Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90150Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 王昱 | zh_TW |
| dc.contributor.advisor | Yu Wang | en |
| dc.contributor.author | 程卉珊 | zh_TW |
| dc.contributor.author | Wai San Cheng | en |
| dc.date.accessioned | 2023-09-22T17:37:37Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-09-22 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-12 | - |
| dc.identifier.citation | Abers, G., & McCaffrey, R. (1988). Active deformation in the New Guinea fold‐and‐thrust belt: Seismological evidence for strike‐slip faulting and basement‐involved thrusting. Journal of Geophysical Research: Solid Earth, 93(B11), 13332-13354.
Ader, T., Avouac, J. P., Liu‐Zeng, J., Lyon‐Caen, H., Bollinger, L., Galetzka, J., Genrich, J., Thomas, M., Chanard, K., & Sapkota, S. N. (2012). Convergence rate across the Nepal Himalaya and interseismic coupling on the Main Himalayan Thrust: Implications for seismic hazard. Journal of Geophysical Research: Solid Earth, 117(B4). Ambraseys, N. N., & Tchalenko, J. S. (1972). Seismotectonic Aspects of the Gediz, Turkey, Earthquake of March 1970. Geophysical Journal International, 30(3), 229-252. Aochi, H., & Kato, A. (2010). Dynamic rupture of crosscutting faults: A possible rupture process for the 2007 Mw 6.6 Niigata‐ken Chuetsu‐Oki earthquake. Journal of Geophysical Research: Solid Earth, 115(B5). Arrowsmith, J., Crosby, C., Korjenkov, A., Mamyrov, E., & Povolotskaya, I. (2005). Surface rupture of the 1911 Kebin (Chon-Kemin) earthquake, Northern Tien Shan, Kyrgyzstan. AGU Fall Meeting Abstracts, Asano, K., & Iwata, T. (2016). Source rupture processes of the foreshock and mainshock in the 2016 Kumamoto earthquake sequence estimated from the kinematic waveform inversion of strong motion data. Earth, Planets and Space, 68(1), 1-11. Avouac, J.-P. (2015). From geodetic imaging of seismic and aseismic fault slip to dynamic modeling of the seismic cycle. Annual Review of Earth and Planetary Sciences, 43, 233-271. Awata, Y., Mizuno, K., Sugiyama, Y., Imura, R., Shimokawa, K., Okumura, K., Tsukuda, E., & Kimura, K. (1996). Surface fault ruptures on the northwest coast of Awaji island associated with the Hyogo-ken Nanbu earthquake of 1995, Japan; Hyogoken nanbu jishin ni tomonatte Awajishima hokuseigan ni shutsugenshita jishin danso. (in Japanese) Journal Zisin (Journal of the Seismological Society of Japan), 49. Azuma, T., & Li, Z. (2011). Geometry of fault traces on the northern terminal of the Tanna fault in Izu Peninsula, Central Japan. Active Fault and Paleoearthquake Researches 11, 121-137. Baize, S., Nurminen, F., Sarmiento, A., Dawson, T., Takao, M., Scotti, O., Azuma, T., Boncio, P., Champenois, J., & Cinti, F. R. (2020). A worldwide and unified database of surface ruptures (SURE) for fault displacement hazard analyses. Seismological Research Letters, 91(1), 499-520. Barka, A., Akyuz, H., Altunel, E., Sunal, G., Cakir, Z., Dikbas, A., Yerli, B., Armijo, R., Meyer, B., & De Chabalier, J. (2002). The surface rupture and slip distribution of the 17 August 1999 Izmit earthquake (M 7.4), North Anatolian fault. Bulletin of the Seismological Society of America, 92(1), 43-60. Berberian, M. (1979). Earthquake faulting and bedding thrust associated with the Tabas-e-Golshan (Iran) earthquake of September 16, 1978. Bulletin of the Seismological Society of America, 69(6), 1861-1887. Biasi, G. P., Parsons, T., Weldon, R. J., & Dawson, T. E. (2013). Appendix J: Fault‐to‐fault rupture probabilities. US Geol. Surv. Open‐File Rept. 2013‐1165‐J. Biasi, G. P., & Wesnousky, S. G. (2016). Steps and Gaps in Ground Ruptures: Empirical Bounds on Rupture Propagation. Bulletin of the Seismological Society of America, 106(3), 1110-1124. Biasi, G. P., & Wesnousky, S. G. (2017). Bends and Ends of Surface Ruptures. Bulletin of the Seismological Society of America, 107(6), 2543-2560. Biasi, G. P., & Wesnousky, S. G. (2021). Rupture passing probabilities at fault bends and steps, with application to rupture length probabilities for earthquake early warning. Bulletin of the Seismological Society of America, 111(4), 2235-2247. Chan, C.-H., Ma, K.-F., Shyu, J. B. H., Lee, Y.-T., Wang, Y.-J., Gao, J.-C., Yen, Y.-T., & Rau, R.-J. (2020). Probabilistic seismic hazard assessment for Taiwan: TEM PSHA2020. Earthquake Spectra, 36, 137-159. Chang, C.-C., Chang, C.-Y., Gao, J.-C., & Chan, C.