請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90104完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 藍俊宏 | zh_TW |
| dc.contributor.advisor | Jakey Blue | en |
| dc.contributor.author | 陳奕憲 | zh_TW |
| dc.contributor.author | Yi-Hsien Chen | en |
| dc.date.accessioned | 2023-09-22T17:25:55Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-09-22 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-09 | - |
| dc.identifier.citation | Babcock, B., Babu, S., Datar, M., Motwani, R., & Widom, J. (2002). Models and issues in data stream systems. Proceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems,
Bifet, A., & Gavaldà, R. (2007). Learning from Time-Changing Data with Adaptive Windowing (Vol. 7). https://doi.org/10.1137/1.9781611972771.42 Bifet, A., Holmes, G., & Pfahringer, B. (2010). Leveraging bagging for evolving data streams. Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2010, Barcelona, Spain, September 20-24, 2010, Proceedings, Part I 21, Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123-140. https://doi.org/10.1007/BF00058655 Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5-32. https://doi.org/10.1023/A:1010933404324 Buneman, O. (1959). Dissipation of currents in ionized media. Physical Review, 115(3), 503. Cai, H. S., Feng, J. S., Yang, Q. B., Li, W. Z., Li, X., & Lee, J. (2020). A virtual metrology method with prediction uncertainty based on Gaussian process for chemical mechanical planarization. COMPUTERS IN INDUSTRY, 119, Article 103228. https://doi.org/10.1016/j.compind.2020.103228 Chang, J. Y.-C., & Cheng, F.-T. (2005). Application development of virtual metrology in semiconductor industry. 31st Annual Conference of IEEE Industrial Electronics Society, 2005. IECON 2005., Chang, Y.-J., Kang, Y., Hsu, C.-L., Chang, C.-T., & Chan, T. Y. (2006). Virtual Metrology Technique for Semiconductor Manufacturing. The 2006 IEEE International Joint Conference on Neural Network Proceedings, Chen, C.-H., Zhao, W.-D., Pang, T., & Lin, Y.-Z. (2020). Virtual metrology of semiconductor PVD process based on combination of tree-based ensemble model. Isa Transactions, 103, 192-202. https://doi.org/https://doi.org/10.1016/j.isatra.2020.03.031 Chen, P., Wu, S., Lin, J., Ko, F., Lo, H., Wang, J., Yu, C. H., & Liang, M. S. (2005). Virtual metrology: a solution for wafer to wafer advanced process control. ISSM 2005, IEEE International Symposium on Semiconductor Manufacturing, 2005., Cheng, C., & Chiu, M.-S. (2004). A new data-based methodology for nonlinear process modeling. Chemical Engineering Science, 59(13), 2801-2810. https://doi.org/https://doi.org/10.1016/j.ces.2004.04.020 Chiang, L., Lu, B., & Castillo, I. (2017). Big Data Analytics in Chemical Engineering. Annual Review of Chemical and Biomolecular Engineering, 8(1), 63-85. https://doi.org/10.1146/annurev-chembioeng-060816-101555 Dawson, J. M., & Shanny, R. (1968). Some Investigations of Nonlinear Behavior in One‐Dimensional Plasmas. The Physics of Fluids, 11(7), 1506-1523. Domingos, P., & Hulten, G. (2000). Mining high-speed data streams Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining, Boston, Massachusetts, USA. https://doi.org/10.1145/347090.347107 Dreyfus, P. A., Psarommatis, F., May, G., & Kiritsis, D. (2021). Virtual metrology as an approach for product quality estimation in Industry 4.0: a systematic review and integrative conceptual framework. International Journal of Production Research, 60(2), 742-765. https://doi.org/10.1080/00207543.2021.1976433 Evans, C., Paul, E., Dornfeld, D., Lucca, D., Byrne, G., Tricard, M., Klocke, F., Dambon, O., & Mullany, B. (2003). Material removal mechanisms in lapping and polishing. CIRP annals, 52(2), 611-633. Fan, S. K. S., Hsu, C. Y., Tsai, D. M., He, F., & Cheng, C. C. (2020). Data-Driven Approach for Fault Detection and Diagnostic in Semiconductor Manufacturing. IEEE Transactions on Automation Science and Engineering, 17(4), 1925-1936. https://doi.org/10.1109/TASE.2020.2983061 Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences, 55(1), 119-139. Gaber, M. M. (2012). Advances in data stream mining. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2(1), 79-85. Gama, J., Medas, P., Castillo, G., & Rodrigues, P. (2004). Learning with Drift Detection. In (pp. 286-295). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-28645-5_29 Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., & Bouchachia, A. (2014). A survey on concept drift adaptation. ACM Computing Surveys, 46(4), 1-37. https://doi.org/10.1145/2523813 George, G., Haas, M. R., & Pentland, A. (2014). Big data and management. Harvard Business Review, 57(2), 321-326. Gomes, H. M., Bifet, A., Read, J., Barddal, J. P., Enembreck, F., Pfharinger, B., Holmes, G., & Abdessalem, T. (2017). Adaptive random forests for evolving data stream classification. Machine Learning, 106(9-10), 1469-1495. https://doi.org/10.1007/s10994-017-5642-8 Harries, M. B., Sammut, C., & Horn, K. (1998). Extracting hidden context. Machine Learning, 32(2), 101. Hashmani, M. A., Jameel, S. M., Rehman, M., & Inoue, A. (2020). Concept Drift Evolution In Machine Learning Approaches: A Systematic Literature Review. International Journal on Smart Sensing and Intelligent Systems, 13(1), 1-16. https://doi.org/10.21307/ijssis-2020-029 Hoi, S. C., Sahoo, D., Lu, J., & Zhao, P. (2021). Online learning: A comprehensive survey. Neurocomputing, 459, 249-289. Hsieh, Y.-M., Wang, T.-J., Lin, C.-Y., Peng, L.-H., Cheng, F.-T., & Shang, S.-Y. (2021). Convolutional Neural Networks for Automatic Virtual Metrology. IEEE Robotics and Automation Letters, 6(3), 5720-5727. https://doi.org/10.1109/lra.2021.3084882 Jen, C. H., Fan, S. K. S., & Lin, Y. Y. (2022). Data-Driven Virtual Metrology and Retraining Systems for Color Filter Processes of TFT-LCD Manufacturing [Article]. Ieee Transactions on Instrumentation and Measurement, 71, 12, Article 1006912. https://doi.org/10.1109/tim.2022.3207807 Kang, S., & Kang, P. (2017). An intelligent virtual metrology system with adaptive update for semiconductor manufacturing. Journal of Process Control, 52, 66-74. https://doi.org/https://doi.org/10.1016/j.jprocont.2017.02.002 Kelly, M. G., Hand, D. J., & Adams, N. M. (1999). The impact of changing populations on classifier performance. Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining, Khamassi, I., Sayed-Mouchaweh, M., Hammami, M., & Ghédira, K. (2016). Discussion and review on evolving data streams and concept drift adapting. Evolving Systems, 9(1), 1-23. https://doi.org/10.1007/s12530-016-9168-2 Khan, A. A., Moyne, J. R., & Tilbury, D. M. (2008). Virtual metrology and feedback control for semiconductor manufacturing processes using recursive partial least squares. Journal of Process Control, 18(10), 961-974. https://doi.org/https://doi.org/10.1016/j.jprocont.2008.04.014 Kim, D., Na, S., Kim, H., & Yun, I. (2023). Methodology for Plasma Diagnosis and Accurate Virtual Measurement Modeling using Optical Emission Spectroscopy [Article]. IEEE Sensors Journal, 1-1. https://doi.org/10.1109/JSEN.2023.3251343 Kittler, J., Hatef, M., Duin, R., & Matas, J. (2002). On combining classifiers. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 20, 226-239. Kolter, J. Z., & Maloof, M. A. (2007). Dynamic weighted majority: An ensemble method for drifting concepts. The Journal of Machine Learning Research, 8, 2755-2790. Krempl, G., Žliobaite, I., Brzeziński, D., Hüllermeier, E., Last, M., Lemaire, V., Noack, T., Shaker, A., Sievi, S., & Spiliopoulou, M. (2014). Open challenges for data stream mining research. ACM SIGKDD explorations newsletter, 16(1), 1-10. Kuncheva, L. I. (2014). Combining pattern classifiers: methods and algorithms. John Wiley & Sons. Kuncheva, L. I., & Rodríguez, J. J. (2014). A weighted voting framework for classifiers ensembles. Knowledge and Information Systems, 38(2), 259-275. https://doi.org/10.1007/s10115-012-0586-6 Kushner, M. J. (1982). A kinetic study of the plasma‐etching process. I. A model for the etching of Si and SiO2 in C n F m/H2 and C n F m/O2 plasmas. Journal of Applied Physics, 53(4), 2923-2938. Lee, H., Lee, D., & Jeong, H. (2016). Mechanical aspects of the chemical mechanical polishing process: A review. International Journal of Precision Engineering and Manufacturing, 17(4), 525-536. https://doi.org/10.1007/s12541-016-0066-0 Lee, S.-k., Kang, P., & Cho, S. (2014). Probabilistic local reconstruction for k-NN regression and its application to virtual metrology in semiconductor manufacturing. Neurocomputing, 131, 427-439. https://doi.org/https://doi.org/10.1016/j.neucom.2013.10.001 Lu, J., Liu, A., Dong, F., Gu, F., Gama, J., & Zhang, G. (2018). Learning under Concept Drift: A Review. IEEE Transactions on Knowledge and Data Engineering, 1-1. https://doi.org/10.1109/tkde.2018.2876857 Luo, J., & Dornfeld, D. A. (2001). Material removal mechanism in chemical mechanical polishing: theory and modeling. IEEE Transactions on Semiconductor Manufacturing, 14(2), 112-133. Oza, N. (2005). Online Bagging and Boosting (Vol. 3). https://doi.org/10.1109/ICSMC.2005.1571498 Page, E. S. (1954). Continuous Inspection Schemes. Biometrika, 41(1/2), 100. https://doi.org/10.2307/2333009 Pozzolo, A. D., Boracchi, G., Caelen, O., Alippi, C., & Bontempi, G. (2015, 12-17 July 2015). Credit card fraud detection and concept-drift adaptation with delayed supervised information. 2015 International Joint Conference on Neural Networks (IJCNN), Purwins, H., Barak, B., Nagi, A., Engel, R., Hockele, U., Kyek, A., Cherla, S., Lenz, B., Pfeifer, G., & Weinzierl, K. (2014). Regression Methods for Virtual Metrology of Layer Thickness in Chemical Vapor Deposition. IEEE/ASME Transactions on Mechatronics, 19(1), 1-8. https://doi.org/10.1109/tmech.2013.2273435 Schlimmer, J. C., & Granger, R. H. (1986). Incremental learning from noisy data. Machine Learning, 1, 317-354. PHM Society. (2016). PHM data challange. Annual Conference of the Prognostics and Health Management Society, https://www.phmsociety.org/events/conference/phm/16/data-challenge Street, W. N., & Kim, Y. (2001). A streaming ensemble algorithm (SEA) for large-scale classification Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining, San Francisco, California. https://doi.org/10.1145/502512.502568 Wang, S., Minku, L. L., & Yao, X. (2018). A Systematic Study of Online Class Imbalance Learning With Concept Drift. IEEE Trans Neural Netw Learn Syst, 29(10), 4802-4821. https://doi.org/10.1109/TNNLS.2017.2771290 Wolpert, D. H. (1992). Stacked generalization. Neural Networks, 5(2), 241-259. https://doi.org/https://doi.org/10.1016/S0893-6080(05)80023-1 Wu, W. M., Cheng, F. T., & Kong, F. W. (2012). Dynamic-Moving-Window Scheme for Virtual-Metrology Model Refreshing. IEEE Transactions on Semiconductor Manufacturing, 25(2), 238-246. https://doi.org/10.1109/TSM.2012.2183398 Wu, X., Chen, J., Xie, L., Chan, L. L. T., & Chen, C.-I. (2020). Development of convolutional neural network based Gaussian process regression to construct a novel probabilistic virtual metrology in multi-stage semiconductor processes. Control Engineering Practice, 96, 104262. https://doi.org/https://doi.org/10.1016/j.conengprac.2019.104262 Yang, W.-T., Blue, J., Roussy, A., Pinaton, J., & Reis, M. S. (2019). A Structure Data-Driven Framework for Virtual Metrology Modeling. IEEE Transactions on Automation Science and Engineering, 1-10. https://doi.org/10.1109/tase.2019.2941047 Yugma, C., Blue, J., Dauzère-Pérès, S., & Obeid, A. (2015). Integration of scheduling and advanced process control in semiconductor manufacturing: review and outlook. Journal of Scheduling, 18(2), 195-205. https://doi.org/10.1007/s10951-014-0381-1 Zhao, D., & Lu, X. (2013). Chemical mechanical polishing: Theory and experiment. Friction, 1(4), 306-326. https://doi.org/10.1007/s40544-013-0035-x | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90104 | - |
| dc.description.abstract | 由於物聯網與網通技術的發展,人們得以不間斷地持續取得來自各種感測器的資料流,例如智慧型穿戴式裝置所蒐集的人體健康資料以及生產現場的機台錯誤偵測與分類資料。資料流會因為環境的改變等因素而發生資料分布的改變,即概念飄移(concept drift),使得以數量固定、分配不變的資料集進行訓練的傳統機器學習模型無法準確進行預測。
啟發於自適應隨機森林(ARF, Adaptive Random Forest),本研究將提出基於定義域資料分佈之線上學習框架,結合本研究設計的投票法飄移警示器(VDD, Voted Drift Detector)、背景模型建立及其替換機制,透過監測輸入資料定義域的各類統計數值建立指標,並利用投票法整合各指標形成概念飄移預警機制,在定義域資料分布發生飄移警示時以本研究提出的背景模型建立機制於建立新的基學習器並同時訓練前景、背景模型,當飄移發生時,該模型依照機制以背景模型替換前景中無法針對當前概念進行預測的基學習器。 為驗證所提出之線上學習框架,本研究透過模擬產生合成資料集與半導體化學機械研磨(CMP, Chemical Mechanical Polishing)公開資料集進行案例研究。透過模擬生成已知概念飄移發生時刻與模式的合成資料集,證實VDD對資料定義域改變的概念飄移具備良好的偵測能力,並且透過實際的CMP真實資料集進行分析,結果證實利用本研究提出的線上學習框架較單一的線上學習模型具更良好且穩健的預測效能。 | zh_TW |
| dc.description.abstract | Due to the advancements in Internet of things (IOT) and telecommunication technologies, it is now possible to continuously collect data stream from various sensor, such as human health data collected by smart wearable device, and machine fault detection and classification (FDC) data from production sites. The data distribution of data streams can change due to factors such as environment changes, resulting in concept drift. This makes it challenging for traditional machine learning models trained on fixed and stationary datasets to make accurate prediction.
Inspired by Adaptive Random Forest (ARF) algorithm, this study proposes an online learning framework that combines the Voted Drift Detector (VDD) and a background model establishment and replacement mechanism, based on domain distribution. By the statistical indicators which monitors various statistics of data domain, VDD integrates the indicators and use voting method to form a concept drift detection mechanism. When a drift warning occurs, a new background learner is built based on the background model establishment mechanism. Upon detecting a drift, the model replaces the base learner in the foreground, which cannot accurately predict under the current concept, with the corresponding background learner, as per the mechanism proposed in this study. To validate the performance of the proposed online learning framework, this study conducts case studies using a self-generated synthetic dataset and the publicly available Chemical Mechanical Polishing (CMP) dataset in semiconductor manufacturing. By using a synthetic dataset with known occurrence times and patterns of concept drift, VDD demonstrates excellent detection capabilities for concept drift related to changes in the data domain. Furthermore, through the analysis of the CMP dataset, which presents more complex data distributions and drift patterns in real-world scenarios, the results confirm that the proposed online learning framework outperforms individual online learning models in terms of prediction performance, demonstrating enhanced robustness and effectiveness. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T17:25:55Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-22T17:25:55Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 中文摘要 II
ABSTRACT III 目錄 V 圖目錄 VIII 表目錄 X 第一章 緒論 1 1.1 研究背景 1 1.2 動機與目的 3 1.3 論文架構 5 第二章 文獻探討 6 2.1 概念飄移與線上學習方法 6 2.1.1 概念飄移的分類 7 2.1.2 概念飄移偵測演算法 9 2.1.3 線上學習方法 11 2.2 集成學習 14 2.2.1 投票法(Voting) 14 2.2.2 堆疊法(Stacking) 14 2.2.3 推升法(Boosting) 15 2.2.4 拔靴重抽總合法(bagging, bootstrap aggregating)與隨機森林 15 2.2.5 自適應隨機森林(Adaptive Random Forest) 16 2.3 半導體虛擬量測 17 2.3.1 物理模型 19 2.3.2 資料驅動模型 19 2.3.3 考量概念飄移之虛擬量測模型 22 第三章 基於定義域分佈之線上學習框架 23 3.1 統計飄移偵測指標 26 3.1.1 特徵對特徵指標 27 3.1.2 樣本對樣本指標 31 3.2 投票法飄移偵測器 34 3.3 線上學習框架 38 第四章 案例研討 43 4.1 案例一:合成資料集 43 4.1.1 資料集介紹 43 4.1.2 統計飄移指標推論 45 4.1.3 投票法飄移偵測器效能評估與比較 52 4.1.4 背景模型建立與替換機制比較 56 4.1.5 線上學習模型效能評估 59 4.2 案例二:化學機械研磨公開資料集 60 4.2.1 資料集介紹 60 4.2.2 資料前處理 62 4.2.3 統計飄移指標推論與飄移偵測結果 63 4.2.4 背景模型建立與替換機制比較 69 4.2.5 線上學習模型效能評估與比較 74 第五章 結論與建議 78 5.1 研究發現與結論 78 5.2 未來研究方向 80 參考文獻列表 81 附錄A CHAMBER 1-2-3線上學習模型預測效能變化 86 附錄B CHAMBER 4-5-6線上學習模型預測效能變化 89 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 自適應隨機森林 | zh_TW |
| dc.subject | 集成學習 | zh_TW |
| dc.subject | 定義域資料分布 | zh_TW |
| dc.subject | 虛擬量測 | zh_TW |
| dc.subject | 概念飄移偵測 | zh_TW |
| dc.subject | 線上學習 | zh_TW |
| dc.subject | Virtual Metrology | en |
| dc.subject | Ensemble Learning | en |
| dc.subject | Adaptive Random Forest | en |
| dc.subject | Online Learning | en |
| dc.subject | Data Domain Distribution | en |
| dc.subject | Concept Drift Detection | en |
| dc.title | 發展基於資料定義域分佈之線上學習框架以分析具概念漂移之數據 | zh_TW |
| dc.title | On the Development of Domain Distribution-based Online Learning Framework for Concept Drifting Data Analytics | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳正剛;許嘉裕 | zh_TW |
| dc.contributor.oralexamcommittee | Argon Chen;Chia-Yu Hsu | en |
| dc.subject.keyword | 概念飄移偵測,定義域資料分布,線上學習,自適應隨機森林,集成學習,虛擬量測, | zh_TW |
| dc.subject.keyword | Concept Drift Detection,Data Domain Distribution,Online Learning,Adaptive Random Forest,Ensemble Learning,Virtual Metrology, | en |
| dc.relation.page | 91 | - |
| dc.identifier.doi | 10.6342/NTU202303908 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-08-11 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 工業工程學研究所 | - |
| dc.date.embargo-lift | 2028-08-09 | - |
| 顯示於系所單位: | 工業工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 6.16 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
