請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9015
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳小梨 | |
dc.contributor.author | Kuan-Liang Lin | en |
dc.contributor.author | 林冠良 | zh_TW |
dc.date.accessioned | 2021-05-20T20:06:39Z | - |
dc.date.available | 2014-09-15 | |
dc.date.available | 2021-05-20T20:06:39Z | - |
dc.date.copyright | 2009-09-15 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-08-11 | |
dc.identifier.citation | Abbas, T., U. Sivaprasad, et al. (2008). 'PCNA-dependent regulation of p21 ubiquitylation and degradation via the CRL4Cdt2 ubiquitin ligase complex.' Genes Dev 22(18): 2496-506.
Alen, P., F. Claessens, et al. (1999). 'The androgen receptor amino-terminal domain plays a key role in p160 coactivator-stimulated gene transcription.' Mol Cell Biol 19(9): 6085-97. Auboeuf, D., D. H. Dowhan, et al. (2005). 'A subset of nuclear receptor coregulators act as coupling proteins during synthesis and maturation of RNA transcripts.' Mol Cell Biol 25(13): 5307-16. Bahler, M. and A. Rhoads (2002). 'Calmodulin signaling via the IQ motif.' FEBS Lett 513(1): 107-13. Cang, Y., J. Zhang, et al. (2007). 'DDB1 is essential for genomic stability in developing epidermis.' Proc Natl Acad Sci U S A 104(8): 2733-7. Chen, P. H., Y. P. Tsao, et al. (2008). 'Nuclear receptor interaction protein, a coactivator of androgen receptors (AR), is regulated by AR and Sp1 to feed forward and activate its own gene expression through AR protein stability.' Nucleic Acids Res 36(1): 51-66. Cheng, Z. J., R. D. Singh, et al. (2006). 'Membrane microdomains, caveolae, and caveolar endocytosis of sphingolipids.' Mol Membr Biol 23(1): 101-10. Chmelar, R., G. Buchanan, et al. (2007). 'Androgen receptor coregulators and their involvement in the development and progression of prostate cancer.' Int J Cancer 120(4): 719-33. Chu, G. and W. Yang (2008). 'Here comes the sun: recognition of UV-damaged DNA.' Cell 135(7): 1172-4. Eastham, J. A., W. Grafton, et al. (2000). 'Suppression of primary tumor growth and the progression to metastasis with p53 adenovirus in human prostate cancer.' J Urol 164(3 Pt 1): 814-9. Fardeau, M., D. Hillaire, et al. (1996). 'Juvenile limb-girdle muscular dystrophy. Clinical, histopathological and genetic data from a small community living in the Reunion Island.' Brain 119 ( Pt 1): 295-308. Fliss, A. E., J. Rao, et al. (1999). 'Domain requirements of DnaJ-like (Hsp40) molecular chaperones in the activation of a steroid hormone receptor.' J Biol Chem 274(48): 34045-52. Gallicchio, M. A., M. Kneen, et al. (2001). 'Overexpression of insulin-like growth factor binding protein-6 inhibits rhabdomyosarcoma growth in vivo.' Int J Cancer 94(5): 645-51. Gaughan, L., I. R. Logan, et al. (2005). 'Regulation of androgen receptor and histone deacetylase 1 by Mdm2-mediated ubiquitylation.' Nucleic Acids Res 33(1): 13-26. Hakem, R. (2008). 'DNA-damage repair; the good, the bad, and the ugly.' EMBO J 27(4): 589-605. Hartman, A. R. and J. M. Ford (2002). 'BRCA1 induces DNA damage recognition factors and enhances nucleotide excision repair.' Nat Genet 32(1): 180-4. Hayes, S., P. Shiyanov, et al. (1998). 'DDB, a putative DNA repair protein, can function as a transcriptional partner of E2F1.' Mol Cell Biol 18(1): 240-9. He, Y. J., C. M. McCall, et al. (2006). 