-H. (2023). Quantifying the probability and uncertainty of multiple-structure rupture for Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 34(1), 7. Crone, A., Machette, M., & Bowman, J. (1997). Episodic nature of earthquake activity in stable continental regions revealed by palaeoseismicity studies of Australian and North American Quaternary faults. Australian Journal of Earth Sciences, 44(2), 203-214. Delvaux, D., Abdrakhmatov, K., Lemzin, I., & Strom, A. (2001). Landslides and surface breaks of the 1911 Ms 8.2 Kemin earthquake, Kyrgyzstan. Di Giacomo, D., Bondár, I., Storchak, D. A., Engdahl, E. R., Bormann, P., & Harris, J. (2015). ISC-GEM: Global Instrumental Earthquake Catalogue (1900–2009), III. Re-computed MS and mb, proxy MW, final magnitude composition and completeness assessment. Physics of the Earth and Planetary Interiors, 239, 33-47. Di Giacomo, D., Engdahl, E. R., & Storchak, D. A. (2018). The ISC-GEM Earthquake Catalogue (1904–2014): status after the Extension Project. Earth Syst. Sci. Data, 10(4), 1877-1899. Di Giacomo, D., Harris, J., Villaseñor, A., Storchak, D. A., Engdahl, E. R., Lee, W. H., & Team, D. E. (2015). ISC-GEM: Global Instrumental Earthquake Catalogue (1900–2009), I. Data collection from early instrumental seismological bulletins. Physics of the Earth and Planetary Interiors, 239, 14-24. Di Giacomo, D., Storchak, D. A., Safronova, N., Ozgo, P., Harris, J., Verney, R., & Bondár, I. (2014). A new ISC service: The bibliography of seismic events. Seismological Research Letters, 85(2), 354-360. Douilly, R., Aochi, H., Calais, E., & Freed, A. (2015). Three‐dimensional dynamic rupture simulations across interacting faults: The Mw7. 0, 2010, Haiti earthquake. Journal of Geophysical Research: Solid Earth, 120(2), 1108-1128. Douilly, R., Haase, J. S., Ellsworth, W. L., Bouin, M. P., Calais, E., Symithe, S. J., Armbruster, J. G., de Lépinay, B. M., Deschamps, A., & Mildor, S. L. (2013). Crustal structure and fault geometry of the 2010 Haiti earthquake from temporary seismometer deployments. Bulletin of the Seismological Society of America, 103(4), 2305-2325. Eberhart-Phillips, D., Haeussler, P. J., Freymueller, J. T., Frankel, A. D., Rubin, C. M., Craw, P., Ratchkovski, N. A., Anderson, G., Carver, G. A., Crone, A. J., Dawson, T. E., Fletcher, H., Hansen, R., Harp, E. L., Harris, R. A., Hill, D. P., Hreinsdottir, S., Jibson, R. W., Jones, L. M., … Wallace, W. K. (2003). The 2002 Denali fault earthquake, Alaska: a large magnitude, slip-partitioned event. Science, 300(5622), 1113-1118. Field, E. H., Arrowsmith, R. J., Biasi, G. P., Bird, P., Dawson, T. E., Felzer, K. R., Jackson, D. D., Johnson, K. M., Jordan, T. H., & Madden, C. (2014). Uniform California earthquake rupture forecast, version 3 (UCERF3)—The time‐independent model. Bulletin of the Seismological Society of America, 104(3), 1122-1180. Fletcher, J. M., Oskin, M. E., & Teran, O. J. (2016). The role of a keystone fault in triggering the complex El Mayor–Cucapah earthquake rupture. Nature Geoscience, 9(4), 303-307. Fletcher, J. M., Teran, O. J., Rockwell, T. K., Oskin, M. E., Hudnut, K. W., Mueller, K. J., Spelz, R. M., Akciz, S. O., Masana, E., & Faneros, G. (2014). Assembly of a large earthquake from a complex fault system: Surface rupture kinematics of the 4 April 2010 El Mayor–Cucapah (Mexico) Mw 7.2 earthquake. Geosphere, 10(4), 797-827. Foulger, G. R., & Julian, B. R. (2015). Non-Double-Couple Earthquakes. In Encyclopedia of Earthquake Engineering (pp. 1-31). Fukuyama, E., Muramatu, I., & Mikumo, T. (2007). Seismic moment of the 1891 Nobi, Japan, earthquake estimated from historical seismograms. Earth, Planets and Space, 59, 553-559. Galadini, F., & Galli, P. (1999). The Holocene paleoearthquakes on the 1915 Avezzano earthquake faults (central Italy): implications for active tectonics in the central Apennines. Tectonophysics, 308(1-2), 143-170. Gonzalez‐Ortega, A., Fialko, Y., Sandwell, D., Alejandro Nava‐Pichardo, F., Fletcher, J., Gonzalez‐Garcia, J., Lipovsky, B., Floyd, M., & Funning, G. (2014). El Mayor‐Cucapah (Mw 7.2) earthquake: Early near‐field postseismic deformation from InSAR and GPS observations. Journal of Geophysical Research: Solid Earth, 119(2), 1482-1497. Gulliver, R., Miller, F., Pinkerton, J., Ross, D., Sharp, R., Yerkes, R., & Ziony, J. (1971). SURFACE FAULTING. The San Fernando, California, Earthquake of February 9, 1971: A Preliminary Report Published Jointly by the US Geological Survey and the National Oceanic and Atmospheric Administration, 733, 55. Gutenberg, B., & Richter, C. F. (1944). Frequency of earthquakes in California. Bulletin of the Seismological Society of America, 34(4), 185-188. Haeussler, P. J., Schwartz, D. P., Dawson, T. E., Stenner, H. D., Lienkaemper, J. J., Sherrod, B., Cinti, F. R., Montone, P., Craw, P. A., & Crone, A. J. (2004). Surface rupture and slip distribution of the Denali and Totschunda faults in the 3 November 2002 M 7.9 earthquake, Alaska. Bulletin of the Seismological Society of America, 94(6B), S23-S52. Hamling, I. J., Hreinsdottir, S., Clark, K., Elliott, J., Liang, C., Fielding, E., Litchfield, N., Villamor, P., Wallace, L., Wright, T. J., D'Anastasio, E., Bannister, S., Burbidge, D., Denys, P., Gentle, P., Howarth, J., Mueller, C., Palmer, N., Pearson, C., . . . Stirling, M. (2017). Complex