloy barrier layer system. Materials science in semiconductor processing, 2017. 63: p. 227-236. 48. Kim, T.-Y., J.E. Dolbow, and E. Fried, Numerical study of the grain-size dependent Young’s modulus and Poisson’s ratio of bulk nanocrystalline materials. International Journal of Solids and Structures, 2012. 49(26): p. 3942-3952. 49. Fang, T.-H., C.-C. Huang, and T.-C. Chiang, Effects of grain size and temperature on mechanical response of nanocrystalline copper. Materials Science and Engineering: A, 2016. 671: p. 1-6. 50. Panigrahy, A.K. and K.-N. Chen, Low temperature Cu–Cu bonding technology in three-dimensional integration: An extensive review. Journal of Electronic packaging, 2018. 140(1): p. 010801. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90162 | - |
dc.description.abstract | 晶片的發展一直遵循著莫爾定律 (Moore’s law),然而隨著集成電路 (Integrated circuits, IC) 尺寸逐漸微縮至其物理極限,必須盡快尋找解決方案,透過垂直堆疊的三維積體電路 (Three-dimensional integrated circuit, 3DIC) 可有效節省空間,而銅-銅鍵合則為其中關鍵技術之一。然而由於尺寸持續微縮,材料界面上的特性、晶格大小、原子排列方向以及分子間的作用力的影響也越來越大,因此本研究利用分子動力學模擬對銅-銅鍵合當中的兩個界面 (銅/銅、銅/二氧化矽) 進行研究。首先,我們先針對銅/二氧化矽界面的結構進行分析,考慮結構不同晶格大小及溫度的差異,分析結構的變化、應力分布及其力學性質,由研究結果我們可以發現:銅原子具有擴散性,因此會在銅和二氧化矽材料之間形成一個同時包含銅及二氧化矽原子之過渡區 (transitional zone),且擴散係數會隨溫度升高而變大,而原子等級 von-Mises stress 也在過渡區有最大值,結構中原子等級 von-Mises stress 會隨溫度升高而變大,但受晶格大小差異影響不大。接著,我們對銅/銅界面的結構進行分析,考慮上下層銅原子之間間隔不同大小及表面有無孔洞,在不同溫度下分析其結構的變化及應力分布,由研究結果我們發現:銅原子在平坦的表面並不會產生擴散現象,擴散是由孔洞周遭開始的,且越淺的孔洞擴散的越快,此外,擴散係數也會隨溫度升高而變大,而原子等級 von-Mises stress 在三個結構當中差異不大,孔洞周圍也無應力集中現象,但原子等級 hydrostatic stress 和膨脹空間有關,膨脹空間越大,則原子等級 hydrostatic stress 會越小。此研究使我們對於不同溫度下的界面表現有更深入的了解,並希望此研究能協助將來在半導體相關材料的開發和研究。 | zh_TW |
dc.description.abstract | The semiconductor industry has always followed Moore’s law, but as integrated circuits (ICs) approach their physical size limits, finding solutions becomes crucial. Three-dimensional integrated circuits (3DIC) with vertical stacking offer a space-saving solution, and Cu-Cu bonding plays a crucial role. However, as the ICs continues to shrink, the interfacial effects, grain size, crystal orientation, and interaction between atoms become increasingly significant. This study utilizes the molecular dynamics simulation to investigate the two interfaces (Cu/Cu, Cu/SiO2) in Cu-Cu bonding. Firstly, the analysis focus on the interfacial structures of Cu/SiO2, considering the different grain sizes and temperatures. We examine the structural changes, stress distribution, and mechanical properties of the structures. From the research findings, we observe that Cu atoms exhibit diffusion phenomena, leading to the formation of a transitional zone between the Cu and SiO2 materials, containing both Cu and SiO2 atoms. The diffusion coefficient increases with temperatures. Additionally, the atomic-level von-Mises stress reaches its maximum value in the transitional zone. The atomic-level von-Mises stress increases with temperatures, but is not significantly affected by grain size. Next, we analyze the interfacial structures of Cu/Cu, considering different spacings between the upper and lower Cu and the presence of surface voids. We examine the structural changes and stress distribution at different temperatures. The results indicate that Cu diffusion occurs around voids rather than on flat surfaces. Shallower voids promote faster diffusion. The diffusion coefficient increases with temperatures. The atomic-level von-Mises stress shows minimal differences among the structures and no stress concentration is observed around the voids. However, the atomic-level hydrostatic stress is influenced by the expansion space, with larger expansion space resulting in lower atomic hydrostatic stress. This study enhances our understanding of interface behavior at varying temperatures and aims to contribute to future advancements in semiconductor materials research. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T17:40:30Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-09-22T17:40:30Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii Contents v List of figures viii List of tables xiii Chapter 1. Introduction 1 1.1 Background 1 1.2 Literature review 3 1.2.1 The development of the 3DIC industry 3 1.2.2 The 3D integration methods 5 1.2.3 The mechanism of Cu-Cu bonding and Cu/SiO2 bonding 7 1.2.4 Quality evaluation and issues in bonding 10 1.3 Objectives 14 1.4 Framework of thesis 14 Chapter 2. Theoretical and analytical methods 16 2.1 Molecular dynamics simulation method 16 2.1.1 Potential function 17 2.1.2 Energy minimization 19 2.1.3 Ensemble 20 2.1.4 Thermostats 21 2.1.5 Verlet algorithm 24 2.1.6 Periodic boundary condition and cutoff 26 2.1.7 Simulation of tensile 28 2.1.8 Construction of polycrystal copper 29 2.1.9 Construction and validation of the amorphous silicon dioxide 30 2.2 Model construction 32 2.2.1 Copper-amorphous silicon dioxide system 32 2.2.2 Copper-copper system 36 2.3 Simulation process 38 2.4 Analysis and post-processing methods 40 2.4.1 Analysis of stress 40 2.4.2 Analysis of atomic level stress 41 2.4.3 Interfacial diffusion 42 2.4.4 Coefficient of thermal expansion 43 2.4.5 Young’s modulus 43 Chapter 3. The interfacial behavior in copper-silicon dioxide systems 44 3.1 Copper diffusion in copper-silicon dioxide systems 45 3.1.1 Transitional zone 45 3.1.2 Diffusion coefficient 50 3.2 Stress distribution in copper-silicon dioxide systems 52 3.2.1 von-Mises stress and hydrostatic stress 53 3.2.2 Atomic level von-Mises stress and hydrostatic stress 57 3.3 Coefficient of thermal expansion in copper-silicon dioxide systems 64 3.4 Young’s modulus in copper-silicon dioxide systems 65 Chapter 4. The interfacial behavior in copper-copper systems 67 4.1 The structural changes in copper-copper systems 67 4.2 The copper diffusion in the copper-copper system 70 4.3 Pressure in the copper-copper system 73 4.4 Atomic level von-Mises stress and hydrostatic stress in the copper-copper system 75 4.5 Coefficient of thermal expansion in the copper-copper system 78 Chapter 5. Conclusion and outlook 79 5.1 Conclusion 79 5.2 Future works and outlook 80 Reference 81 Appendix 87 | - |
dc.language.iso | en | - |
dc.title | 利用分子動力學模擬分析銅-銅鍵合中銅和銅以及銅和二氧化矽材料的界面性質 | zh_TW |
dc.title | A study of interfacial effect of copper/copper and copper/silicon dioxide material in copper-copper bonding using the molecular dynamics | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 李尉彰;黃仲偉;張書瑋 | zh_TW |
dc.contributor.oralexamcommittee | Wei-Chang Li;Chang-Wei Huang;Shu-Wei Chang | en |
dc.subject.keyword | 分子動力學,三維積體電路,銅-銅鍵合,銅,二氧化矽, | zh_TW |
dc.subject.keyword | molecular dynamics,three-dimensional integrated circuits,Cu-Cu bonding,copper,silicon dioxide, | en |
dc.relation.page | 90 | - |
dc.identifier.doi | 10.6342/NTU202303380 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2023-08-12 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 應用力學研究所 | - |
顯示於系所單位: | 應用力學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 6.16 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。