'DDB1 functions as a linker to recruit receptor WD40 proteins to CUL4-ROC1 ubiquitin ligases.' Genes Dev 20(21): 2949-54. Higa, L. A., M. Wu, et al. (2006). 'CUL4-DDB1 ubiquitin ligase interacts with multiple WD40-repeat proteins and regulates histone methylation.' Nat Cell Biol 8(11): 1277-83. Hsieh, A. C., E. J. Small, et al. (2007). 'Androgen-response elements in hormone-refractory prostate cancer: implications for treatment development.' Lancet Oncol 8(10): 933-9. Itoh, T., S. Iwashita, et al. (2007). 'Ddb2 is a haploinsufficient tumor suppressor and controls spontaneous germ cell apoptosis.' Hum Mol Genet 16(13): 1578-86. Itoh, T., C. O'Shea, et al. (2003). 'Impaired regulation of tumor suppressor p53 caused by mutations in the xeroderma pigmentosum DDB2 gene: mutual regulatory interactions between p48(DDB2) and p53.' Mol Cell Biol 23(21): 7540-53. Jin, J., E. E. Arias, et al. (2006). 'A family of diverse Cul4-Ddb1-interacting proteins includes Cdt2, which is required for S phase destruction of the replication factor Cdt1.' Mol Cell 23(5): 709-21. Kapetanaki, M. G., J. Guerrero-Santoro, et al. (2006). 'The DDB1-CUL4ADDB2 ubiquitin ligase is deficient in xeroderma pigmentosum group E and targets histone H2A at UV-damaged DNA sites.' Proc Natl Acad Sci U S A 103(8): 2588-93. Kattan, Z., S. Marchal, et al. (2008). 'Damaged DNA binding protein 2 plays a role in breast cancer cell growth.' PLoS One 3(4): e2002. Koike, H., K. Ito, et al. (2005). 'Insulin-like growth factor binding protein-6 inhibits prostate cancer cell proliferation: implication for anticancer effect of diethylstilbestrol in hormone refractory prostate cancer.' Br J Cancer 92(8): 1538-44. Lee, D. K. and C. Chang (2003). 'Endocrine mechanisms of disease: Expression and degradation of androgen receptor: mechanism and clinical implication.' J Clin Endocrinol Metab 88(9): 4043-54. Lee, J. and P. Zhou (2007). 'DCAFs, the missing link of the CUL4-DDB1 ubiquitin ligase.' Mol Cell 26(6): 775-80. Lin, H. K., Y. C. Hu, et al. (2004). 'Regulation of androgen receptor signaling by PTEN (phosphatase and tensin homolog deleted on chromosome 10) tumor suppressor through distinct mechanisms in prostate cancer cells.' Mol Endocrinol 18(10): 2409-23. Lin, H. K., L. Wang, et al. (2002). 'Phosphorylation-dependent ubiquitylation and degradation of androgen receptor by Akt require Mdm2 E3 ligase.' EMBO J 21(15): 4037-48. Mantoni, T. S., G. Reid, et al. (2006). 'Androgen receptor activity is inhibited in response to genotoxic agents in a p53-independent manner.' Oncogene 25(22): 3139-49. Marshall, T. W., K. A. Link, et al. (2003). 'Differential requirement of SWI/SNF for androgen receptor activity.' J Biol Chem 278(33): 30605-13. Martinez, E., V. B. Palhan, et al. (2001). 'Human STAGA complex is a chromatin-acetylating transcription coactivator that interacts with pre-mRNA splicing and DNA damage-binding factors in vivo.' Mol Cell Biol 21(20): 6782-95. Matsumoto, T., K. Takeyama, et al. (2003). 'Androgen receptor functions from reverse genetic models.' J Steroid Biochem Mol Biol 85(2-5): 95-9. Metzger, E., M. Wissmann, et al. (2005). 'LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription.' Nature 437(7057): 436-9. Minig, V., Z. Kattan, et al. (2009). 'Identification of DDB2 protein as a transcriptional regulator of constitutive SOD2 gene expression in human breast cancer cells.' J Biol Chem 284(21): 14165-76. Nishimura, K., H. J. Ting, et al. (2003). 