multifault rupture during the 2016 Mw 7.8 Kaikoura earthquake, New Zealand. Science, 356(6334). Hanks, T. C., & Bakun, W. H. (2008). M-log A observations for recent large earthquakes. Bulletin of the Seismological Society of America, 98(1), 490-494. Hanks, T. C., & Kanamori, H. (1979). A moment magnitude scale. Journal of Geophysical Research: Solid Earth, 84(B5), 2348-2350. Hart, E. W., Bryant, W. A., & Treiman, J. A. (1993). Surface faulting associated with the June 1992 Landers earthquake, California. Calif. Geol, 46(1), 10-16. Hartzell, S., Mendoza, C., Ramirez‐Guzman, L., Zeng, Y., & Mooney, W. (2013). Rupture history of the 2008 Mw 7.9 Wenchuan, China, earthquake: Evaluation of separate and joint inversions of geodetic, teleseismic, and strong‐motion data. Bulletin of the Seismological Society of America, 103(1), 353-370. Hayes, G. P., Briggs, R. W., Sladen, A., Fielding, E. J., Prentice, C., Hudnut, K., Mann, P., Taylor, F. W., Crone, A., & Gold, R. (2010). Complex rupture during the 12 January 2010 Haiti earthquake. Nature Geoscience, 3(11), 800-805. Horikawa, H. (2001). Earthquake doublet in Kagoshima, Japan: Rupture of asperities in a stress shadow. Bulletin of the Seismological Society of America, 91(1), 112-127. Huang, B.-S., & Yeh, Y. T. (1992). Source geometry and slip distribution of the April 21, 1935 Hsinchu-Taichung, Taiwan earthquake. Tectonophysics, 210(1-2), 77-90. Hwa, C., Kosuga, M., & Sato, H. (1982). Mechanism and fault model of the Hsinchu-Taichung (Taiwan) earthquake of 1935. (in Japanese) Journal Zisin (Journal of the Seismological Society of Japan), 35(4), 567-574 Iezzi, F., Roberts, G., Walker, J. F., & Papanikolaou, I. (2019). Occurrence of partial and total coseismic ruptures of segmented normal fault systems: Insights from the Central Apennines, Italy. Journal of Structural Geology, 126, 83-99. Improta, L., Latorre, D., Margheriti, L., Nardi, A., Marchetti, A., Lombardi, A. M., Castello, B., Villani, F., Ciaccio, M. G., Mele, F. M., Moretti, M., & Bollettino Sismico Italiano Working, G. (2019). Multi-segment rupture of the 2016 Amatrice-Visso-Norcia seismic sequence (central Italy) constrained by the first high-quality catalog of Early Aftershocks. Sci Rep, 9(1), 6921. Institute of Earth Sciences, A. S., Taiwan. (1996). Broadband array in Taiwan for seismology. In: Institute of Earth Sciences, Academia Sinica Taiwan. Ishimoto, M., & Iida, K. (1939). Observations of earthquakes registered with the microseismograph constructed recently. Bull. Earthq. Res. Inst., 17, 443-478. Ishimura, D., Okada, S., Niwa, Y., & Toda, S. (2015). The surface rupture of the 22 November 2014 Nagano-ken-hokubu earthquake (Mw 6.2), along the Kamishiro fault. (in Japanese) Japan, Active Fault Res, 43, 95-108. Jia, Z., Wang, X., & Zhan, Z. (2020). Multifault Models of the 2019 Ridgecrest Sequence Highlight Complementary Slip and Fault Junction Instability. Geophysical Research Letters, 47(17). Julian, B. R., Miller, A. D., & Foulger, G. (1998). Non‐double‐couple earthquakes 1. Theory. Reviews of Geophysics, 36(4), 525-549. Kamb, B., Silver, L., Abrams, M., Carter, B., Jordan, T., & Minster, J. (1971). Pattern of faulting and nature of fault movement in the San Fernando earthquake. The San Fernando, California, Earthquake of February 9, 1971: A Preliminary Report Published Jointly by the US Geological Survey and the National Oceanic and Atmospheric Administration, 733, 41. Kanamori, H. (1973). Mode of strain release associated with major earthquakes in Japan. Annual Review of Earth and Planetary Sciences, 1(1), 213-239. Kanamori, H. (1977). The energy release in great earthquakes. Journal of Geophysical Research, 82(20), 2981-2987. Kaneda, H., & Okada, A. (2002). Surface rupture associated with the 1943 Tottori earthquake: compilation of previous reports and its tectonic geomorphological implications. (in Japanese) Active Fault Res, 21, 73-91. Kaneda, H., & Okada, A. (2008). Long-term seismic behavior of a fault involved in a multiple-fault rupture: Insights from tectonic geomorphology along the Neodani fault, central Japan. Bulletin of the Seismological Society of America, 98(5), 2170-2190. Kase, Y., & Kuge, K. (1998). Numerical simulation of spontaneous rupture processes on twonon-coplanar faults: the effect of geometry on fault interaction. Geophysical Journal International, 135(3), 911-922. Kase, Y., & Kuge, K. (2001). Rupture propagation beyond fault discontinuities: significance of fault strike and location [Article]. Geophysical Journal International, 147(2), 330-342. https://doi.org/10.1046/j.1365-246X.2001.00533.x Kilb, D., Gomberg, J., & Bodin, P. (2002). Aftershock