Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90119
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳俊杉zh_TW
dc.contributor.advisorChuin-Shan Chenen
dc.contributor.author簡子堯zh_TW
dc.contributor.authorTzu-Yao Chienen
dc.date.accessioned2023-09-22T17:29:37Z-
dc.date.available2023-11-09-
dc.date.copyright2023-09-22-
dc.date.issued2023-
dc.date.submitted2023-08-10-
dc.identifier.citationTianyu Huang. Data-Driven Uncertainty Quantification and Multi-Domain Design Integration in Integrated Computational Materials Engineering (ICME). PhD thesis, Northwestern University, 2020.
Haiming Zhang, Martin Diehl, Franz Roters, and Dierk Raabe. A virtual laboratory using high resolution crystal plasticity simulations to determine the initial yield surface for sheet metal forming operations. International Journal of Plasticity, 80:111–138, 2016.
黃仲偉, 吳泓錡, 張慰慈, 鄭翊良, 楊文嘉, 游濟華, and 陳俊杉. 實現自己的材料庫: Abaqus UMAT 於計算力學之應用. 國立臺灣大學出版中心, 2022.
OR Myhr, Ø Grong, and SJ Andersen. Modelling of the age hardening behaviour of al–mg–si alloys. Acta Materialia, 49(1):65–75, 2001.
OR Myhr and Øystein Grong. Modelling of non-isothermal transformations in alloys containing a particle distribution. Acta Materialia, 48(7):1605–1615, 2000.
鄭翊良. 以差排密度之強化晶體塑性模型分析鋁合金之析出硬化. 2020.
Duancheng Ma. Crystal plasticity in metal forming simulation: Current status and future directions. 2014.
Robert J Asaro. Crystal plasticity. 1983.
Geoffrey Ingram Taylor. The mechanism of plastic deformation of crystals. part i. —theoretical. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 145(855):362–387, 1934.
H Mecking and UF Kocks. Kinetics of flow and strain-hardening. Acta metallurgica, 29(11):1865–1875, 1981.
Ole Runar Myhr, Øystein Grong, and Ketill Olav Pedersen. A combined precipitation, yield strength, and work hardening model for al-mg-si alloys. Metallurgical and Materials Transactions A, 41:2276–2289, 2010.
Sadik L Omairey, Peter D Dunning, and Srinivas Sriramula. Development of an abaqus plugin tool for periodic rve homogenisation. Engineering with Computers, 35(2):567–577, 2019.
Franz Roters, Martin Diehl, Pratheek Shanthraj, Philip Eisenlohr, C Reuber, Su Leen Wong, Tias Maiti, Alireza Ebrahimi, Thomas Hochrainer, H-O Fabritius, et al. Damask–the düsseldorf advanced material simulation kit for modeling multi-physics crystal plasticity, thermal, and damage phenomena from the single crystal up to the component scale. Computational Materials Science, 158:420–478, 2019.
Ole Runar Myhr, Odd Sture Hopperstad, and Tore Børvik. A combined precipitation, yield stress, and work hardening model for al-mg-si alloys incorporating the effects of strain rate and temperature. Metallurgical and Materials Transactions A, 49(8):3592–3609, 2018.
Fengbo Han, Franz Roters, and Dierk Raabe. Microstructure-based multiscale modeling of large strain plastic deformation by coupling a full-field crystal plasticity spectral solver with an implicit finite element solver. International Journal of Plasticity, 125:97–117, 2020.
Wei Dai, Huamiao Wang, Qiang Guan, Dayong Li, Yinghong Peng, and Carlos N Tomé. Studying the micromechanical behaviors of a polycrystalline metal by artificial neural networks. Acta Materialia, 214:117006, 2021.
Usman Ali, Waqas Muhammad, Abhijit Brahme, Oxana Skiba, and Kaan Inal. Application of artificial neural networks in micromechanics for polycrystalline metals. International Journal of Plasticity, 120:205–219, 2019.