'Modulation of androgen receptor transactivation by gelsolin: a newly identified androgen receptor coregulator.' Cancer Res 63(16): 4888-94. Nouspikel, T. (2009). 'DNA repair in mammalian cells : Nucleotide excision repair: variations on versatility.' Cell Mol Life Sci 66(6): 994-1009. Ohtake, F., A. Baba, et al. (2007). 'Dioxin receptor is a ligand-dependent E3 ubiquitin ligase.' Nature 446(7135): 562-6. Onate, S. A., S. Y. Tsai, et al. (1995). 'Sequence and characterization of a coactivator for the steroid hormone receptor superfamily.' Science 270(5240): 1354-7. Orlicky, S., X. Tang, et al. (2003). 'Structural basis for phosphodependent substrate selection and orientation by the SCFCdc4 ubiquitin ligase.' Cell 112(2): 243-56. Petroski, M. D. and R. J. Deshaies (2005). 'Function and regulation of cullin-RING ubiquitin ligases.' Nat Rev Mol Cell Biol 6(1): 9-20. Putkey, J. A., Q. Kleerekoper, et al. (2003). 'A new role for IQ motif proteins in regulating calmodulin function.' J Biol Chem 278(50): 49667-70. Rouleau, N., A. Domans'kyi, et al. (2002). 'Novel ATPase of SNF2-like protein family interacts with androgen receptor and modulates androgen-dependent transcription.' Mol Biol Cell 13(6): 2106-19. Sansam, C. L., J. L. Shepard, et al. (2006). 'DTL/CDT2 is essential for both CDT1 regulation and the early G2/M checkpoint.' Genes Dev 20(22): 3117-29. Scrima, A., R. Konickova, et al. (2008). 'Structural basis of UV DNA-damage recognition by the DDB1-DDB2 complex.' Cell 135(7): 1213-23. Sheflin, L., B. Keegan, et al. (2000). 'Inhibiting proteasomes in human HepG2 and LNCaP cells increases endogenous androgen receptor levels.' Biochem Biophys Res Commun 276(1): 144-50. Sugasawa, K., Y. Okuda, et al. (2005). 'UV-induced ubiquitylation of XPC protein mediated by UV-DDB-ubiquitin ligase complex.' Cell 121(3): 387-400. Takao, M., M. Abramic, et al. (1993). 'A 127 kDa component of a UV-damaged DNA-binding complex, which is defective in some xeroderma pigmentosum group E patients, is homologous to a slime mold protein.' Nucleic Acids Res 21(17): 4111-8. Tan, T. and G. Chu (2002). 'p53 Binds and activates the xeroderma pigmentosum DDB2 gene in humans but not mice.' Mol Cell Biol 22(10): 3247-54. Tsai, T. C., Y. L. Lee, et al. (2005). 'NRIP, a novel nuclear receptor interaction protein, enhances the transcriptional activity of nuclear receptors.' J Biol Chem 280(20): 20000-9. Wang, H., L. Zhai, et al. (2006). 'Histone H3 and H4 ubiquitylation by the CUL4-DDB-ROC1 ubiquitin ligase facilitates cellular response to DNA damage.' Mol Cell 22(3): 383-94. Wang, X., S. Yeh, et al. (2001). 'Identification and characterization of a novel androgen receptor coregulator ARA267-alpha in prostate cancer cells.' J Biol Chem 276(44): 40417-23. Wertz, I. E., K. M. O'Rourke, et al. (2004). 'Human De-etiolated-1 regulates c-Jun by assembling a CUL4A ubiquitin ligase.' Science 303(5662): 1371-4. Yoon, T., A. Chakrabortty, et al. (2005). 'Tumor-prone phenotype of the DDB2-deficient mice.' Oncogene 24(3): 469-78. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9015 | - |
dc.description.abstract | 核受體交互作用蛋白NRIP (nuclear receptor interaction protein)為本實驗室利用雄性激素受體(Androgen receptor, AR)的C端作餌,以yeast-two hybrid 選殖系統所鑑定而得;實驗室先前的研究發現:NRIP不但可以直接與AR交互作用,並且也是一個AR共同活化子,在雄性激素存在之下能增強AR下游的Prostate-specific antigen(PSA)轉錄活性。在前列腺細胞株LNCaP抑制NRIP表現,會使得細胞進行細胞凋亡,這個現象顯示NRIP在前列腺癌細胞存活上扮演重要的角色。
最近,本實驗室發現NRIP是一個AR所調控的基因,不但在有雄性激素存下可以增加NRIP的轉錄,且NRIP的promotor 具有雄性激素反應區域(androgen response element)。此外,本實驗室也發現NRIP可以穩定AR蛋白。在NRIP表現被抑制時會導致AR經由26S proteasome降解。於是,本論文主要目標是要更進一步探討NRIP穩定AR蛋白的機制。 據現階段的研究知道DDB1-Cullin4複合體具有E3接合酶的作用,能夠促使各種蛋白的降解,而DDB1和NRIP兩者皆具有WD40 domain。由DDB1的pull down的實驗中發現NRIP會和DDB1交互作用;因此,DDB1-Cullin4路徑是否牽涉NRIP穩定AR蛋白的機制值得深入探討。本實驗首先利用co-IP實驗證實NRIP和DDB1的交互作用;利用site-directed mutation製備NRIP突變蛋白後,標定出上負責和DDB1作用的motif。此外,也發現一個參與DNA損傷修補作用的DDB2蛋白可與AR進行交互作用,並在細胞中表現DDB2時,AR蛋白隨即減少。而在探討NRIP如何穩定AR蛋白的機制,我們利用in vivo competition assay 證明NRIP有可能透過與DDB2競爭對AR的結合,使得AR蛋白被穩定下來。另外,我們利用失去和DDB1結合能力的突變型NRIP送到LNCaP細胞中,發現突變型的NRIP仍保有增加AR下游基因調控的轉錄活性,證實NRIP調控AR轉錄活性不是透過DDB1-CUL4這條路徑。 而最後,為了在動物模式中研究NRIP的功能,我們建構了NRIP基因剔除小鼠,並且在DNA, RNA 以及蛋白質的層次上皆證明小鼠已缺失NRIP。此外,我們分離出NRIP基因剔除胚胎纖維母細胞,表現NRIP可以增加AR蛋白的表現量,並且我們發現在MEF細胞中發現NRIP與細胞生長有密切相關。未來,我們將觀察NRIP基因剔除所引起的表徵,並更進一步研究NRIP在生物體中扮演的角色。 | zh_TW |
dc.description.abstract | By using yeast-two hybrid system, Nuclear Receptor Interaction Protein (NRIP) is found in our lab. NRIP is an AR coactivator which can directly interact with AR. It can activate prostate-specific antigen (PSA) transcription in an androgen-dependent manner. When knockdown of NRIP in LNCaP cell causes cell apoptosis that reveals a vital role of NRIP in cell survival in prostate cancer cell.
Recently, we found that NRIP is also a novel AR target gene. Transcription of NRIP can be increased in the presence of androgen, and then we identified the androgen response element in the promoter of NRIP. Furthermore, we found the role of NRIP in AR protein stability .Where the knockdown of NRIP contributes to AR degradation through proteasome. DDB1-Cullin4 complex contains E3 ligase function for various proteins’ degradation. From DDB1 pull down assay, it was reported that NRIP is one of DDB1 interaction proteins, therefore we are interested to examine the fact whether NRIP can bind to DDB1. The interaction between NRIP and DDB1 was confirmed by reciprocal co-immunoprecipitation .We found that WDxR motif on NRIP responsible for DDB1 binding was identified using site-direct point mutation. When knockdown DDB1 or CUL4A, we observed an enhancement of AR protein level in LNCaP cells. When ectopic expression of NRIP can reduce AR protein ubiquitin level. Hence, we hypothesize NRIP-stabilizing AR protein involved in DDB1-Cul4A complex. DDB2 is a well-known WD40 protein that associates with DDB1. DDB1-DDB2 heterodimer was involved in NER pathway which UV-induced DNA damage repairs. We found that DDB2 can associated with AR and introduced DDB2 can reduce AR protein level in LNCaP cell. This degradation of AR protein is dependent on presence of DHT. To further demonstrate the mechanism of NRIP-stabilizing AR protein; we used in vivo competition assay to indicate the mechanism of NRIP-stabilizing AR. The mechanism of NRIP-stabilizing AR may be through competition with DDB2 for binding to AR. Furthermore, we introduced mutant NRIP (can not interact with DDB1) into LNCaP cell to observe the PSA gene expression, the result excluded the DDB1-CUL4 pathway in the mechanism of NRIP by which contributes to enhance AR mediated transcription activity. To approach investigating the function of NRIP in vivo, we had generated NRIP knockout mice and confirmed the genotype of NRIP KO mice in DNA, RNA and protein level. Based on the role of NRIP in AR stability in cell culture, we observed an enhancement of AR protein when introducing NRIP in NRIP KO MEF cell. Moreover, the proliferation of KO MEF cell was slower than wild-type cell. It suggests that NRIP may play a role in cell growth. In the future, we would investigate more functions of NRIP in vivo using knockout mice model. | en |