triggering by complete Coulomb stress changes. Journal of Geophysical Research: Solid Earth, 107(B4), ESE 2-1-ESE 2-14. Klinger, Y., Xu, X., Tapponnier, P., Van der Woerd, J., Lasserre, C., & King, G. (2005). High-resolution satellite imagery mapping of the surface rupture and slip distribution of the M w∼ 7.8, 14 November 2001 Kokoxili earthquake, Kunlun fault, northern Tibet, China. Bulletin of the Seismological Society of America, 95(5), 1970-1987. Kobayashi, Y. (1976). Hazards from surface faulting in earthquakes. Bulletin of the Disaster Prevention Research Institute, 26(4), 213-240. Lay, T., Ye, L., Bai, Y., Cheung, K. F., & Kanamori, H. (2018). The 2018 Mw 7.9 Gulf of Alaska Earthquake: Multiple Fault Rupture in the Pacific Plate. Geophysical Research Letters, 45(18), 9542-9551. Lee, S.-J., Liu, T.-Y., & Lin, T.-C. (2023). The role of the west-dipping collision boundary fault in the Taiwan 2022 Chihshang earthquake sequence. Scientific Reports, 13(1), 3552. Leonard, M. (2010). Earthquake fault scaling: Self-consistent relating of rupture length, width, average displacement, and moment release. Bulletin of the Seismological Society of America, 100(5A), 1971-1988. Lettis, W., Bachhuber, J., Witter, R., Brankman, C., Randolph, C., Barka, A., Page, W., & Kaya, A. (2002). Influence of releasing step-overs on surface fault rupture and fault segmentation: Examples from the 17 August 1999 Izmit earthquake on the North Anatolian fault, Turkey. Bulletin of the Seismological Society of America, 92(1), 19-42. Li, Z., & Zhou, B. (2018). Influence of fault steps on rupture termination of strike-slip earthquake faults. Journal of Seismology, 22, 487-498. Liao, Y. W., Ma, K. F., Hsieh, M. C., Cheng, S. N., Kuo‐Chen, H., & Chang, C. P. (2018). Resolving the 1906 M w 7.1 Meishan, Taiwan, Earthquake from Historical Seismic Records. Seismological Research Letters, 89(4), 1385-1396. Lin, Y. (2005). Surface deformation and seismogenic structure model of the 1935 Hsinchu-Taichung earthquake (MGR= 7.1). Miaoli, northwestern Taiwan. M. Sc. thesis, Department of Geosciences, National Taiwan University, Taipei, Taiwan. Published thesis. Lin, Y., Chen, Y., Wu, Y., Wang, Y., Yang, K., & Ota, Y. (2005). Surface deformation and seismogenic structure model of 1935 Hsinchu‐Taichung earthquake (MGR= 7.1), in Miaoli, northwestern Taiwan. Hokudan International Symposium on Active Faulting 2005, Litchfield, N. J., Villamor, P., Dissen, R. J. V., Nicol, A., Barnes, P. M., A. Barrell, D. J., Pettinga, J. R., Langridge, R. M., Little, T. A., & Mountjoy, J. J. (2018). Surface rupture of multiple crustal faults in the 2016 M w 7.8 Kaikōura, New Zealand, Earthquake. Bulletin of the Seismological Society of America, 108(3B), 1496-1520. Liu-Zeng, J., Sun, J., Wang, P., Hudnut, K. W., Ji, C., Zhang, Z., Xu, Q., & Wen, L. (2012). Surface ruptures on the transverse Xiaoyudong fault: a significant segment boundary breached during the 2008 Wenchuan earthquake, China. Tectonophysics, 580, 218-241. Maruyama, T., Awata, Y., & Azuma, T. (2011). Surface ruptures associated with the 2011 Mw 6.6 Fukushima Hamadori earthquake (northeast Honshu, Japan): normal faulting in trench-normal stretching forearc subsequent to the 2011 Great Tohoku megathrust earthquake. AGU Fall Meeting Abstracts, Matsu'ura, T., & Kase, Y. (2010). Late Quaternary and coseismic crustal deformation across the focal area of the 2008 Iwate–Miyagi Nairiku earthquake. Tectonophysics, 487(1-4), 13-21. Matsuda, T. (1972). Surface faults associated with Kita-Izu earthquake of 1930 in Izu Peninsula, Japan. (in Japanese) Izu Peninsula. Matsuda, T. (1974). Surface faults associated with Nobi (Mino-Owari) earthquake of 1891, Japan. (in Japanese) Spec. Rep. Earthq. Res. Inst., 13, 85-126. Matsuda, T. (1980). The surface faulting associated with Riku-u earthquake of 1896. (in Japanese) Bull. Earthquake Res. Inst. Tokyo Univ., 55, 795-855. Mikumo, T., & Ando, M. (1976). A Search into the faulting mechanism the 1891 great NORI earthquake. Journal of Physics of the Earth, 24(1), 63-87. Miller, A. D., Foulger, G., & Julian, B. R. (1998). Non‐double‐couple earthquakes 2. Observations. Reviews of Geophysics, 36(4), 551-568. Milner, K. R., Page, M. T., Field, E. H., Parsons, T., Biasi, G. P., & Shaw, B. E. (2013). Appendix T—Defining the inversion rupture set using plausibility filters. US Geol. Surv. Open‐File Rept. 2013‐1165. Miyamachi, H., Iwakiri, K., Yakiwara, H., Goto, K., & Kakuta, T. (1999). Fine structure of aftershock distribution of the 1997 Northwestern Kagoshima Earthquakes with a three-dimensional velocity model. Earth, Planets and Space, 51(4), 233-246. Nakata, T., & Imaizumi, T. (2002). Digital active fault map of Japan. (in Japanese) University of Tokyo Press, Tokyo. Nakata, T., Yomogida, K., Odaka, J.