Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工業工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90121
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳政鴻zh_TW
dc.contributor.advisorCheng-Hung Wuen
dc.contributor.author張宇翔zh_TW
dc.contributor.authorYu-Hsiang Changen
dc.date.accessioned2023-09-22T17:30:06Z-
dc.date.available2023-11-09-
dc.date.copyright2023-09-22-
dc.date.issued2023-
dc.date.submitted2023-08-09-
dc.identifier.citation姚怡均. (2017). 考量機台損耗之非等效動態生產系統派工與保養. 臺灣大學工業工程學研究所學位論文, 1-106.
孫巧儒. (2018). 具擴充性之多機台動態派工與預防保養方法. 臺灣大學工業工程學研究所學位論文, 1-145.
蔡沂芯. (2019). 應用多智能體分解與合成之動態派工與預防保養方法
鍾逢耘. (2020). 動態派工與預保養之強化學習方法初探
Shijin Wang, Ming Liu and Chengbin Chu (2014) A branch-and-bound algorithm for two-stage no-wait hybrid flow-shop scheduling. International journal of production research , 53(4), 1143-1167.
Sven Schulz , Udo Buscher , Liji Shen (2020) Multi-objective hybrid flow shop scheduling with variable discrete production speed levels and time-of-use energy prices. Journal of Business Economics. 90(3), 1315-1343
Vicente Valls, Francisco Ballestin and Sacramento Quintanilla (2008) A hybrid genetic algorithm for the resource-constrained project scheduling problem. European Journal of Operational Research. 185(2), 495-508
Patel, V., ElMaraghy, H. A., & Ben-Abdallah, I. (1999, October). Scheduling in dual-resources constrained manufacturing systems using genetic algorithms. In 1999 7th IEEE International Conference on Emerging Technologies and Factory Automation. Proceedings ETFA'99 (Cat. No. 99TH8467) (Vol. 2, pp. 1131-1139). IEEE.
ElMaraghy, H., Patel, V., & Abdallah, I. B. (2000). Scheduling of manufacturing systems under dual-resource constraints using genetic algorithms. Journal of Manufacturing Systems, 19(3), 186-201.
Araz, O. U. (2005, December). A simulation based multi-criteria scheduling approach of dual-resource constrained manufacturing systems with neural networks. In Australasian Joint Conference on Artificial Intelligence (pp. 1047-1052). Springer, Berlin, Heidelberg.
Zhang, J., Wang, W., & Xu, X. (2017). A hybrid discrete particle swarm optimization for dual-resource constrained job shop scheduling with resource flexibility. Journal of intelligent Manufacturing, 28(8), 1961-1972.
Li, H., Li, M., Liu, Q., & Li, S. (2010, August). Integrated optimization research on preventive maintenance planning and production scheduling. In 2010 International Conference on Management and Service Science (pp. 1-5). IEEE.
Li, J., Sun, S., Huang, Y., & Wang, N. (2010, May). Research into self-adaptive hybrid ant colony algorithm based on flow control. In 2010 2nd International Workshop on Intelligent Systems and Applications (pp. 1-4). IEEE.
Li, J., Sun, S., & Huang, Y. (2011). Adaptive Hybrid ant colony optimization for solving Dual Resource Constrained Job Shop Scheduling Problem. J. Softw., 6(4), 584-594.
Lei, D., & Guo, X. (2014). Variable neighbourhood search for dual-resource constrained flexible job shop scheduling. International Journal of Production Research, 52(9), 2519-2529.
Lei, D., & Guo, X. (2015). An effective neighborhood search for scheduling in dual-resource constrained interval job shop with environmental objective. International Journal of Production Economics, 159, 296-303.
Zheng, F., & Sui, Y. (2019, September). A bi-objective model for dual-resource constrained job shop scheduling with the consideration of energy consumption. In 2019 International Conference on Industrial Engineering and Systems Management (IESM) (pp. 1-6). IEEE.
Meng, L., Zhang, C., Zhang, B., & Ren, Y. (2019). Mathematical modeling and optimization of energy-conscious flexible job shop scheduling problem with worker flexibility. IEEE Access, 7, 68043-68059.