M Mozaffar, R Bostanabad, W Chen, K Ehmann, Jian Cao, and MA Bessa. Deep learning predicts path-dependent plasticity. Proceedings of the National Academy of Sciences, 116(52):26414–26420, 2019.
Filippo Masi, Ioannis Stefanou, Paolo Vannucci, and Victor Maffi-Berthier. Thermodynamics-based artificial neural networks for constitutive modeling. Journal of the Mechanics and Physics of Solids, 147:104277, 2021.
Colin Bonatti and Dirk Mohr. One for all: Universal material model based on minimal state-space neural networks. Science Advances, 7(26):eabf3658, 2021.
Colin Bonatti and Dirk Mohr. On the importance of self-consistency in recurrent neural network models representing elasto-plastic solids. Journal of the Mechanics and Physics of Solids, 158:104697, 2022.
Burigede Liu, Nikola Kovachki, Zongyi Li, Kamyar Azizzadenesheli, Anima Anandkumar, Andrew M Stuart, and Kaushik Bhattacharya. A learning-based multiscale method and its application to inelastic impact problems. Journal of the Mechanics and Physics of Solids, 158:104668, 2022
Franz Roters, Philip Eisenlohr, Luc Hantcherli, Denny Dharmawan Tjahjanto, Thomas R Bieler, and Dierk Raabe. Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications. Acta materialia, 58(4):1152–1211, 2010.
JFW Bishop and Rodney Hill. Cxxviii. a theoretical derivation of the plastic properties of a polycrystalline face-centred metal. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 42(334):1298–1307, 1951.
Feng Lu, Jonas K Sunde, Calin D Marioara, Randi Holmestad, and Bjørn Holmedal. An improved modelling framework for strength and work hardening of precipitate strengthened al–mg–si alloys. Materials Science and Engineering: A, 832:142500, 2022.
WJ Poole*, X Wang, DJ Lloyd, and JD Embury. The shearable–non-shearable transition in al–mg–si–cu precipitation hardening alloys: implications on the distribution of slip, work hardening and fracture. Philosophical Magazine, 85(26-27):3113– 3135, 2005.
Ole Runar Myhr, Øystein Grong, and Carmen Schäfer. An extended age-hardening model for al-mg-si alloys incorporating the room-temperature storage and cold deformation process stages. Metallurgical and Materials Transactions A, 46:6018–6039, 2015.
Aude Simar, Yves Bréchet, B De Meester, A Denquin, and Thomas Pardoen. Sequential modeling of local precipitation, strength and strain hardening in friction stir welds of an aluminum alloy 6005a-t6. Acta Materialia, 55(18):6133–6143, 2007
Yonggang Huang. A user-material subroutine incroporating single crystal plasticity in the ABAQUS finite element program. Harvard Univ. Cambridge, MA, 1991.
Caroline A Schneider, Wayne S Rasband, and Kevin W Eliceiri. Nih image to imagej: 25 years of image analysis. Nature methods, 9(7):671–675, 2012.
Michael A Groeber and Michael A Jackson. Dream. 3d: a digital representation environment for the analysis of microstructure in 3d. Integrating materials and manufacturing innovation, 3:56–72, 2014.
DD Tjahjanto, P Eisenlohr, and F Roters. A novel grain cluster-based homogenization scheme. Modelling and Simulation in Materials Science and Engineering, 18(1):015006, 2009.
David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal representations by error propagation. Technical report, California Univ San Diego La Jolla Inst for Cognitive Science, 1985.
Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780, 1997.
Neerad Phansalkar, Sumit More, Ashish Sabale, and Madhuri Joshi. Adaptive local thresholding for detection of nuclei in diversity stained cytology images. In 2011 International conference on communications and signal processing, pages 218–220. IEEE, 2011.
O Engler, CD Marioara, Y Aruga, M Kozuka, and OR Myhr. Effect of natural ageing or pre-ageing on the evolution of precipitate structure and strength during age hardening of al–mg–si alloy aa 6016. Materials Science and Engineering: A, 759:520–529, 2019.
Qiang Du, Bjørn Holmedal, Jesper Friis, and Calin D Marioara. Precipitation of non-spherical particles in aluminum alloys part ii: numerical simulation and experimental characterization during aging treatment of an al-mg-si alloy. Metallurgical and Materials Transactions A, 47:589–599, 2016.
LM Cheng, WJ Poole, JD Embury, and DJ Lloyd. The influence of precipitation on the work-hardening behavior of the aluminum alloys aa6111 and aa7030. Metallurgical and Materials Transactions A, 34:2473–2481, 2003.
MF Ashby. The deformation of plastically non-homogeneous materials. The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics, 21(170):399–424, 1970.
Colin Bonatti, Bekim Berisha, and Dirk Mohr. From cp-fft to cp-rnn: Recurrent neural network surrogate model of crystal plasticity. International Journal of Plasticity, 158:103430, 2022.
Less Wright and Nestor Demeure. Ranger21: a synergistic deep learning optimizer. arXiv preprint arXiv:2106.13731, 2021.
Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017.
Aaron Defazio and Samy Jelassi. Adaptivity without compromise: a momentumized, adaptive, dual averaged gradient method for stochastic optimization. J Mach Learn Res, 23:1–34, 2022.
Michael Zhang, James Lucas, Jimmy Ba, and Geoffrey E Hinton. Lookahead optimizer: k steps forward, 1 step back. Advances in neural information processing systems, 32, 2019.
Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei Han. On the variance of the adaptive learning rate and beyond. arXiv preprint arXiv:1908.03265, 2019.
Wojciech M Czarnecki, Simon Osindero, Max Jaderberg, Grzegorz Swirszcz, and Razvan Pascanu. Sobolev training for neural networks. Advances in neural information processing systems, 30, 2017.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90119-
dc.description.abstract多尺度模擬被廣泛應用於探討微結構至非彈性機械性質,然而傳統上使用直接數值模擬(direct numerical simulation, DNS)同步的進行宏觀尺度的力學分析以及微觀尺度的材料模擬會耗費大量的計算資源,導致模擬的尺度受到了極大的限制。因此,本研究的目的為利用深度學習技術建立多尺度模擬平台,將DNS方法中微觀尺度的材料模型替換為基於機器學習的代理材料模型,利用代理材料模型極高的線上運算效率,深化多尺度模擬於工業等級尺度的應用價值。
本研究針對Al-Mg-Si高強度車用鋁合金以晶體塑性(crystal plasticity)建立DNS材料模型,透過TEM影像、EBSD分別獲取析出物物理參數以及晶體方向,此外,有鑑於鋁合金成型製程中常以中溫、高溫增加其延展性,導致鋁合金中析出物物理參數在成型過程中受到溫度效應影響而改變,因此本研究將析出物動力模型整合至晶體塑性模型,並與不同溫度下的拉伸實驗進行參數校正及驗證。
透過DNS材料模型產生資料,本研究訓練了基於循環神經網路(recurrent neural network, RNN)的代理材料模型,訓練結果顯示該模型能夠捕捉任意複雜變形下的歷史相關應力應變行為,並且能夠泛用到訓練資料集外的變形行為。此外,本研究亦將代理材料模型結合Abaqus材料副程式建立數據驅動多尺度模擬平台,並探討利用自動微分技術進行的隱式迭代求解的運算效率。
zh_TW
dc.description.abstractMultiscale simulation is widely used in modeling microstructure-induced inelastic mechanical behavior. However, conventional direct numerical simulation (DNS) performs mechanics analysis at the macroscale, and concurrently, performs material simulation at the microscale, leading to an expensive computational cost that makes the process infeasible. In this work, we aim to develop a data-driven multiscale simulation (DDMS) platform, in which a machine learning-based surrogate material model replaces the DNS model. We utilized the surrogate material model's extreme online prediction efficiency to