請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90157完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周瑞仁 | zh_TW |
| dc.contributor.advisor | Jui-Jen Chou | en |
| dc.contributor.author | 王嘉輝 | zh_TW |
| dc.contributor.author | Chia-Hui Wang | en |
| dc.date.accessioned | 2023-09-22T17:39:18Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-09-22 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-09 | - |
| dc.identifier.citation | 大疆創新。2023。DJI Air 2S。網址:https://www.dji.com/tw/air-2s/specs。深圳:大疆創新。上網日期:2023-06-23。
內政部國土測繪中心。2023。內政部國土測繪中心多維度服務平臺。臺中:內政部國土測繪中心。網址:https://3dmaps.nlsc.gov.tw/。上網日期:2023-06-26。 交通部民用航空局。2018。遙控無人機監管規則。臺北:交通部民用航空局。網址:https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=K0090083。上網日期:2023-06-26。 交通部民用航空局。2023。遙控無人機監管資訊系統-空域查詢。臺北:交通部民 用航空局。網址:https://drone.caa.gov.tw/。上網日期:2023-06-15。 閻憲廷。2023。無人機風險地圖與視距內操作之路徑規劃。碩士論文。臺北:國立臺灣大學生物機電工程所。 Allain, R. 2019. Calculate the Thrust Force on Your Drone! San Francisco, CA: Wired. Available at: https://www.wired.com/story/calculate-thrust-force-on-a-drone/. Accessed 15 June 2023. Alvarado, E. 2022. Drone Market Analysis 2022-2030. Hamburg: Drone Industry Insights. Available at: https://droneii.com/drone-market-analysis-2022-2030. Accessed 23 June 2023. Chin, C., M. Z. Li, and Y. Z. Pant. 2022. Distributed traffic flow management for uncrewed aircraft systems. In "2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC)". Macau: IEEE. Everington, K. 2023. 'Unidentified Flying Object' Forces Closure of Taiwan Taoyuan Airport. Taipei: Taiwan News. Available at: https:// www.taiwannews.com.tw/en/news/4898605. Accessed 23 June 2023. FAA. 2016. FAA Extension, 2016. Safety and Security Act of 2016. Washington, DC: Federal Aviation Administration. Available at: https: //www.congress.gov/114/plaws/publ190/PLAW-114publ190.pdf. Accessed 2 July 2023. FAA. 2016. Pilots’ Role in Collision Avoidance. Washington, DC: Federal Aviation Administration. Available at: https://www.faa.gov/documentLibrary/media/Advisory_Circular/AC_9048D_CHG_1.pdf. Accessed 2 July 2023. FAA. 2017. Unmanned Aircraft Systems Integration Pilot Program. Washington, DC: Federal Aviation Administration. Available at: https://www.faa.gov/sites/faa.gov/files/uas/programs_partnerships/completed/integration_pilot_program/IPP_Final_Report_20210712.pdf. Accessed 2 July 2023. FAA. 2020. UAS BEYOND. Washington, DC: Federal Aviation Administration. Available at:https://www.faa.gov/uas/programs_partnerships/beyond. Accessed 26 October 2020. FAA. 2021. UAS Remote Identification Washington, DC: Federal Aviation Administration. Available at: https://www.faa.gov/uas/getting_started/remote_id. Accessed 25 June 2023. Ferrera, E., A. Alcántara, J. Capitán, A. R. Castaño, P. J. Marrón, and A. Ollero. 2018. Decentralized 3D collision avoidance for multiple UAVs in outdoor environments. Sensors 2018. 18(12): 4101. Foina, A. G., R. Sengupta, P. Lerchi, Z. L. Liu, and C. Krainer. 2015. Drones in smart cities: overcoming barriers through air traffic control research. In "2015 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS)". Cancun: IEEE. Fotouhi, A., M. Ding, and M. Hassan. 