-I., Sakamoto, T., Asahi, K., & Chida, N. (1995). Surface fault ruptures associated with the 1995 Hyogoken-Nanbu earthquake. (in Japanese) Journal of Geography (Chigaku Zasshi), 104(1), 127-142. Nissen, E., Elliott, J. R., Sloan, R. A., Craig, T. J., Funning, G. J., Hutko, A., Parsons, B. E., & Wright, T. J. (2016). Limitations of rupture forecasting exposed by instantaneously triggered earthquake doublet. Nature Geoscience, 9(4), 330-336. Oceanic, U. S. N., & Administration, A. (1971). San Fernando, California, Earthquake of February 9, 1971 (Vol. 71). US Department of Commerce. Ohta, Y., Ohzono, M., Miura, S., Iinuma, T., Tachibana, K., Takatsuka, K., Miyao, K., Sato, T., & Umino, N. (2008). Coseismic fault model of the 2008 Iwate-Miyagi Nairiku earthquake deduced by a dense GPS network. Earth, Planets and Space, 60, 1197-1201. Okada, A., & Ikeda, Y. (1991). Active faults and neotectonics in Japan. The Quaternary Research (Daiyonki-Kenkyu), 30(3), 161-174. Okada, A., & Matsuda, T. (1997). Surface faults associated with the Kita-Tango Earthquake of 1927 in the northwestern part of Kinki district, central Japan. (in Japanese) Active Fault Res, 16, 95-135. Omori, F. (1907). Preliminary note on the Formosa earthquake of March 17, 1906. Bulletin of the Imperial Earthquake Investigation Committee, 1(2), 53-69. Otuka, Y. (1933). The geomorphology and geology of northern Idu Peninsula, the earthquake fissures of Nov. 26, 1930, and the pre-and post-seismic crust deformations. Bulletin of the Earthquake Research Institute, Tokyo Imperial University, 11(3), 530-574. Otuka, Y. (1936). The earthquake of central Taiwan (Formosa), April 21, 1935, and earthquake faults. Bull. Earthquake Res. Inst. Tokyo Univ, 3, 22-74. Pantosti, D., & Valensise, G. (1990). Faulting mechanism and complexity of the November 23, 1980, Campania‐Lucania earthquake, inferred from surface observations. Journal of Geophysical Research: Solid Earth, 95(B10), 15319-15341. Plafker, G. (1965). Tectonic Deformation Associated with the 1964 Alaska Earthquake: The earthquake of 27 March 1964 resulted in observable crustal deformation of unprecedented areal extent. Science, 148(3678), 1675-1687. Ponti, D. J., Blair, J. L., Rosa, C. M., Thomas, K., Pickering, A. J., Akciz, S., Angster, S., Avouac, J. P., Bachhuber, J., & Bacon, S. (2020). Documentation of surface fault rupture and ground‐deformation features produced by the 4 and 5 July 2019 Mw 6.4 and Mw 7.1 Ridgecrest earthquake sequence. Seismological Research Letters, 91(5), 2942-2959. Possee, D., Keir, D., Harmon, N., Rychert, C., Rolandone, F., Leroy, S., Corbeau, J., Stuart, G., Calais, E., & Illsley‐Kemp, F. (2019). The tectonics and active faulting of Haiti from seismicity and tomography. Tectonics, 38(3), 1138-1155. Prentice, C., Mann, P., Crone, A., Gold, R., Hudnut, K., Briggs, R., Koehler, R., & Jean, P. (2010). Seismic hazard of the Enriquillo–Plantain Garden fault in Haiti inferred from palaeoseismology. Nature Geoscience, 3(11), 789-793. Quigley, M. C., Jiménez, A., Duffy, B., & King, T. R. (2018). An investigation of multi-fault rupture scenarios using a variety of Coulomb stress modelling criteria: methods paper and full results. Quigley, M. C., Jiménez, A., Duffy, B., & King, T. R. (2019). Physical and Statistical Behavior of Multifault Earthquakes: Darfield Earthquake Case Study, New Zealand. Journal of Geophysical Research: Solid Earth, 124(5), 4788-4810. Quigley, M. C., Mohammadi, H., & Duffy, B. (2017). Multi-fault earthquakes with kinematic and geometric rupture complexity: how common. INQUA Focus Group Earthquake Geology and Seismic Hazards. Raimbault, B., Jolivet, R., Calais, E., Symithe, S., Fukushima, Y., & Dubernet, P. (2023). Rupture geometry and slip distribution of the Mw 7.2 Nippes earthquake, Haiti, from space geodetic data. Geochemistry, Geophysics, Geosystems, 24(4), e2022GC010752. Schwartz, D. P., & Coppersmith, K. J. (1984). Fault behavior and characteristic earthquakes: Examples from the Wasatch and San Andreas fault zones. Journal of Geophysical Research: Solid Earth, 89(B7), 5681-5698. Scognamiglio, L., Tinti, E., Casarotti, E., Pucci, S., Villani, F., Cocco, M., Magnoni, F., Michelini, A., & Dreger, D. (2018). Complex fault geometry and rupture dynamics of the MW 6.5, 30 October 2016, Central Italy earthquake. Journal of Geophysical Research: Solid Earth, 123(4), 2943-2964. Sharp, R. (1981). Displacements on tectonic ruptures in the San Fernando earthquake of February 9, 1971; discussion and some implications. Shi, X., Wang, Y., Liu-Zeng, J., Weldon, R., Wei, S., Wang, T., & Sieh, K. (2017). How complex is the 2016 M w 7.8 Kaikoura earthquake, South Island, New Zealand? Science Bulletin, 62(5), 309-311. Shirahama, Y., Yoshimi, M., Awata, Y., Maruyama, T., Azuma, T., Miyashita, Y., Mori, H., Imanishi, K., Takeda, N., & Ochi, T. (2016). Characteristics of the surface ruptures associated with the 2016 Kumamoto earthquake sequence, central Kyushu, Japan. Earth, Planets and Space, 68(1), 1-12. Shyu, J. B. H., Chuang, Y.