請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90146
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 謝馬利歐 | zh_TW |
dc.contributor.advisor | Mario Hofmann | en |
dc.contributor.author | 張睿騰 | zh_TW |
dc.contributor.author | Jui-Teng Chang | en |
dc.date.accessioned | 2023-09-22T17:36:39Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-09-22 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-10 | - |
dc.identifier.citation | 1. Yao, Y., et al., Thermoelectric performance enhancement of Cu2S by Se doping leading to a simultaneous power factor increase and thermal conductivity reduction. Journal of Materials Chemistry C, 2017. 5(31): p. 7845-7852.
2. Liang, W. and M.H. Whangbo, Conductivity anisotropy and structural phase transition in Covellite CuS. Solid State Communications, 1993. 85(5): p. 405-408. 3. Morozovska, A.N., et al., Phenomenological description of bright domain walls in ferroelectric-antiferroelectric layered chalcogenides. Physical Review B, 2020. 102(17): p. 174108. 4. Park, G.-C., et al., Photovoltaic characteristics of CuInS2CdS solar cell by electron beam evaporation. Solar Energy Materials and Solar Cells, 1997. 49(1): p. 365-374. 5. Coughlan, C., et al., Compound Copper Chalcogenide Nanocrystals. Chemical Reviews, 2017. 117(9): p. 5865-6109. 6. Liu, W.-D., L. Yang, and Z.-G. Chen, Cu2Se thermoelectrics: property, methodology, and device. Nano Today, 2020. 35: p. 100938. 7. He, Y., et al., High thermoelectric performance in copper telluride. NPG Asia Materials, 2015. 7(8): p. e210-e210. 8. Liang, X., D. Jin, and F. Dai, Phase Transition Engineering of Cu2S to Widen the Temperature Window of Improved Thermoelectric Performance. Advanced Electronic Materials, 2019. 5(10): p. 1900486. 9. Xu, Q., et al., Crystal and electronic structures of CuxS solar cell absorbers. Applied Physics Letters, 2012. 100(6): p. 061906. 10. Li, B., et al., Large-Size 2D β-Cu2S Nanosheets with Giant Phase Transition Temperature Lowering (120 K) Synthesized by a Novel Method of Super-Cooling Chemical-Vapor-Deposition. Advanced Materials, 2016. 28(37): p. 8271-8276. 11. Thiel, F., C. Palencia, and H. Weller, Kinetic Analysis of the Cation Exchange in Nanorods from Cu2–xS to CuInS2: Influence of Djurleite’s Phase Transition Temperature on the Mechanism. ACS Nano, 2023. 17(4): p. 3676-3685. 12. Akhil, S. and R.G. Balakrishna, CuBiS2 Ternary Quantum Dots: Tuning the Deposition Technique for Enhanced Photovoltaic Performance. ACS Applied Energy Materials, 2023. 13. de Souza Lucas, F.W., et al., Effects of Thermochemical Treatment on CuSbS2 Photovoltaic Absorber Quality and Solar Cell Reproducibility. The Journal of Physical Chemistry C, 2016. 120(33): p. 18377-18385. 14. Yuan, Y.J., et al., MoS2 Nanosheet‐Modified CuInS2 Photocatalyst for Visible‐Light‐Driven Hydrogen Production from Water. ChemSusChem, 2016. 9(9): p. 1003-1009. 15. Chumha, N., et al., Photocatalytic activity of CuInS2 nanoparticles synthesized via a simple and rapid microwave heating process. Materials Research Express, 2020. 7(1): p. 015074. 16. Jara, D.H., et al., Size-Dependent Photovoltaic Performance of CuInS2 Quantum Dot-Sensitized Solar Cells. Chemistry of Materials, 2014. 26(24): p. 7221-7228. 17. Chang, J. and E.R. Waclawik, Colloidal semiconductor nanocrystals: controlled synthesis and surface chemistry in organic media. RSC Advances, 2014. 4(45): p. 23505-23527. 18. Delmonte, D., et al., Metastable (CuAu-type) CuInS2 Phase: High-Pressure Synthesis and Structure Determination. Inorganic Chemistry, 2020. 59(16): p. 11670-11675. 19. Moreau, A., et al., Impact of Cu–Au type domains in high current density CuInS2 solar cells. Solar Energy Materials and Solar Cells, 2015. 139: p. 101-107. 20. Golobostanfard, M.R., H. Abdizadeh, and A. Jannati, Solution processable wurtzite CuInS2 inverted type solar cell. Solar Energy Materials and Solar Cells, 2017. 164: p. 1-6. 21. Cao, Y., et al., Unconventional superconductivity in magic-angle graphene superlattices. Nature, 2018. 556(7699): p. 43-50. 22. Chin, H.-T., et al., Ferroelectric 2D ice under graphene confinement. Nature Communications, 2021. 12(1): p. 6291. 23. Huang, L., et al., Intercalation of metal islands and films at the interface of epitaxially grown graphene and Ru (0001) surfaces. Applied Physics Letters, 2011. 99(16). 24. Liu, Y., et al., Mechanism of Metal Intercalation under Graphene through Small Vacancy Defects. The Journal of Physical Chemistry C, 2021. 125(12): p. 6954-6962. 25. Al-Ezzi, A.S. and M.N.M. Ansari, Photovoltaic Solar Cells: A Review. Applied System Innovation, 2022. 5(4): p. 67. 26. Yin, L., et al., High-Performance Memristors Based on Ultrathin 2D Copper Chalcogenides. Advanced Materials, 2022. 34(9): p. 2108313. 27. Xu, X., et al., High-TC Two-Dimensional Ferroelectric CuCrS2 Grown via Chemical Vapor Deposition. ACS Nano, 2022. 16(5): p. 8141-8149. 28. Chin, H.-T., et al., Ultra-thin 2D transition metal monochalcogenide crystals by planarized reactions. npj 2D Materials and Applications, 2021. 5(1): p. 28. 29. Available from: https://www.db2l.com/. 30. Souissi, R., et al., Substrate temperature effect on microstructure, oxygen adsorption and ethanol sensing response of sprayed In2S3 films. Journal of Materials Science: Materials in Electronics, 2019. 30(22): p. 20069-20078. 31. Larsen, J.K., et al., Experimental and theoretical study of stable and metastable phases in sputtered CuInS2. Advanced Science, 2022. 9(23): p. 2200848. 32. Saadallah, F., et al., Optical and Thermal Properties of In2S3. International Journal of Photoenergy, 2011. 2011: p. 734574. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90146 | - |
dc.description.abstract | 隨著地球平均溫度不斷升高,極端天氣的發生也變得越來越頻繁。為了減緩這個趨勢,人們開始尋找再生能源。硫化銦銅(CuInS2)是一個可靠的光伏材料來採集太陽能。很多研究者在鑽研如何提升材料的轉換效率,不過,關於CuInS2的特性還有未被探討的部分。
為了回答這個問題,我們試著用一種新方法來合成纖鋅礦型銅金態CuInS2。在這個方法中,我們在石墨烯壓力下將β態硫化亞銅轉換成纖鋅礦型銅金態CuInS2。這個材料的光伏特性是不好的,不過我們發現在石墨烯影響下,它有鐵電的特性。這個新的生長方法展示了合成其他亞穩態材料的可能性。 | zh_TW |
dc.description.abstract | As the average temperature of the earth keep rising, the occurrence of extreme weather has become much more frequent. To slow down the trend, people look out for renewable energy. CuInS2 is a promising photovoltaic material for harvesting solar energy. Many researchers are focusing on how to enhance the conversion efficiency of the material. However, the property of CuInS2 has not yet been fully discussed.
To answer the remain question, we try to synthesize wurtzite CuAu-CuInS2 with a new approach. In this new method, we convert β-Cu2S to wurtzite CuAu-CuInS2 with graphene confinement. The photovoltaic property of this material is poor, but there is ferroelectric characteristics induced by graphene. This new method shows the possibility to synthesize other metastable material. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T17:36:39Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-09-22T17:36:39Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | Acknowledgement I
摘要 II ABSTRACT III CONTENTS IV LIST OF FIGURES VI Chapter 1 Introduction 1 1.1 Copper based chalcogenide 1 1.1.1 Binary copper chalcogenide 2 1.1.2 Ternary copper chalcogenide 3 1.2 Graphene confinement 4 1.3 Metal intercalation 5 1.4 Topotactic transformation 6 1.5 Photovoltaic effect 7 1.6 Ferroelectric 8 1.7 Motivation 8 Chapter 2 Experimental Process and Appartus 10 2.1 Experimental Process 10 2.1.1 Graphene growth 10 2.1.2 β-Cu2S Growth 11 2.1.3 Transfer Process 11 2.1.4 Indium Addition 12 2.1.5 Argon Plasma Etching 13 2.2 Apparatus 14 2.2.1 Chemical Vapor Deposition (CVD) system 14 2.2.2 Thermal Evaporator 14 2.2.3 Linkam system 15 2.2.4 Photolithography 16 2.2.5 Argon Plasma 17 2.2.6 Raman and photoluminescence (PL) system 18 2.2.7 Atomic Force Microscope (AFM) 19 2.2.8 Focused Ion Beam (FIB) 20 2.2.9 Transmission Electron Microscope (TEM) 20 2.2.10 Energy-dispersive X-ray spectroscopy (EDX) 22 2.2.11 X-ray Photoelectron Spectroscopy (XPS) 22 2.2.12 Electrical measurement system 23 Chapter 3 Result and Dicusssion 24 3.1 Cu2S on indium 24 3.1.1 Low pressure 24 3.1.2 Ambient pressure 26 3.2 Indium intercalation 28 3.3 Photovoltaic property of wurtzite CuAu-CuInS2 33 3.4 Ferroelectric property of wurtzite CuAu-CuInS2 34 Chapter 4 Conclusion 35 Reference 36 | - |
dc.language.iso | en | - |
dc.title | 在石墨烯限制下的β態硫化亞銅至纖鋅礦銅金態硫化銦銅的拓撲變換 | zh_TW |
dc.title | Topotactic Transformation of β-Cu2S to Wurtzite CuAu-CuInS2 with Graphene Confinement | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 謝雅萍;邱聖貴;丁初稷 | zh_TW |
dc.contributor.oralexamcommittee | Ya-Ping Hsieh;Sheng-Kuei Chiu;Chu-Chi Ting | en |
dc.subject.keyword | 硫化亞銅,硫化銦銅,石墨烯,光伏,鐵電, | zh_TW |
dc.subject.keyword | Cu2S,CuInS2,graphene,photovoltaic,ferroelectric, | en |
dc.relation.page | 38 | - |
dc.identifier.doi | 10.6342/NTU202303642 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2023-08-11 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 應用物理研究所 | - |
顯示於系所單位: | 應用物理研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 5.34 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。