Yazdani, M., Zandieh, M., Tavakkoli-Moghaddam, R., & Jolai, F. (2015). Two meta-heuristic algorithms for the dual-resource constrained flexible job-shop scheduling problem. Scientia Iranica, 22(3), 1242-1257.
Elvers, D. A., & Treleven, M. D. (1985). Job‐shop vs. hybrid flow‐shop routing in a dual resource constrained system. Decision Sciences, 16(2), 213-222.
Huang, P. Y., Moore, L. J., & Russell, R. S. (1984). Workload vs scheduling policies in a dual-resource constrained job shop. Computers & Operations Research, 11(1), 37-47.
Wang Wan-Liang, Wu Qi-di. Intelligent production scheduling algorithm and its application. Beijing: Science Press, 2007.
Suresh V, Chandhuri D. Dynamic scheduling - A survey of research . Int J of Prod Econ, 1993, 32, (1), 53-63.
Sabuncuoglu Ihsan, Kizilisik Omer Batuhan. Reactive Scheduling in a Dynamic and Stochastic FMS Environment . International Journal of Production Research, 2003, 41(17): 4211-4231.
Fox M S,Smith S F.ISIS: A knowledge based system for factory scheduling.Expert Systems,v 1,n 1,July1984 :25-49
Vinod, V., Sridharan, R. (2008) Dynamic job-shop scheduling with sequence-dependent setup times: simulation modeling and analysis. Int. J. Adv. Manuf. Technol. 36(3), 355–372
Bellman, R. (1952). On the theory of dynamic programming. Proceedings of the national Academy of Sciences, 38(8), 716-719.
Bellman, R. (1954). The theory of dynamic programming. Bulletin of the American Mathematical Society, 60(6), 503-515.
Abdul-Razaq, T. S., Potts, C. N., & Van Wassenhove, L. N. (1990). A survey of algorithms for the single machine total weighted tardiness scheduling problem. Discrete Applied Mathematics, 26(2-3), 235-253.
Potts, C. N., & Van Wassenhove, L. N. (1987). Dynamic programming and decomposition approaches for the single machine total tardiness problem. European Journal of Operational Research, 32(3), 405-414.
Giorgi Tadumadze, Simon Emde & Heiko Diefenbach (2020) Exact and heuristic algorithms for scheduling jobs with time windows on unrelated parallel machines.OR Spectrum 42(1), 461-497
Fuchigami H.Y., Rangel S. (2018) A survey of case studies in production scheduling: Analysis and perspectives. Journal of Computer Science, 25 pp. 425-436
Tomazella, C. P., & Nagano, M. S. (2020). A comprehensive review of Branch-and-Bound algorithms: Guidelines and directions for further research on the flowshop scheduling problem. Expert Systems with Applications, 158, 113556.
Warren B. Powell (2019) A unified framework for stochastic optimization .European Journal of Operational Research 275(3), 795-821
Hang Shuai, Jiakun Fang, Xiaomeng Ai, Wei Yao, Jinyu Wen, Haibo He (2019) On-Line Energy Management of Microgrid via Parametric Cost Function Approximation. IEEE transactions on power systems 34(4), 3300-3302
M Rempel, J Cai (2021) A review of approximate dynamic programming applications within military operations research. Operations research perspectives 8
Liu Renke, Rajesh Piplani & Carlos Toro (2021)A Review of Dynamic Scheduling: Context, Techniques and Prospects. Part of the Intelligent Systems Reference Library book series202 , 229-258
Bertolini, M., Mezzogori, D., Neroni, M., & Zammori, F. (2021). Machine Learning for industrial applications: A comprehensive literature review. Expert Systems with Applications, 175, 114820.
Sobie, C., Freitas, C., & Nicolai, M. (2018). Simulation-driven machine learning: Bearing fault classification. Mechanical Systems and Signal Processing, 99, 403–419.
Wu, H., Yu, Z., & Wang, Y. (2019). Experimental study of the process failure diagnosis in additive manufacturing based on acoustic emission. Measurement, 136, 445–453.
Wu, H., Yu, Z., & Wang, Y. (2019). Experimental study of the process failure diagnosis in additive manufacturing based on acoustic emission. Measurement, 136, 445–453.