increase the multiscale simulation's feasibility for large-scale applications. We proposed a crystal plasticity DNS material model for Al-Mg-Si high-strength aluminum alloys with physical parameters such as precipitate size distribution and crystallographic orientation obtained from TEM image and EBSD. In addition, the aluminum forming process at elevated temperatures is commonly used to increase ductility, leading to the dynamic growth of precipitates during the forming process. Therefore, we incorporate precipitation kinetics into the crystal plasticity model and calibrate the model with tensile tests at various temperatures. With the training data generated by the DNS material model, we trained a surrogate material model based on recurrent neural networks (RNN). The training results showed that the model is capable of capturing the historical stress-strain behavior under arbitrary complex deformations, and can be generalized to deformation behaviors beyond the training dataset. Furthermore, we implemented the surrogate material model in Abaqus material subroutine to establish an DDMS platform, and investigated the computational efficiency of implicit solver utilizing automatic differentiation techniques.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T17:29:37Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-22T17:29:37Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 vi
圖目錄 ix
表目錄 xii
第一章 緒論 1
1.1 研究背景 1
1.2 文獻回顧 4
1.2.1 晶體塑性模型 4
1.2.2 多尺度材料模擬 6
1.2.3 數據驅動多尺度材料模擬 7
1.3 研究目的 8
1.4 論文架構 8
第二章 理論與方法 10
2.1 多尺度材料模型 10
2.1.1 晶體塑性理論 11
2.1.2 材料組成律 13
2.1.3 析出動力模型 19
2.1.4 參數設置及實作 23
2.2 數據驅動多尺度材料模型 30
2.2.1 代理材料模型 30
2.2.2 深度學習方法 30
2.2.3 模型整合及實作 34
2.3 小結 35
第三章 晶體塑性模型驗證與分析 37
3.1 顯微結構參數計算 37
3.1.1 析出物參數實驗分析 37
3.1.2 析出動力模型模擬分析 39
3.2 6111 鋁合金拉伸分析 43
3.2.1 實驗設置與拉伸性能 43
3.2.2 模型設置 45
3.2.3 常溫拉伸模擬分析 45
3.2.4 升溫拉伸模擬分析 50
3.3 小結 53
第四章 數據驅動多尺度模擬驗證與應用 55
4.1 代理材料模型 55
4.1.1 資料集產生 55
4.1.2 訓練方法 57
4.1.3 結果與討論 60
4.2 數據驅動多尺度模擬 62
4.2.1 單元素驗證 65
4.2.2 懸臂樑彎曲模擬 65
4.2.3 狗骨頭單軸拉伸模擬 67
4.2.4 計算效率 69
4.3 小結 72
第五章 結論及未來展望 73
5.1 結論 73
5.2 未來展望 74
參考文獻 76
-
dc.language.isozh_TW-
dc.subject多尺度模擬zh_TW
dc.subject鋁合金zh_TW
dc.subject析出物zh_TW
dc.subject晶體塑性zh_TW
dc.subject循環神經網路zh_TW
dc.subjectprecipitateen
dc.subjectaluminum alloyen
dc.subjectmulti-scale simulationen
dc.subjectrecurrent neural networken
dc.subjectcrystal plasticityen
dc.title晶體塑性模型與基於深度學習之多尺度模擬於鋁合金之應用zh_TW
dc.titleCrystal Plasticity Model and Deep Learning Based Multi-scale Simulation for Aluminum Alloysen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee顏鴻威;黃琮暉zh_TW
dc.contributor.oralexamcommitteeHung-Wei Yen;Tsung-Hui Huangen
dc.subject.keyword鋁合金,析出物,晶體塑性,循環神經網路,多尺度模擬,zh_TW
dc.subject.keywordaluminum alloy,precipitate,crystal plasticity,recurrent neural network,multi-scale simulation,en
dc.relation.page82-
dc.identifier.doi10.6342/NTU202303676-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-08-11-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf29.16 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved