請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90151
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 周佳靚 | zh_TW |
dc.contributor.advisor | Chia-Ching Chou | en |
dc.contributor.author | 康何鈺 | zh_TW |
dc.contributor.author | He-Yu Kang | en |
dc.date.accessioned | 2023-09-22T17:37:52Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-09-22 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-11 | - |
dc.identifier.citation | 1. Wang, B., et al., Keratin: Structure, mechanical properties, occurrence in biological organisms, and efforts at bioinspiration. Progress in Materials Science, 2016. 76: p. 229-318.
2. Lazarus, B.S., et al., Engineering with keratin: A functional material and a source of bioinspiration. iScience, 2021. 24(8): p. 102798. 3. Feroz, S., et al., Keratin - Based materials for biomedical applications. Bioact Mater, 2020. 5(3): p. 496-509. 4. Calvaresi, M., L. Eckhart, and L. Alibardi, The molecular organization of the beta-sheet region in Corneous beta-proteins (beta-keratins) of sauropsids explains its stability and polymerization into filaments. J Struct Biol, 2016. 194(3): p. 282-91. 5. Guo, J., et al., pH-sensitive keratin-based polymer hydrogel and its controllable drug-release behavior. Journal of Applied Polymer Science, 2014: p. n/a-n/a. 6. Esparza, Y., A. Ullah, and J. Wu, Molecular mechanism and characterization of self-assembly of feather keratin gelation. Int J Biol Macromol, 2018. 107(Pt A): p. 290-296. 7. Cao, Y., et al., Tunable keratin hydrogel based on disulfide shuffling strategy for drug delivery and tissue engineering. J Colloid Interface Sci, 2019. 544: p. 121-129. 8. Wang, J., et al., Feather keratin hydrogel for wound repair: Preparation, healing effect and biocompatibility evaluation. Colloids Surf B Biointerfaces, 2017. 149: p. 341-350. 9. Esparza, Y., et al., Hydrogels from feather keratin show higher viscoelastic properties and cell proliferation than those from hair and wool keratins. Mater Sci Eng C Mater Biol Appl, 2018. 90: p. 446-453. 10. Rinaudo, M., Chitin and chitosan: Properties and applications. Progress in Polymer Science, 2006. 31(7): p. 603-632. 11. Gatto, M., et al., Study of chitosan with different degrees of acetylation as cardboard paper coating. Carbohydr Polym, 2019. 210: p. 56-63. 12. Vårum, K.M., M.H. Ottøy, and O. Smidsrød, Water-solubility of partially N-acetylated chitosans as a function of pH: effect of chemical composition and depolymerisation. Carbohydrate Polymers, 1994. 25(2): p. 65-70. 13. Gohil, S.V., et al., Evaluation of enzymatically crosslinked injectable glycol chitosan hydrogel. J Mater Chem B, 2015. 3(27): p. 5511-5522. 14. Knight, D.K., S.N. Shapka, and B.G. Amsden, Structure, depolymerization, and cytocompatibility evaluation of glycol chitosan. J Biomed Mater Res A, 2007. 83(3): p. 787-98. 15. Cao, L., et al., An injectable hydrogel formed by in situ cross-linking of glycol chitosan and multi-benzaldehyde functionalized PEG analogues for cartilage tissue engineering. J Mater Chem B, 2015. 3(7): p. 1268-1280. 16. Lu, M., et al., Fabrication of photo-crosslinkable glycol chitosan hydrogel as a tissue adhesive. Carbohydr Polym, 2018. 181: p. 668-674. 17. Hsu, S.C., S.H. Hsu, and S.W. Chang, Effect of pH on Molecular Structures and Network of Glycol Chitosan. ACS Biomater Sci Eng, 2020. 6(1): p. 298-307. 18. Borca, C.H. and C.A. Arango, Molecular Dynamics of a Water-Absorbent Nanoscale Material Based on Chitosan. J Phys Chem B, 2016. 120(15): p. 3754-64. 19. Caló, E. and V.V. Khutoryanskiy, Biomedical applications of hydrogels: A review of patents and commercial products. European Polymer Journal, 2015. 65: p. 252-267. 20. Wang, Y., S. Zhang, and J. Wang, Photo-crosslinkable hydrogel and its biological applications. Chinese Chemical Letters, 2021. 32(5): p. 1603-1614. 21. Chen, G., N. Kawazoe, and Y. Ito, Photo-Crosslinkable Hydrogels for Tissue Engineering Applications, in Photochemistry for Biomedical Applications. 2018. p. 277-300. 22. Muir, V.G. and J.A. Burdick, Chemically Modified Biopolymers for the Formation of Biomedical Hydrogels. Chem Rev, 2021. 121(18): p. 10908-10949. 23. Choi, J.R., et al., Recent advances in photo-crosslinkable hydrogels for biomedical applications. BioTechniques, 2019. 66(1): p. 40-53. 24. Ramiah, P., et al., Hydrogel-Based Bioinks for 3D Bioprinting in Tissue Regeneration. Frontiers in Materials, 2020. 7. 25. Pereira, R.F. and P.J. Bártolo, 3D bioprinting of photocrosslinkable hydrogel constructs. Journal of Applied Polymer Science, 2015. 132(48). 26. Rouse, J.G. and M.E. Van Dyke, A Review of Keratin-Based Biomaterials for Biomedical Applications. Materials, 2010. 3(2): p. 999-1014. 27. Donato, R.K. and A. Mija, Keratin Associations with Synthetic, Biosynthetic and Natural Polymers: An Extensive Review. Polymers (Basel), 2019. 12(1). 28. Tanabe, T., et al., Preparation and characterization of keratin–chitosan composite film. Biomaterials, 2002. 23(3): p. 817-825. 29. Sivakumar, S., et al., Ferulic acid loaded microspheres reinforced in 3D hybrid scaffold for antimicrobial wound dressing. Int J Biol Macromol, 2021. 177: p. 463-473. 30. Lin, Y.H., et al., Keratin/chitosan UV-crosslinked composites promote the osteogenic differentiation of human adipose derived stem cells. J Mater Chem B, 2017. 5(24): p. 4614-4622. 31. Yu, K.F., et al., Design and Synthesis of Stem Cell-Laden Keratin/Glycol Chitosan Methacrylate Bioinks for 3D Bioprinting. Biomacromolecules, 2022. 23(7): p. 2814-2826. 32. Hollingsworth, S.A. and R.O. Dror, Molecular Dynamics Simulation for All. Neuron, 2018. 99(6): p. 1129-1143. 33. Alder, B.J. and T.E. Wainwright, Phase transition for a hard sphere system. The Journal of chemical physics, 1957. 27(5): p. 1208-1209. 34. González, M.A., Force fields and molecular dynamics simulations. École thématique de la Société Française de la Neutronique, 2011. 12: p. 169-200. 35. Pan, C.Y. and C.C. Chou, Molecular origin of the effects of mutation on the structure and mechanical properties of human epithelial keratin K5/K14. J Mech Behav Biomed Mater, 2021. 124: p. 104798. 36. Huang, T.L. and C.C. Chou, Effect of mutations on the hydrophobic interactions of the hierarchical molecular structure and mechanical properties of epithelial keratin 1/10. Int J Biol Macromol, 2022. 212: p. 442-450. 37. Ou, X., et al., Molecular dynamic simulations of the water absorbency of hydrogels. J Mol Model, 2015. 21(9): p. 231. 38. Wen, C.H., et al., Molecular Structures and Mechanisms of Waterborne Biodegradable Polyurethane Nanoparticles. Comput Struct Biotechnol J, 2019. 17: p. 110-117. 39. Huang, J., et al., CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat Methods, 2017. 14(1): p. 71-73. 40. Best, R.B., et al., Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone phi, psi and side-chain chi(1) and chi(2) dihedral angles. J Chem Theory Comput, 2012. 8(9): p. 3257-3273. 41. Meunier, M. and S. Robertson, Materials Studio 20th anniversary. Molecular Simulation, 2021. 47(7): p. 537-539. 42. Jo, S., et al., CHARMM-GUI 10 years for biomolecular modeling and simulation. J Comput Chem, 2017. 38(15): p. 1114-1124. 43. Kim, S., et al., CHARMM-GUI ligand reader and modeler for CHARMM force field generation of small molecules. J Comput Chem, 2017. 38(21): p. 1879-1886. 44. Vanommeslaeghe, K., et al., CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem, 2010. 31(4): p. 671-90. 45. Humphrey, W., A. Dalke, and K. Schulten, VMD: visual molecular dynamics. Journal of molecular graphics, 1996. 14(1): p. 33-38. 46. Abbott, L.J., K.E. Hart, and C.M. Colina, Polymatic: a generalized simulated polymerization algorithm for amorphous polymers. Theoretical Chemistry Accounts, 2013. 132(3). 47. Rukmani, S.J., et al., Molecular Modeling of Complex Cross-Linked Networks of PEGDA Nanogels. J Phys Chem B, 2019. 123(18): p. 4129-4138. 48. Thompson, A.P., et al., LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Computer Physics Communications, 2022. 271. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90151 | - |
dc.description.abstract | 過去的研究已證實,經過甲基丙烯酸酯改質的α-角蛋白和乙二醇殼聚醣所合成的水凝膠具有優異的生物活性和機械性能。然而,相對於來自哺乳動物的α-角蛋白,來自鳥類和爬蟲類的β-角蛋白具有同樣豐富的材料來源和更強的機械性質,但相關研究相對較少。因此,本論文旨在探討以甲基丙烯酸酯改質的β-角蛋白和乙二醇殼聚醣為材料基礎的複合材料的材料性質,同時探究以β-角蛋白替代α-角蛋白的可行性,以及其與乙二醇殼聚醣混合後是否能產生緊密的相互作用。本研究利用分子動力學模擬方法,從微觀角度分析材料的結構和相互作用。根據先前文獻中合成光交聯水凝膠的方法,我們修改了力場並建立了甲基丙烯酸酯改質的β-角蛋白和乙二醇殼聚醣的分子模型。通過建立多個模型,包括單一或複合材料、改質或未改質、低濃度或高濃度,並比較分子結構的變化和氫鍵的形成情況,我們獲得了以下結果。改質對β-角蛋白的結構影響不大,但改質使乙二醇殼聚醣降低了親水性並增強了分子內相互作用。此外,複合材料中的β-角蛋白和乙二醇殼聚醣之間形成了緊密的相互作用,較單一材料模型具有更穩定的結構和增強的相互作用。綜上所述,本研究的結果支持改質的β-角蛋白和乙二醇殼聚醣作為複合材料的潛力。這項研究為水凝膠材料的開發和設計提供了新的方向,同時也期望能更有效地利用大量的羽毛廢棄物。未來的研究可以進一步深入瞭解這些材料的性質和應用潛力,以促進生物醫學領域的發展和永續資源的利用。 | zh_TW |
dc.description.abstract | Previous studies have demonstrated the excellent biological activity and mechanical properties of methacrylated-modified α-keratin and glycol chitosan hydrogels. However, compared to α-keratin derived from mammals, β-keratin derived from avian and reptilian sources offers abundant material resources and stronger mechanical properties, yet there is limited research in this area. Therefore, the aim of this study is to investigate the material properties of composite hydrogels based on methacrylated-modified β-keratin and glycol chitosan, and explore the feasibility of using β-keratin as a substitute for α-keratin, as well as the potential for strong interactions when mixed with glycol chitosan. Molecular dynamics simulations were employed to analyze the structures and interactions of the materials from a microscopic perspective. Based on the synthetic methods used in previous literature for crosslinked hydrogels, the force fields were modified to develop molecular models of methacrylated-modified β-keratin and glycol chitosan. Various models were created, including single or composite materials, modified or unmodified, and low or high concentrations. The changes in molecular structures and the formation of hydrogen bonds were compared using secondary structure analysis, gyration radius, end-to-end distance, and radial distribution functions. The results showed that the modification had little effect on the structure of β-keratin, but it reduced the hydrophilicity and enhanced the intramolecular interactions of glycol chitosan. Moreover, the composite materials exhibited tighter interactions and more stable structures compared to the individual material models. In conclusion, this study supports the potential of using methacrylated-modified β-keratin and glycol chitosan as composite materials. The findings provide new insights for the development and design of hydrogel materials, while also highlighting the opportunity for the valorization of abundant feather waste. Further research is needed to gain a deeper understanding of the properties and potential applications of these materials, contributing to advancements in the field of biomedical engineering and sustainable resource utilization. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T17:37:52Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-09-22T17:37:52Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iii 目錄 v 圖目錄 viii 表目錄 xi 第1章、 緒論 1 1.1 文獻回顧 1 1.1.1 Beta-角蛋白 1 1.1.2 乙二醇殼聚醣 3 1.1.3 光交聯水凝膠 5 1.1.4 Alpha-角蛋白/乙二醇殼聚醣複合水凝膠 7 1.1.5 分子動力學模擬 11 1.2 研究動機與目的 12 1.3 論文架構 13 第2章、 研究理論與方法 14 2.1 分子動力學模擬 14 2.1.1 CHARMM力場 15 2.1.2 系綜(Ensemble) 16 2.1.3 週期性邊界條件 17 2.1.4 能量最小化 18 2.2 甲基丙烯酸酯改質 19 2.2.1 CHARMM力場修改 19 2.2.2 甲基丙烯酸酯Beta-角蛋白 20 2.2.3 甲基丙烯酸酯乙二醇殼聚醣 22 2.3 模型建立 24 2.4 交聯方法 27 2.5 模擬流程 29 2.6 分析方法 29 2.6.1 二級結構 29 2.6.2 迴轉半徑 30 2.6.3 頭尾端距 31 2.6.4 氫鍵 32 2.6.5 徑向分布函數 32 2.6.6 周圍原子數 34 第3章、 單一材料Beta-角蛋白與乙二醇殼聚醣模型之材料性質分析 35 3.1 純Beta-角蛋白 35 3.1.1 甲基丙烯酸酯官能基相互作用 35 3.1.2 二級結構 36 3.1.3 氫鍵 39 3.2 純乙二醇殼聚醣 42 3.2.1 迴轉半徑、頭尾端距與徑向分布函數 42 3.2.2 氫鍵 44 第4章、 改質Beta-角蛋白/乙二醇殼聚醣複合材料模型之材料性質分析 48 4.1 Beta-角蛋白二級結構 48 4.2 乙二醇殼聚醣迴轉半徑與頭尾端距 49 4.3 徑向分布函數 50 4.4 氫鍵 51 第5章、 無改質Beta-角蛋白/乙二醇殼聚醣複合材料模型之材料性質分析 54 5.1 Beta-角蛋白二級結構 54 5.2 乙二醇殼聚醣迴轉半徑與頭尾端距 55 5.3 徑向分布函數 56 5.4 氫鍵 57 第6章、 改質模型之交聯分析 60 第7章、 結論與未來展望 64 7.1 結論 64 7.2 未來展望 65 參考文獻 66 附錄:力場檔案修改內容以及模擬輸入檔案 70 | - |
dc.language.iso | zh_TW | - |
dc.title | 以分子動力模擬探討甲基丙烯酸酯改質Beta-角蛋白與乙二醇殼聚醣之分子結構和交互作用 | zh_TW |
dc.title | A Molecular Dynamics Study of Molecular Structure and Interaction of Methacrylate-Modified Beta-Keratin with Glycol Chitosan Molecules | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 游佳欣;張書瑋;陳志鴻 | zh_TW |
dc.contributor.oralexamcommittee | Jia-Shing Yu;Shu-Wei Chang;Chih-Hung Chen | en |
dc.subject.keyword | 分子動力學,Beta-角蛋白,乙二醇殼聚醣,甲基丙烯酸酯改質, | zh_TW |
dc.subject.keyword | molecular dynamics simulation,beta-keratin,glycol chitosan,methacrylate -modification, | en |
dc.relation.page | 96 | - |
dc.identifier.doi | 10.6342/NTU202303420 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2023-08-13 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 應用力學研究所 | - |
顯示於系所單位: | 應用力學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 目前未授權公開取用 | 5.89 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。