Saxena, A., & Saad, A. (2007). Evolving an artificial neural network classifier for condition monitoring of rotating mechanical systems. Applied Soft Computing, 7(1), 441-454.
Grzonka, D., Kołodziej, J., Tao, J., & Khan, S. U. (2015). Artificial neural network support to monitoring of the evolutionary driven security aware scheduling in computational distributed environments. Future Generation Computer Systems, 51, 72-86.
Kankar, P. K., Sharma, S. C., & Harsha, S. P. (2011). Fault diagnosis of ball bearings using machine learning methods. Expert Systems with applications, 38(3), 1876-1886.
Kuhnle, A., Jakubik, J., & Lanza, G. (2019). Reinforcement learning for opportunistic maintenance optimization. Production Engineering, 13(1), 33-41.
Susto, G. A., Schirru, A., Pampuri, S., McLoone, S., & Beghi, A. (2014). Machine learning for predictive maintenance: A multiple classifier approach. IEEE transactions on industrial informatics, 11(3), 812-820.
Lenz, B., Barak, B., Mührwald, J., & Leicht, C. (2013, December). Virtual metrology in semiconductor manufacturing by means of predictive machine learning models. In 2013 12th international conference on machine learning and applications (Vol. 2, pp. 174-177). IEEE.
Saucedo-Espinosa, M. A., Escalante, H. J., & Berrones, A. (2017). Detection of defective embedded bearings by sound analysis: a machine learning approach. Journal of Intelligent Manufacturing, 28(2), 489-500.
Liu, Z., Jia, Z., Vong, C. M., Bu, S., Han, J., & Tang, X. (2017). Capturing high-discriminative fault features for electronics-rich analog system via deep learning. IEEE Transactions on Industrial Informatics, 13(3), 1213-1226.
Kim, A., Oh, K., Jung, J. Y., & Kim, B. (2018). Imbalanced classification of manufacturing quality conditions using cost-sensitive decision tree ensembles. International Journal of Computer Integrated Manufacturing, 31(8), 701-717.
Wuest, T., Irgens, C., & Thoben, K. D. (2014). An approach to monitoring quality in manufacturing using supervised machine learning on product state data. Journal of Intelligent Manufacturing, 25(5), 1167-1180.
Nakata, K., Orihara, R., Mizuoka, Y., & Takagi, K. (2017). A comprehensive big-data-based monitoring system for yield enhancement in semiconductor manufacturing. IEEE Transactions on Semiconductor Manufacturing, 30(4), 339-344.
Chen, Y. J., Fan, C. Y., & Chang, K. H. (2016). Manufacturing intelligence for reducing false alarm of defect classification by integrating similarity matching approach in CMOS image sensor manufacturing. Computers & Industrial Engineering, 99, 465-473.
El-Bendary, N., El Hariri, E., Hassanien, A. E., & Badr, A. (2015). Using machine learning techniques for evaluating tomato ripeness. Expert Systems with Applications, 42(4), 1892-1905.
Scime, L., & Beuth, J. (2018). A multi-scale convolutional neural network for autonomous anomaly detection and classification in a laser powder bed fusion additive manufacturing process. Additive Manufacturing, 24, 273-286.
Arredondo, F., & Martinez, E. (2010). Learning and adaptation of a policy for dynamic order acceptance in make-to-order manufacturing. Computers & Industrial Engineering, 58(1), 70-83.
Li, S., Liu, G., Tang, X., Lu, J., & Hu, J. (2017). An ensemble deep convolutional neural network model with improved D-S evidence fusion for bearing fault diagnosis. Sensors, 17(8), 1729
Agarwal, P., Tamer, M., Sahraei, M. H., & Budman, H. (2019). Deep learning for classification of profit-based operating regions in industrial processes. Industrial & Engineering Chemistry Research, 59(6), 2378-2395.
Tahir, M. F., & Saqib, M. A. (2016). Optimal scheduling of electrical power in energy-deficient scenarios using artificial neural network and Bootstrap aggregating. International Journal of Electrical Power & Energy Systems, 83, 49-57
Kim, D., Moon, S., Hostallero, D., Kang, W. J., Lee, T., Son, K., & Yi, Y. (2019). Learning to schedule communication in multi-agent reinforcement learning. arXiv preprint arXiv:1902.01554.