2017. Understanding autonomous drone maneuverability for internet of things applications. In "2017 IEEE 18th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM)". Macau: IEEE. Kang, H. G., J. G. Joung, J. Y. Kim, J. H. Kang, and Y. S. Cho. 2020. Protect your sky: a survey of counter unmanned aerial vehicle systems. IEEE Access. 8: 168671-168710. Kim, J., and E. Atkins. 2022. Airspace geofencing and flight planning for low-altitude, urban, small unmanned aircraft systems. Applied Sciences 2022. 12(2): 576. Kondo, K., R. Figueroa, J. Rached, J. Tordesillas, P. C. Lusk, and J. P. How. 2023. Robust mader: decentralized multiagent trajectory planner robust to communication delay in dynamic environments. arXiv: 2303.06222. Kopardekar, P., J. Rios, T. Prevot, M. Johnson, J. Jung, and J. E. Robinson. 2016. Unmanned aircraft system traffic management (UTM) concept of operations. In "16th AIAA Aviation Technology, Integration, and Operations Conference", 3292. Washington, DC: American Institute for Aeronautics and Astronautics (AIAA). Koubâa, A., B. Qureshi, M. F. Sriti, A. Allouch, Y. Javed, M. Alajlan, O. Cheikhrouhou, M. Khalgui, and E. Tovar. 2019. Dronemap planner: a service-oriented cloud-based management system for the internet-of-drones. Ad Hoc Networks. 86: 46-62. Kunertova, D. 2023. The war in ukraine shows the game-changing effect of drones depends on the game. Bulletin of the Atomic Scientists. 79(2): 95-102. Lin, C. E., T. P. Chen, P. C. Shao, Y. C. Lai, T. C. Chen, and Y. C. Yeh. 2019. Prototype hierarchical UAVs traffic management system in taiwan. In "2019 Integrated Communications, Navigation and Surveillance Conference (ICNS)". Herndon, VA: IEEE. Lin, C. E., C. S. Hsieh, C. C. Li, P. C. Shao, Y. H. Lin, and Y. C. Yeh. 2019. An ADS-B like communication for UTM. In "2019 Integrated Communications, Navigation and Surveillance Conference (ICNS)". Herndon, VA: IEEE. Lin, C. E., P. C. Shao, and Y. Y. Lin. 2020. System operation of regional UTM in taiwan. Aerospace 2020. 7(5): 65. Lin, C. E., P. C. Shao, H. T. Bui, and Y. Y. Lin. 2021. DAA solution on UTM. In "2021 Integrated Communications Navigation and Surveillance Conference (ICNS)". Dulles, VA: IEEE. Lopez, R. L., M. J. B. Sanchez, M. P. Jimenez, B. C. Arrue, and A. Ollero. 2021. Autonomous UAV system for cleaning insulators in power line inspection and maintenance. Sensors 2021. 21(24): 8488. Mohsan, S. A. H., N. Q. H. Othman, Y. L. Li, M. H. Alsharif, and M. A. Khan. 2023. Unmanned aerial vehicles (UAVs): practical aspects, applications, open challenges, security issues, and future trends. Intelligent Service Robotics. 16: 109 - 137. NASA. 2016. UTM: Air Traffic Management for Low-Altitude Drones. Washington, DC: National Aeronautics and Space Administration. Available at: https://www.nasa.gov/sites/default/files/atoms/files/utm-factsheet-08-31-16-v3.pdf. Accessed 25 June 2023. Rios, J. L., A. S. Aweiss, J. W. Jung, J. Homola, M. Johnson, and R. Johnson. 