-R., Chen, Y.-L., Lee, Y.-R., & Cheng, C.-T. (2016). A New On-Land Seismogenic Structure Source Database from the Taiwan Earthquake Model (TEM) Project for Seismic Hazard Analysis of Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 27(3). Shyu, J. B. H., Yin, Y.-H., Chen, C.-H., Chuang, Y.-R., & Liu, S.-C. (2020). Updates to the on-land seismogenic structure source database by the Taiwan Earthquake Model (TEM) project for seismic hazard analysis of Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 31(4), 469-478. Sieh, K., Jones, L., Hauksson, E., Hudnut, K., Eberhart-Phillips, D., Heaton, T., Hough, S., Hutton, K., Kanamori, H., & Lilje, A. (1993). Near-field investigations of the Landers earthquake sequence, April to July 1992. Science, 260(5105), 171-176. Stevens, V., & Avouac, J. P. (2016). Millenary Mw> 9.0 earthquakes required by geodetic strain in the Himalaya. Geophysical Research Letters, 43(3), 1118-1123. Stirling, M., Gerstenberger, M., Litchfield, N., McVerry, G., Smith, W., Pettinga, J., & Barnes, P. (2008). Seismic hazard of the Canterbury region, New Zealand: New earthquake source model and methodology. Bulletin of the New Zealand Society for Earthquake Engineering, 41(2), 51-67. Stirling, M., Goded, T., Berryman, K., & Litchfield, N. (2013). Selection of earthquake scaling relationships for seismic‐hazard analysis. Bulletin of the Seismological Society of America, 103(6), 2993-3011. Su, H., Yen, M.-H., Oglesby, D. D., & Ma, K.-F. (2018). The multi-fault rupture process of 1935 Hsinchu-Taichung Earthquake, Taiwan revealed from dynamic modeling. AGU Fall Meeting Abstracts, Sugito, N., & Okada, A. (2004). Surface rupture associated with the 1945 Mikawa earthquake. (in Japanese) Active Fault Res, 24, 103-127. Suter, M. (2008). Structural configuration of the Otates fault (southern Basin and Range Province) and its rupture in the 3 May 1887 Mw 7.5 Sonora, Mexico, earthquake. Bulletin of the Seismological Society of America, 98(6), 2879-2893. Symithe, S. J., Calais, E., Haase, J. S., Freed, A. M., & Douilly, R. (2013). Coseismic slip distribution of the 2010 M 7.0 Haiti earthquake and resulting stress changes on regional faults. Bulletin of the Seismological Society of America, 103(4), 2326-2343. Takenaka, H., Yamamoto, Y., & Yamasaki, H. (2009). Rupture process at the beginning of the 2007 Chuetsu-oki, Niigata, Japan, earthquake. Earth, Planets and Space, 61(2), 279-283. Tanaka, M., Asano, K., Iwata, T., & Kubo, H. (2014). Source rupture process of the 2011 Fukushima-ken Hamadori earthquake: how did the two subparallel faults rupture? Earth, Planets and Space, 66(1), 1-8. Tanioka, Y., & Satake, K. (2001). Coseismic slip distribution of the 1946 Nankai earthquake and aseismic slips caused by the earthquake. Earth, Planets and Space, 53(4), 235-241. Thomas, M. Y., Avouac, J. P., Champenois, J., Lee, J. C., & Kuo, L. C. (2014). Spatiotemporal evolution of seismic and aseismic slip on the Longitudinal Valley Fault, Taiwan. Journal of Geophysical Research: Solid Earth, 119(6), 5114-5139. Tinti, E., Casarotti, E., Ulrich, T., Taufiqurrahman, T., Li, D., & Gabriel, A.-A. (2021). Constraining families of dynamic models using geological, geodetic and strong ground motion data: The Mw 6.5, October 30th, 2016, Norcia earthquake, Italy. Earth and Planetary Science Letters, 576, 117237. Tocheport, A., Rivera, L., & Van der Woerd, J. (2006). A study of the 14 November 2001 Kokoxili earthquake: History and geometry of the rupture from teleseismic data and field observations. Bulletin of the Seismological Society of America, 96(5), 1729-1741. Toda, S., Maruyama, T., Yoshimi, M., Kaneda, H., Awata, Y., Yoshida, T., & Ando, R. (2010). Surface rupture associated with the 2008 Iwate-Miyagi Nairiku, Japan, earthquake and its implications to the rupture process and evaluation of active faults. (in Japanese) Zisin (Journal of the Seismological Society of Japan. 2nd ser.), 62(4), 153-178. Toda, S., & Tsutsumi, H. (2013). Simultaneous reactivation of two, subparallel, inland normal faults during the M w 6.6 11 April 2011 Iwaki earthquake triggered by the M w 9.0 Tohoku‐oki, Japan, earthquake. Bulletin of the Seismological Society of America, 103(2B), 1584-1602. Walker, R., Jackson, J., & Baker, C. (2003). Surface expression of thrust faulting in eastern Iran: source parameters and surface deformation of the 1978 Tabas and 1968 Ferdows earthquake sequences. Geophysical Journal International, 152(3), 749-765. Wallace, R. E. (1980). Map of fault scarps formed during earthquake of October 2, 1915, Pleasant Valley, Nevada, and other young fault scarps, 2331-1258. Walsh, E., Stahl, T., Howell, A., & Robinson, T. (2023). Two‐Dimensional Empirical Rupture Simulation: Examples and Applications to Seismic Hazard for the Kaikōura Region, New Zealand. Seismological Society of America, 94(2A), 852-870. Wang, S., Xu, C., Li, Z., Wen, Y., & Song, C. (2020). The 2018 Mw 7.5 Papua New Guinea earthquake: A possible complex multiple faults failure event with deep‐seated reverse faulting. Earth and Space Science, 7(3), e2019EA000966. Wang, Y.-J., Chan, C.-H., Lee, Y.-T., Ma, K.-F., Shyu, J. B. H., Rau, R.-J., & Cheng, C.-T. (2016). Probabilistic seismic hazard assessment for Taiwan. Terr. Atmos. Ocean. Sci., 27(3), 325-340. Wells, D. L., & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84(4), 974-1002. Wesnousky, S. G. (2006). Predicting the endpoints of earthquake ruptures. Nature, 444(7117), 358-360. Wesnousky, S. G. (2008). Displacement and geometrical characteristics of earthquake surface ruptures: Issues and implications for seismic-hazard analysis and the process of earthquake rupture. Bulletin of the Seismological Society of America, 98(4), 1609-1632. Xu, X., Wen, X., Yu, G., Chen, G., Klinger, Y., Hubbard, J., & Shaw, J. (2009). Coseismic reverse-and oblique-slip surface faulting generated by the 2008 Mw 7.9 Wenchuan earthquake, China. Geology, 37(6), 515-518. Xu, X., Yeats, R. S., & Yu, G. (2010). Five short historical earthquake surface ruptures near the Silk Road, Gansu Province, China. Bulletin of the Seismological Society of America, 100(2), 541-561. Xu, X., Yu, G., Chen, G., Ran, Y., LI, C., Chen, Y., & Chang, C. (2009). Parameters of coseismic reverse‐and oblique‐slip surface ruptures of the 2008 Wenchuan earthquake, eastern Tibetan Plateau. Acta Geologica Sinica‐English Edition, 83(4), 673-684. Xu, X., Yu, G., Klinger, Y., Tapponnier, P., & Van Der Woerd, J. (2006). Reevaluation of surface rupture parameters and faulting segmentation of the 2001 Kunlunshan earthquake (Mw7. 8), northern Tibetan Plateau, China. Journal of Geophysical Research: Solid Earth, 111(B5). Yang, J., Zhu, H., Lay, T., Niu, Y., Ye, L., Lu, Z., Luo, B., Kanamori, H., Huang, J., & Li, Z. (2021). Multifault opposing‐dip strike‐slip and normal‐fault rupture during the 2020 Mw 6.5 Stanley, Idaho earthquake. Geophysical Research Letters, 48(10), e2021GL092510. Yen, M. H., Lee, S. J., & Ma, K. F. (2015). Reconstructing the source rupture process and ground motion time history of the 1935 Hsinchu-Taichung Earthquake (ML>7.1) in Taiwan Yen, Y.-T., & Ma, K.-F. (2011). Source-scaling relationship for M 4.6–8.9 earthquakes, specifically for earthquakes in the collision zone of Taiwan. Bulletin of the Seismological Society of America, 101(2), 464-481. Zhang, H., Chen, J., & Ge, Z. (2012). Multi-fault rupture and successive triggering during the 2012 Mw 8.6 Sumatra offshore earthquake. Geophysical Research Letters, 39(22). 皆川潤. (1995). ダイヤコンサルタント活断層グループ: 兵庫県南部地震現地調査速報-淡路島地震断層編 (その 3). ダイヤコンサルタント社内資料. 菊地正幸. (1995). 兵庫県南部地震の震源過程モデル-遠地の地震渡解析速報. 地質ニュース, 486, 12-15. 長瀬和雄, 小沢清, & 平田由紀子. (1996). 神奈川の活断層. 神奈川県温泉地学研究所報告, 27(1), 23-63, 図巻末 24 枚. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90150 | - |
| dc.description.abstract | 多重斷層破裂為兩條或以上斷層同時破裂的情境,造成比區域裡所有斷層單一破裂更大的地震規模。儘管歷史地震紀錄中早有多重斷層破裂的出現,過去對於其發生的控制條件仍未有完整的討論,且現有多數的地震危害度評估模型裡亦未充分考慮此破裂情境。為改善臺灣地震模型裡對於多重斷層破裂的地震危害度分析,本研究聚焦於分析斷層間的空間關係,透過收集世界各地的多重斷層破裂地震事件資料,從已知的地震事件中找出多重斷層破裂的可能行為模式,並將其應用到臺灣地震模型裡的孕震構造,以找出臺灣本島可能產生的多重斷層破裂情境,從而估算它們的規模以及再現週期。
本研究收集的資料顯示多重斷層的同震破裂會受控於斷層的滑移類型、三維斷層面間的距離以及其相對排列關係。從收集的資料可發現斷層同震破裂能跳躍至五公里以外的斷層後繼續其破裂行為,且逆斷層可以影響的距離比走滑斷層為大,此現象可能歸因於逆斷層傾角較走滑斷層緩。此外,結果顯示走滑斷層間和逆斷層間只有在走向差異介於0-40度與80-90度之間才能發生多重斷層破裂。 依上述的條件,本研究基於臺灣地震模型裡現有的孕震構造資料庫列出臺灣可能出現的多重斷層破裂情境,並在考慮多重斷層破裂情境後,計算臺灣本島孕震構造的發震地震規模與頻率之間的關係。本研究結果顯示多重斷層破裂可能會對長時間尺度的地震危害度評估造成一定的影響,此類型破裂除了會造成比只考慮單一斷層破裂更大規模的地震外,孕震構造的破裂再現週期也可能在考慮多重斷層破裂情境後變長。因此在未來的地震危害度分析中,應考量斷層面間的距離以及其相對排列關係對模型所產生的影響。 | zh_TW |
| dc.description.abstract | Multi-fault rupture earthquake is an event which involves near-simultaneous or cascading rupture on two or more faults in one single earthquake, and results in a larger magnitude that exceeds the capable magnitude of any single seismogenic fault involved in the earthquake. Although the unexpected earthquake magnitude may have high impact on the seismic hazard assessment, most seismic hazard models include only single-fault rupture scenarios, and the geological condition to promote multi-fault rupture in single earthquake is yet well-studied. Hence, we collected worldwide multi-fault rupture cases and built up a database focusing on spatial relationships between contributing faults and their physical characteristics (e.g., fault types, geometries), in order to find out the possible multi-fault rupture scenario in Taiwan.
In terms of the structural discontinuities that may arrest the coseismic ruptures, our data suggest the “5-km” surface fault separation may not act as the termini to stop all the coseismic ruptures. For reverse faulting cases, the coseismic ruptures could jump further on the surface, compared to strike-slip faulting cases. This difference is likely resulted from the three-dimensional geometries between the adjacent faults since reverse faults tend to have gentler geometries at depth than the strike-slip faults. Moreover, the fault alignment also affects the jumping behaviour. For both strike-slip faults and reverse faults, jumps would not occur within the strike variation between 40-80°. We provide possible multi-fault rupture sets from the empirical observations, their corresponding capable magnitude and recurrence interval, and present a magnitude-frequency relationship under the architecture of the seismogenic structures in the Taiwan Earthquake Model. Since the multi-fault rupture would result in larger magnitude events with lower frequency than the ordinary fault ruptures, we suggest the future analysis need to consider its impact on the seismic hazard assessment. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T17:37:37Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-22T17:37:37Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 中文摘要 iii Abstract iv Table of contents vi List of Figures ix List of Tables xv Chapter 1 Introduction 1 Chapter 2 Methods 7 2.1 Data collection 7 2.2 Magnitude estimation 12 2.3 Spatial relation analysis 15 2.4 Application to Taiwan Earthquake Model 16 Chapter 3 Review of previous studies 20 3.1 Magnitude 20 3.1.1 Observed magnitude estimated by seismic moment 20 3.1.2 Empirical relationships 22 3.2 Spatial relations between faults 25 Chapter 4 Global multi-fault rupture scenarios 33 4.1 Case study of multi-fault ruptures 39 4.1.1 Worldwide multi-fault rupture cases 39 4.1.2 Observations from the previous database 70 4.1.3 Multi-fault ruptures in Taiwan 71 4.2 Magnitude 75 4.3 Fault types 76 4.4 Spatial relations 77 4.4.1 Alignment 77 4.4.2 Spacing 78 4.4.3 Summary of spatial relations 80 Chapter 5 Application to Taiwan Earthquake Model 82 5.1 Fault alignment 82 5.2 Fault spacing 83 5.3 Multi-fault rupture sets 84 5.3.1 Pairs 84 5.3.2 Combinations 86 5.4 The recurrence interval of the rupture sets 90 5.5 Magnitude-frequency relations 93 Chapter 6 Discussion 96 6.1 Limitations 96 6.1.1 Spatial relations 96 6.1.2 Magnitude estimation 96 6.1.3 Secondary fault and sympathetic ruptures 97 6.2 Compare to other models including multi-fault rupture 97 6.2.1 The United States 97 6.2.2 New Zealand 99 6.2.3 Taiwan 102 6.3 Magnitude 110 6.3.1 Segmentation 110 6.3.2 Long-tail residual 111 6.4 Frequency 112 6.4.1 Recurrence interval estimation 112 6.4.2 Magnitude-frequency distribution 114 6.4.3 Time-dependent 114 6.5 1935-like earthquake 116 6.5.1 Regional fault 116 6.5.2 Multi-fault rupture frequency 118 6.6 Extreme multi-fault rupture scenario 119 6.6.1 Possibility of extreme scenario 119 6.6.2 Recurrence interval 120 6.7 Impacts on hazard level assessment 121 Chapter 7 Conclusions 122 References 123 Appendix 138 | - |
| dc.language.iso | en | - |
| dc.subject | 臺灣地震模型 | zh_TW |
| dc.subject | 地震危害度 | zh_TW |
| dc.subject | 地震情境 | zh_TW |
| dc.subject | 多重斷層破裂 | zh_TW |
| dc.subject | Multi-fault rupture | en |
| dc.subject | earthquake scenario | en |
| dc.subject | seismic hazard assessment | en |
| dc.subject | Taiwan Earthquake Model (TEM) | en |
| dc.title | 臺灣多重斷層破裂情境初探 | zh_TW |
| dc.title | Applying multi-fault rupture scenario to Taiwan Earthquake Model | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 李錫堤;馬國鳳;徐澔德;高嘉謙 | zh_TW |
| dc.contributor.oralexamcommittee | Chyi-Tyi Li;Kuo-Fong Ma;J Bruce H Shyu;Jia-Cian Gao | en |
| dc.subject.keyword | 多重斷層破裂,地震情境,地震危害度,臺灣地震模型, | zh_TW |
| dc.subject.keyword | Multi-fault rupture,earthquake scenario,seismic hazard assessment,Taiwan Earthquake Model (TEM), | en |
| dc.relation.page | 150 | - |
| dc.identifier.doi | 10.6342/NTU202302553 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-08-13 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 地質科學系 | - |
| dc.date.embargo-lift | 2024-08-15 | - |
| Appears in Collections: | 地質科學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-111-2.pdf Access limited in NTU ip range | 32.87 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