Vahid Nasir & Farrokh Sassani (2021) A review on deep learning in machining and tool monitoring: methods, opportunities, and challenges. The International Journal of Advanced Manufacturing Technology volume 115, 2683–2709
Priore, P., Ponte, B., Puente, J., & Gómez, A. (2018). Learning-based scheduling of flexible manufacturing systems using ensemble methods. Computers & Industrial Engineering, 126, 282-291.
Heger, J., Branke, J., Hildebrandt, T., & Scholz-Reiter, B. (2016). Dynamic adjustment of dispatching rule parameters in flow shops with sequence-dependent set-up times. International Journal of Production Research, 54(22), 6812-6824.
Tripathy, B., Dash, S., & Padhy, S. K. (2015). Multiprocessor scheduling and neural network training methods using shuffled frog-leaping algorithm. Computers & Industrial Engineering, 80, 154-158.
Shin, M., Ryu, K., & Jung, M. (2012). Reinforcement learning approach to goal-regulation in a self-evolutionary manufacturing system. Expert Systems with Applications, 39(10), 8736-8743.
Dornheim, J., Link, N., & Gumbsch, P. (2020). Model-free adaptive optimal control of episodic fixed-horizon manufacturing processes using reinforcement learning. International Journal of Control, Automation and Systems, 18(6), 1593-1604.
Joswiak, M., Peng, Y., Castillo, I., & Chiang, L. H. (2019). Dimensionality reduction for visualizing industrial chemical process data. Control Engineering Practice, 93, 104189.
Ezugwu, A. E., Frincu, M. E., Adewumi, A. O., Buhari, S. M., & Junaidu, S. B. (2017). Neural network‐based multi‐agent approach for scheduling in distributed systems. Concurrency and Computation: Practice and Experience, 29(1), e3887.
Panagiotis D.Paraschos, Georgios K.Koulinas ,Dimitrios E.Koulouriotis (2020) Reinforcement learning for combined production-maintenance and quality control of a manufacturing system with deterioration failures. Journal of Manufacturing Systems 56, 470-483
Kuhnle, A., Kaiser, J. P., Theiß, F., Stricker, N., & Lanza, G. (2021). Designing an adaptive production control system using reinforcement learning. Journal of Intelligent Manufacturing, 32(3), 855-876.
Changwei Ren, Lixingjian An, Zhanquan Gu, Yuexuan Wang & Yunjun Gao (2020)
Rebalancing the car-sharing system with reinforcement learning. World Wide Web volume 23, 2491–2511
Nguyen H, La H. Review of Deep Reinforcement Learning for Robot Manipulation. In: 2019 Third IEEE International Conference on robotic computing (IRC). Naples, Italy; 2019, pp. 590– 595.
Huang Z, van der Aalst WMP, Lu X, Duan H. Reinforcement learning based resource allocation in business process management. Data Knowl Eng. 2011;70(1):127–45.
Zhao X, Zong Q, Tian B, Zhang B, You M. Fast task allocation for heterogeneous aunmanned aerial vehicles through reinforcement learning. Aerosp Sci Technol. 2019;92:588–94.
Bouazza, W., Sallez, Y., & Beldjilali, B. (2017). A distributed approach solving partially flexible job-shop scheduling problem with a Q-learning effect. IFAC-PapersOnLine, 50(1), 15890-15895.
Wang, Y. F. (2020). Adaptive job shop scheduling strategy based on weighted Q-learning algorithm. Journal of Intelligent Manufacturing, 31(2), 417-432.
Stricker, N., Kuhnle, A., Sturm, R., & Friess, S. (2018). Reinforcement learning for adaptive order dispatching in the semiconductor industry. CIRP Annals, 67(1), 511-514.
Wang, H. X., & Yan, H. S. (2016). An interoperable adaptive scheduling strategy for knowledgeable manufacturing based on SMGWQ-learning. Journal of Intelligent Manufacturing, 27(5), 1085-1095.
Kardos, C., Laflamme, C., Gallina, V., & Sihn, W. (2021). Dynamic scheduling in a job-shop production system with reinforcement learning. Procedia CIRP, 97, 104-109.
Luo, B., Wang, S., Yang, B., & Yi, L. (2021, April). An improved deep reinforcement learning approach for the dynamic job shop scheduling problem with random job arrivals. In Journal of Physics: Conference Series (Vol. 1848, No. 1, p. 012029). IOP Publishing.
Shahrabi, J., Adibi, M. A., & Mahootchi, M. (2017). A reinforcement learning approach to parameter estimation in dynamic job shop scheduling. Computers & Industrial Engineering, 110, 75-82.
Wang, H., Sarker, B. R., Li, J., & Li, J. (2021). Adaptive scheduling for assembly job shop with uncertain assembly times based on dual Q-learning. International Journal of Production Research, 59(19), 5867-5883.
Han, W., Guo, F., & Su, X. (2019). A reinforcement learning method for a hybrid flow-shop scheduling problem. Algorithms, 12(11), 222.
Fonseca-Reyna, Y. C., & Martínez-Jiménez, Y. (2017). Adapting a Reinforcement Learning Approach for the Flow Shop Environment with sequence-dependent setup time. Revista Cubana de Ciencias Informáticas, 11(1), 41-57.
Zhao, F., Zhang, L., Cao, J., & Tang, J. (2021). A cooperative water wave optimization algorithm with reinforcement learning for the distributed assembly no-idle flowshop scheduling problem. Computers & Industrial Engineering, 153, 107082.
Yang, H., Li, W., & Wang, B. (2021). Joint optimization of preventive maintenance and production scheduling for multi-state production systems based on reinforcement learning. Reliability Engineering & System Safety, 214, 107713.
V. Kumar, A. A. Laghari, S. Karim, M. Shakir, and A. A. Brohi, “Comparison of fog computing & cloud computing,” Int. J. Math. Sci. Comput., vol. 5, no. 1, pp. 31–41, 2019.
Y. Zhang, J. Zhou, and J. Sun, “Scheduling bag-of-tasks applications on hybrid clouds under due date constraints,” J. Syst. Archit., vol. 101, p. 101654, 2019.
Luo S. Dynamic scheduling for fexible job shop with new job insertions by deep reinforcement learning. Appl Soft Comput. 2020;91:106208.
Palombarini, J. A., & Martínez, E. C. (2019). Closed-loop rescheduling using deep reinforcement learning. IFAC-PapersOnLine, 52(1), 231-236.
Xiao, P. F., Zhang, C. Y., Meng, L. L., Hong, H., & Dai, W. (2021). Non-permutation flow shop scheduling problem based on deep reinforcement learning (in Chinese). Computer Integrated Manufacturing Systems, 27(1), 192-205.
Szarski, M., & Chauhan, S. (2021). Composite temperature profile and tooling optimization via Deep Reinforcement Learning. Composites Part A: Applied Science and Manufacturing, 142, 106235.
Yoo, H., Kim, B., Kim, J. W., & Lee, J. H. (2021). Reinforcement learning based optimal control of batch processes using Monte-Carlo deep deterministic policy gradient with phase segmentation. Computers & Chemical Engineering, 144, 107133.
Lin, C. C., Deng, D. J., Chih, Y. L., & Chiu, H. T. (2019). Smart manufacturing scheduling with edge computing using multiclass deep Q network. IEEE Transactions on Industrial Informatics, 15(7), 4276-4284.
Palombarini, J. A., & Martínez, E. C. (2018, June). Automatic generation of rescheduling knowledge in socio-technical manufacturing systems using deep reinforcement learning. In 2018 IEEE Biennial Congress of Argentina (ARGENCON) (pp. 1-8). IEEE.
Palombarini, J. A., & Martínez, E. C. (2019). Closed-loop rescheduling using deep reinforcement learning. IFAC-PapersOnLine, 52(1), 231-236.
Waschneck, B., Reichstaller, A., Belzner, L., Altenmüller, T., Bauernhansl, T., Knapp, A., & Kyek, A. (2018). Optimization of global production scheduling with deep reinforcement learning. Procedia Cirp, 72, 1264-1269.
Baer, S., Bakakeu, J., Meyes, R., & Meisen, T. (2019, September). Multi-agent reinforcement learning for job shop scheduling in flexible manufacturing systems. In 2019 Second International Conference on Artificial Intelligence for Industries (AI4I) (pp. 22-25). IEEE.