2020. Flight demonstration of unmanned aircraft system (UAS) traffic management (UTM) at Technical capability level 4. In "AIAA Aviation 2020 Forum", 2851. Virtual Event: American Institute for Aeronautics and Astronautics (AIAA). Sarim, M., M. Radmanesh, M. Dechering, M. Kumar, R. Pragada, and K. Cohen. 2019. Distributed detect-and-avoid for multiple unmanned aerial vehicles in national air space. Journal of Dynamic Systems, Measurement, and Control. 141(7): 071014. Shah, S., D. Dey, C. Lovett, and A. Kapoor. 2017. AirSim: high-fidelity visual and physical simulation for autonomous vehicles. arXiv: 1705.05065. Spero, J. 2019. Drone Risk to Aircraft is Rising Sharply, UK Safety Experts Warn. London: Financial Times. Available at: https://www.ft.com/content/1aa7be26-56cc-11e9-a3db-1fe89bedc16e. Accessed 25 June 2023. Verizon Connect. 2023. What is a Geofence? Dublin: Verizon Connect. Available at: https://www.verizonconnect.com/glossary/what-is-a-geofence/. Accessed 2 July 2023. Yeniçeri, R., M. Hasanzade, E. Koyuncu, and G. İnalhan. 2017. Enabling centralized UTM services through cellular network for vll UAVs. In "2017 Integrated Communications, Navigation and Surveillance Conference (ICNS)". Herndon, VA: IEEE. Yu, T. Y., J. Tang, L. Bai, and S. Y. Lao. 2017. Collision avoidance for cooperative UAVs with rolling optimization algorithm based on predictive state space. Applied Sciences 2017. 7(4): 329. Zhai, W. Z., X. C. Tong, S. X. Miao, C. Q. Cheng, and F. H. Ren. 2019. Collision detection for UAVs based on GeoSOT-3D grids. ISPRS International Journal of Geo-Information 2019. 8(7): 299. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90157 | - |
| dc.description.abstract | 本研究發展一套無人機之避撞策略及模擬驗證平臺。隨著無人機的普及,且操作門檻不高,加上缺乏完善的飛航監管機制下,無人機事故頻繁發生,使得民眾對其產生安全疑慮。為此開發無人機飛航監管系統之避撞策略,並參考無人機飛航監管相關規範及避撞相關研究。由於人為飛航監管成本高,且易發生誤判,因此本研究採用自主且即時的監管方式。研究中設有四種監管機制:機體追蹤、進場順序確認與更新、數量管控、飛航避撞及指示。飛航避撞為運算核心,利用當前接收到的飛航數據,以及建築物、空域圖資,並建置作為避撞緩衝的機體防護長方體、建築物及空域防護體。採用網格模型與查表法,快速地找出具飛航風險之目標,目標包含無人機、建築物及空域,並即時給予操作人適當的避撞指示。本研究利用AirSim模擬軟體建置模擬驗證平臺。模擬結果顯示能有效地協調多臺無人機的飛航與避撞,成功地避免飛安風險之發生。最大運算時間可於1秒之取樣時間內完成,此成果可作為未來無人機飛航監管系統建置之參考。後續可引入深度學習及分散式監管架構等技術,建置出具備持續更新、高效能及低系統容錯率的飛航監管之避撞策略。 | zh_TW |
| dc.description.abstract | In this study, collision avoidance strategies and a simulated verification platform for UAVs were developed. With the popularity of UAVs and the simpler operation, coupled with the lack of a comprehensive flight monitoring mechanism and system, UAV accidents have occurred frequently, causing safety issues for the public. To develop collision avoidance strategies, relevant regulations of flight monitoring mechanisms and collision avoidance researches were referred to in this study. Due to the high cost and misjudgment of manual flight monitoring, an authe tonomous and real-time control method was adopted. There are four control mechanisms: airframe tracking, approaching sequence confirmation and updating, quantity control, and flight collision avoidance and indication. Flight collision avoidance is the core of the whole process. It utilizes the currently received flight data, buildings, and airspace maps. During the flight collision avoidance step, protective rectangles around the airframe, buildings, and airspace were constructed to serve as buffers for collision avoidance. A mesh model and a table lookup method were used to quickly identify targets that contain high flight risks. These targets include UAVs, buildings, and restricted airspace. The system would provide appropriate instructions to the operator to avoid the collision. This study utilizes AirSim as the simulated verification platform. Our simulation results show that multiple UAVs can be effectively coordinated, and flight safety issues can be avoided. The maximum computation time can be completed within a 1-second sampling time frame, and this result can be used as a reference for the development of future UAV flight monitoring systems. In the future, we can introduce deep learning and apply decentralized regulatory frameworks to build up the collision avoidance strategy with continuous updating, high performance, and low system fault rate for flight regulation. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T17:39:18Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-22T17:39:18Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 論文口試委員審定書 i
誌謝 ii 摘要 iii Abstract iv 目錄 v 圖目錄 vii 表目錄 x 第1章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 4 第2章 文獻探討 7 2.1 無人機飛航監管系統 7 2.2 無人機避撞相關研究 12 第3章 材料與方法 16 3.1 飛航監管之避撞策略架構 16 3.2 機體飛航狀態之表示與判別 18 3.3 防護體建置 21 3.3.1 機體防護長方體建置 21 3.3.2 建築物防護體建置 29 3.3.3 空域防護體建置 31 3.4 機體避撞演算法建置 32 3.4.1 機體避撞流程 33 3.4.2 鄰近無人機搜索 34 3.4.3 機體防護長方體重疊偵測 37 3.4.4 機體避撞決策分析 39 3.5 飛航避撞演算法建置 43 3.5.1 飛航避撞流程 43 3.5.2 鄰近防護體搜索 44 3.5.3 防護體重疊判斷偵測 45 3.5.4 飛航避撞決策分析 48 3.6 飛航監管流程 50 3.7 模擬情境 51 3.7.1 模擬驗證平臺建置 51 3.7.2 實驗設計 53 第4章 結果與討論 55 4.1 模擬驗證平臺環境之建置成果 55 4.2 機體避撞演算法模擬結果 56 4.2.1 機體避撞情境 56 4.2.2 成對無人機機體避撞模擬結果 58 4.2.3 六臺無人機監管演算之機體避撞模擬結果 62 4.2.4 十臺無人機監管演算之機體避撞模擬結果 66 4.3 飛航避撞演算法模擬結果 72 4.3.1 無人機、建築物及空域防護體避撞情境 73 4.3.2 單臺無人機建築物及空域防護體偵測模擬結果 73 4.3.3 六臺無人機飛航環境避撞模擬結果 76 4.4 監管演算法運算時間結果 79 第5章 結論與未來展望 82 5.1 結論 82 5.2 未來展望 82 參考文獻 83 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 無人機飛航監管系統 | zh_TW |
| dc.subject | 避撞 | zh_TW |
| dc.subject | 無人機 | zh_TW |
| dc.subject | 飛航指示 | zh_TW |
| dc.subject | 模擬 | zh_TW |
| dc.subject | Collision avoidance | en |
| dc.subject | UAV | en |
| dc.subject | Simulation | en |
| dc.subject | UAS traffic management system | en |
| dc.subject | Flight instruction | en |
| dc.title | 無人機系統飛航監管之避撞策略與模擬 | zh_TW |
| dc.title | Collision Avoidance Strategy and Simulation for Unmanned Aircraft System Traffic Management | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 張斐章;鍾智昕;王柏東 | zh_TW |
| dc.contributor.oralexamcommittee | Fi-John Chang;Chih-Hsin Chung;Po-Tong Wang | en |
| dc.subject.keyword | 無人機,避撞,無人機飛航監管系統,模擬,飛航指示, | zh_TW |
| dc.subject.keyword | UAV,Collision avoidance,UAS traffic management system,Simulation,Flight instruction, | en |
| dc.relation.page | 86 | - |
| dc.identifier.doi | 10.6342/NTU202302586 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-08-11 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 生物機電工程學系 | - |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 5.75 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