dc.description.provenance | Made available in DSpace on 2021-05-20T20:06:39Z (GMT). No. of bitstreams: 1 ntu-98-R96445130-1.pdf: 3097461 bytes, checksum: 6b17da534aa2497e85cc6012ffacd74e (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | ABSTRACT
CHAPTER 1 INTRODUCTION…………………………………………….…………..1 1.1 Androgen , Androgen receptor and its coregulator…………...………..1 1.2 Mechanisms of androgen receptor degradation………………...………2 1.3 The characteristic and discovery of Nuclear receptor interaction protein………………………………………………………………......3 1.4 DNA damage binding protein and Cullin4………………………...…...5 1.5 Aim of the Thesis…………………………………………...………….8 CHAPTER 2 MATERIAL AND METHODS…………………..……….9 2.1 Cell culture and Drug Treatment……………………………………….9 2.2 Mice strain and Generation of the NRIP knockout mouse……………..9 2.3 Isolation of mouse embryonic fibroblast……………………...………10 2.4 Plasmid constructions and Site-directed mutagenesis……...…………11 2.5 RNA interference…………………………...…………………………13 2.6 Transient Transfection………………………...………………………13 2.7 Co-immunoprecipitation ………………………..……………………15 2.8 Western blot………………………..…………………………………15 2.9 RNA extraction………………………………..……………………...16 2.10 RT-PCR Analysis……………………………………...……………..17 2.11 Realtime PCR……………………...………………………………...19 2.12 DNA typing PCR…………………..………………………………..19 2.13 Southern blot……………………………………………...……...….20 2.14 Cell proliferation assay……………………………...……………….21 CHAPTER 3 RESULTS…………………………………...…………….22 3.1 DDB1-CUL4 complex involved in AR degradation………...………..22 3.2 Interaction between NRIP and DDB1 …………………...…………...23 3.3 WDXR motif on NRIP is essential for binding DDB1………….........24 3.4 DDB2 influence AR protein stability …………………………...……25 3.5 DDB2 is a novel AR interaction protein…….…………………..…....26 3.6 NRIP competes with DDB2 for binding to AR………………...……..27 3.7 The mechanism of NRIP-enhancing AR mediated transcription activity may not be dependent on DDB1-CUL4 pathway………….......................28 3.8 Construction of NRIP knockout mice………………………..….……30 3.9 Confirmation of NRIP knockout mice by genotyping………….….....31 3.10 NRIP can regulate the mouse embryonic cell growth………....….....32 3.11 Expression of NRIP can enhance AR protein level in MEF cell.……33 CHAPTER 4 DISCCUSION……………………………………………34 REFERENCES …………………………………………………...……..42 FIGURES………………………………………………………...………46 APPENDIX | |
dc.language.iso | en | |
dc.title | NRIP穩定雄性激素受體蛋白以及增進雄性激素受體轉錄活性之機制探討 | zh_TW |
dc.title | Investigation of the mechanism of NRIP-stabilizing AR protein and enhanced AR transcription activity | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 曹友平,林淑華,鄧述諄,吳君泰 | |
dc.subject.keyword | 雄性激素受體,核受體交互作用蛋白,DDB1,DDB2,基因剔除小鼠, | zh_TW |
dc.subject.keyword | AR,NRIP,DDB1,DDB2,knockout mice, | en |
dc.relation.page | 73 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2009-08-11 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 微生物學研究所 | zh_TW |
顯示於系所單位: | 微生物學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf | 3.02 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。