Zhou, L., Zhang, L., & Horn, B. K. (2020). Deep reinforcement learning-based dynamic scheduling in smart manufacturing. Procedia Cirp, 93, 383-388.
Wu, C. X., Liao, M. H., Karatas, M., Chen, S. Y., & Zheng, Y. J. (2020). Real-time neural network scheduling of emergency medical mask production during COVID-19. Applied Soft Computing, 97, 106790
Zhao, F., Zhang, L., Cao, J., & Tang, J. (2021). A cooperative water wave optimization algorithm with reinforcement learning for the distributed assembly no-idle flowshop scheduling problem. Computers & Industrial Engineering, 153, 107082.
Lowe R, Wu Y, Tamar A, Harb J, Abbeel P, Mordatch I. Multiagent actor-critic for mixed cooperative-competitive environments. arXiv:170602275 [cs] [Internet]. 2017 Jun 7;
Wei Y, Yu FR, Song M, Han Z. User scheduling and resource allocation in HetNets with hybrid energy supply: an actor-critic reinforcement learning approach. IEEE Trans Wirel Commun. 2018;17(1):680–92.
Liu C-L, Chang C-C, Tseng C-J. Actor-critic deep reinforcement learning for solving job shop scheduling problems. IEEE Access. 2020;8:71752–62.
Zimmerling, C., Poppe, C., & Kärger, L. (2020). Estimating optimum process parameters in textile draping of variable part geometries-A reinforcement learning approach. Procedia Manufacturing, 47, 847-854.
He, Z., Tran, K. P., Thomassey, S., Zeng, X., Xu, J., & Yi, C. (2021). A deep reinforcement learning based multi-criteria decision support system for optimizing textile chemical process. Computers in Industry, 125, 103373.
Xu, X., Xie, H., & Shi, J. (2020, November). Iterative learning control (ILC) guided reinforcement learning control (RLC) scheme for batch processes. In 2020 IEEE 9th Data Driven Control and Learning Systems Conference (DDCLS) (pp. 241-246). IEEE.
Yu, J., & Guo, P. (2020). Run-to-run control of chemical mechanical polishing process based on deep reinforcement learning. IEEE Transactions on Semiconductor Manufacturing, 33(3), 454-465.
Chen, N., Luo, S., Dai, J., Luo, B., & Gui, W. (2020). Optimal control of iron-removal systems based on off-policy reinforcement learning. IEEE Access, 8, 149730-149740.
Römer, M., Bergers, J., Gabriel, F., & Dröder, K. (2022). Temperature control for automated tape laying with infrared heaters based on reinforcement learning. Machines, 10(3), 164.
Li, M., Guo, B., Zhang, J., Liu, J., Liu, S., Yu, Z., ... & Xiang, L. (2021, October). Decentralized multi-agv task allocation based on multi-agent reinforcement learning with information potential field rewards. In 2021 IEEE 18th International Conference on Mobile Ad Hoc and Smart Systems (MASS) (pp. 482-489). IEEE.
Zhao, Y., & Zhang, H. (2021). Application of machine learning and rule scheduling in a job-shop production control system. Int. J. Simul. Model, 20(2), 410-421.
Lee, Y. H., & Lee, S. (2022). Deep reinforcement learning based scheduling within production plan in semiconductor fabrication. Expert Systems with Applications, 191, 116222.
Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., & Riedmiller, M. (2013). Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602.
Nachum, O., Norouzi, M., Xu, K., & Schuurmans, D. (2017). Bridging the gap between value and policy based reinforcement learning. Advances in neural information processing systems, 30.
Huang, J., Down, D. G., Lewis, M. E., & Wu, C. H. (2022). Dynamically scheduling and maintaining a flexible server. Naval Research Logistics (NRL), 69(2), 223-240.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90121-
dc.description.abstract本研究針對大型生產系統動態派工與保養問題進行初步探討,針對多產品單機台問題開發強化學習模型,該模型透過使智能體(Agent)與環境(Environment)不斷互動所得到的獎勵(Reward)來更新決策,透過正規化將時間軸做離散處理,以事件導向的方式直接在深度Q網路中(Deep Q Network, DQN)中對各狀態進行模擬,預測出近似最佳的動態派工決策,該方法能大大避免動態規劃常見的維度災難(Curse of dimensionality)問題,降低求解時間,彌補了動態規劃方法難以被實際應用於大型生產系統的缺點。
本研究的問題鎖定在考慮不確定性下的多產品單機台生產系統。目標為最小化等候成本,其中考慮的不確定性包含了機台健康狀態、需求率、加工率及保養/維修時間,透過比較DQN方法與C-u規則及DDPM方法的差異來呈現本研究的結果。實驗結果顯示在完工時間及總產出的表現上DQN方法皆較C-u規則優秀。雖不如DDPM方法但差異也不大,且在求解時間上有著極大的減少。
zh_TW
dc.description.abstractThis research proposes a preliminary discussion on the dynamic dispatch and maintenance of large-scale production systems, and develops a reinforcement learning model for the multi-product single-machine problem. To update the decision, the time axis is discretized through normalization, and the state is directly simulated in the deep Q network (Deep Q Network, DQN) in an event-oriented way to predict the approximate optimal dynamic dispatching decision , this method can avoid the Curse of dimensionality problem when using dynamic programming by reducing the solving time, conquer the dilemma of dynamic programming methods that are difficult to be practically applied to large-scale production systems.
The problem of this research is focus on the multi-product single-machine production system under the consideration of uncertainty. The goal is to minimize the holding cost. The uncertainties considered include machine health status, product arrival rate, processing rate and maintenance/repair time. This research is presented by comparing the differences between the result of DQN method、C-u rule and DDPM method. The experimental results show that the DQN method is better than the C-u rule in terms of completion time and total output. Although it is not as good as the DDPM method, the difference is not large, and the solution time is greatly reduced.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T17:30:06Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-22T17:30:06Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents目錄
第1章 緒論 1
1.1 研究背景與動機 1
1.2研究目的 2
1.3研究方法 4
1.4研究流程 4
第2章 文獻探討 6
2.1大型生產系統的派工與排程 6
2.1.1靜態派工 6
2.1.2派工法則 7
2.1.3動態派工 8
2.2神經網路於生產系統的應用 10
2.2.1監督式與非監督式學習 10
2.2.2強化學習 13
2.4.1基於價值迭代法的強化學習 14
2.4.2基於策略迭代法的強化學習 15
第3章 多產品單機台動態派工與保養 17
3.1問題描述與假設 17
3.1.1問題描述 17
3.1.2問題假設 18
3.2動態派工與保養模型 19
3.2.1參數與變數的定義 19
3.2.2多產品單機台動態派工與保養模型 20
第4章 應用強化學習的動態派工與保養決策 23
4.1強化學習介紹 23
4.1.1價值迭代法vs.策略迭代法 23
4.1.2DQN介紹 25
4.2DQN演算法介紹 28
4.2.1多產單機台強化學習參數設定 28
4.2.2演算法 29
4.2.3強化學習中超參數的調整 33
4.3兩產品單機台派工決策結果與探討 39
4.3.1實驗設計 39
4.3.2實驗結果與分析 42
4.4三產品單機台派工決策果與探討 46
4.4.1實驗設計 46
4.4.2實驗結果與分析 47
第5章 結論與未來方向 52
5.1結論 52
5.2未來研究方向 52
參考文獻列表 54
-
dc.language.isozh_TW-
dc.title應用深度Q網路之動態派工與預防保養方法zh_TW
dc.titleDeep Q Network for Dynamic Dispatching and Preventive Maintenanceen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳文智;周育樂zh_TW
dc.contributor.oralexamcommitteeWen-Chih Chen;Yu-Le Chouen
dc.subject.keyword強化學習,深度Q網路,動態派工,預防保養,降低複雜度,zh_TW
dc.subject.keywordReinforcement learning,Deep Q network,Dynamic dispatching,Preventive maintenance,Reducing complexity,en
dc.relation.page66-
dc.identifier.doi10.6342/NTU202303306-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-08-12-
dc.contributor.author-college工學院-
dc.contributor.author-dept工業工程學研究所-
dc.date.embargo-lift2028-08-02-
顯示於系所單位:工業工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  目前未授權公開取用
3.01 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved