請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90101完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王昱 | zh_TW |
| dc.contributor.advisor | Yu Wang | en |
| dc.contributor.author | 謝佳芸 | zh_TW |
| dc.contributor.author | Chia-Yun Hsieh | en |
| dc.date.accessioned | 2023-09-22T17:25:08Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-09-22 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-09 | - |
| dc.identifier.citation | Adam, J., Urai, J. L., Wieneke, B., Oncken, O., Pfeiffer, K., Kukowski, N., Lohrmann, J., Hoth, S., van der Zee, W., & Schmatz, J. (2005). Shear localisation and strain distribution during tectonic faulting—new insights from granular-flow experiments and high-resolution optical image correlation techniques. Journal of Structural Geology, 27(2), 283-301. https://doi.org/10.1016/j.jsg.2004.08.008
Agarwal, K. K., & Agrawal, G. K. (2004). Effects of erosion on stable thrust wedges: A new perspective in sandbox analogue modelling. Current Science, 87(2), 235-239. http://www.jstor.org/stable/24108871 Ballard, J. F., Brun, J. P., Van den Driessche, J., & Allemand, P. (1987). Propagation des chevauchements au-dessus des zones de décollement: modèles expérimentaux. Comptes rendus de l'Académie des sciences. Série 2, Mécanique, Physique, Chimie, Sciences de l'univers, Sciences de la Terre, 305(15), 1249-1253. Biq, C. C. (1965). The eastern Taiwan rift. Petroleum Geology of Taiwan, 4, 93-106. Bonnet, C., Malavieille, J., & Mosar, J. (2007). Interactions between tectonics, erosion, and sedimentation during the recent evolution of the Alpine orogen: Analogue modeling insights. Tectonics, 26(6), TC6016. https://doi.org/10.1029/2006tc002048 Bridgman, P. W. (1918). Failure of cavities in crystals and rocks under pressure. American Journal of Science, s4-45 (268), 243-268; https://doi.org/10.2475/ajs.s4-45.268.243 Cadell, H. M. (1889). VII.—Experimental Researches in Mountain Building. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 35(1), 337-357. Chang, C. P., Angelier, J., Huang, C. Y., & Liu, C. S. (2002). Structural evolution and significance of a mélange in a collision belt: the Lichi Mélange and the Taiwan arc–continent collision. Geological Magazine, 138(6), 633-651. https://doi.org/10.1017/s0016756801005970 Chang, J., Shih, T., Yang, S., Lin, Y., & Chen, H. (1994). A geomorphological study of alluvial fan in Huatung Longitudinal Valley. Geographical Research, 21, 43-74. Chi, W. R. (1981). Stratigraphic record of plate interactions in the Coastal Range of eastern Taiwan. Memoir of the Geological Society of China, 4, 155-194. Childs, C., Easton, S., Vendeville, B., Jackson, M., Lin, S., Walsh, J., & Watterson, J. (1993). Kinematic analysis of faults in a physical model of growth faulting above a viscous salt analogue. Tectonophysics, 228(3-4), 313-329. Chuang, R. Y., Johnson, K. M., Kuo, Y. T., Wu, Y. M., Chang, C. H., & Kuo, L. C. (2014). Active back thrust in the eastern Taiwan suture revealed by the 2013 Rueisuei earthquake: Evidence for a doubly vergent orogenic wedge? Geophysical Research Letters, 41(10), 3464-3470. https://doi.org/10.1002/2014gl060097 Dadson, S. J., Hovius, N., Chen, H., Dade, W. B., Hsieh, M. L., Willett, S. D., Hu, J. C., Horng, M. J., Chen, M. C., & Stark, C. P. (2003). Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature, 426(6967), 648-651. Daubrée, A. (1879). Etudes synthétiques de géologie expérimentale (Vol. 1). Dunod, Paris. Part1, 478 pp., Part 472, 350 pp. Davis, D., Suppe, J., & Dahlen, F. A. (1983). Mechanics of fold-and-thrust belts and accretionary wedges. Journal of Geophysical Research, 88(B12), 1153–1172. https://doi.org/10.1029/JB088iB02p01153 Dominguez, S., Lallemand, S., Malavieille, J., & Schnürle, P. (1998). Oblique subduction of the Gagua Ridge beneath the Ryukyu accretionary wedge system: Insights from marine observations and sandbox experiments. Marine Geophysical Researches, 20, 383-402. Dominguez, S., Malavieille, J., & Lallemand, S. E. (2000). Deformation of accretionary wedges in response to seamount subduction: Insights from sandbox experiments. Tectonics, 19(1), 182-196. https://doi.org/https://doi.org/10.1029/1999TC900055 Galland, O., Cobbold, P. R., Hallot, E., de Bremond d'Ars, J., & Delavaud, G. (2006). Use of vegetable oil and silica powder for scale modelling of magmatic intrusion in a deforming brittle crust. Earth and Planetary Science Letters, 243(3-4), 786-804. https://doi.org/10.1016/j.epsl.2006.01.014 Graveleau, F., Hurtrez, J. E., Dominguez, S., & Malavieille, J. (2011). A new experimental material for modeling relief dynamics and interactions between tectonics and surface processes. Tectonophysics, 513(1-4), 68-87. https://doi.org/10.1016/j.tecto.2011.09.029 Gray, G. G., Morgan, J. K., & Sanz, P. F. (2014). Overview of continuum and particle dynamics methods for mechanical modeling of contractional geologic structures. Journal of Structural Geology, 59, 19-36. https://doi.org/10.1016/j.jsg.2013.11.009 Gutscher, M. A., Kukowski, N., Malavieille, J., & Lallemand, S. (1998). Episodic imbricate thrusting and underthrusting: Analog experiments and mechanical analysis applied to the Alaskan Accretionary Wedge. Journal of Geophysical Research: Solid Earth, 103(B5), 10161-10176. https://doi.org/10.1029/97jb03541 Hall, J. (1815). II. On the Vertical Position and Convolutions of certain Strata, and their relation with Granite. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 7(1), 79-108. Ho, C. (1986). A synthesis of the geologic evolution of Taiwan. Tectonophysics, 125(1-3), 1-16. Horsfield, W. (1977). An experimental approach to basement-controlled faulting. Geologie en Mijnbouw, 56 (4), 363–370. Hsieh, Y. H., Liu, C. S., Suppe, J., Byrne, T. B., & Lallemand, S. (2020). The Chimei Submarine Canyon and Fan: A Record of Taiwan Arc‐Continent Collision on the Rapidly Deforming Overriding Plate. Tectonics, 39(11). e2020TC006148. https://doi.org/10.1029/2020tc006148 Hsu, T. L. (1962). Recent faulting in the Longitudinal Valley of eastern Taiwan. Proceedings of the Geological Society of China, 1, 95-102. Huang, H. H., & Wang, Y. (2022). Seismogenic structure beneath the northern Longitudinal Valley revealed by the 2018–2021 Hualien earthquake sequences and 3-D velocity model. Terrestrial, Atmospheric and Oceanic Sciences, 33(1). https://doi.org/10.1007/s44195-022-00017-z Huang, H. H., Wu, Y. M., Song, X., Chang, C. H., Kuo-Chen, H., & Lee, S. J. (2014a). Investigating the lithospheric velocity structures beneath the Taiwan region by nonlinear joint inversion of local and teleseismicPwave data: Slab continuity and deflection. Geophysical Research Letters, 41(18), 6350-6357. https://doi.org/10.1002/2014gl061115 Hubbert, M. K. (1937). Theory of scale models as applied to the study of geologic structures. Bulletin of the geological society of America, 48(10), 1459-1520. Jones, V. (1945). Tensile and triaxial compression tests of rock cores from the passageway to penstock tunnel N-4 at Boulder Dam. US Bureau. Reclamation., Lab Report, No. Sp-6, 14. Kármán, T. V. (1911). Festigkeitsversuche unter allseitigem Drunk. Z. Ver. Deu. Ing., 55, 1749. Klinkmüller, M., Schreurs, G., Rosenau, M., & Kemnitz, H. (2016). Properties of granular analogue model materials: A community wide survey. Tectonophysics, 684, 23-38. https://doi.org/10.1016/j.tecto.2016.01.017 Konstantinovskaia, E., & Malavieille, J. (2005). Erosion and exhumation in accretionary orogens: Experimental and geological approaches. Geochemistry, Geophysics, Geosystems, 6(2), Q02006. https://doi.org/10.1029/2004gc000794 Kukowski, N., von Huene, R., Malavieille, J., & Lallemand, S. (1994). Sediment accretion against a buttress beneath the Peruvian continental margin at 12 S as simulated with sandbox modeling. Geologische Rundschau, 83, 822-831. Kuo, Y. T., Wang, Y., Hollingsworth, J., Huang, S. Y., Chuang, R. Y., Lu, C. H., Hsu, Y. C., Tung, H., Yen, J. Y., & Chang, C. P. (2018). Shallow Fault Rupture of the Milun Fault in the 2018 Mw 6.4 Hualien Earthquake: A High‐Resolution Approach from Optical Correlation of Pléiades Satellite Imagery. Seismological Research Letters, 90(1), 97-107. https://doi.org/10.1785/0220180227 Kuochen, H., Wu, Y.-M., Chang, C.-H., Hu, J.-C., & Chen, W.-S. (2004). Relocation of eastern Taiwan earthquakes and tectonic implications. Terrestrial, 15(4), 647-666. Kuochen, H., Wu, Y.-M., Chen, Y.-G., & Chen, R.-Y. (2007). 2003 Mw6. 8 Chengkung earthquake and its related seismogenic structures. Journal of Asian Earth Sciences, 31(3), 332-339. Lee, S. J., Lin, T. C., Liu, T. Y., & Wong, T. P. (2019). Fault‐to‐fault jumping rupture of the 2018 M w 6.4 Hualien earthquake in eastern Taiwan. Seismological Research Letters, 90(1), 30-39. Lee, S. J., Huang, H. H., Shyu, J. B. H., Yeh, T. Y., & Lin, T. C. (2014). Numerical earthquake model of the 31 October 2013 Ruisui, Taiwan, earthquake: Source rupture process and seismic wave propagation. Journal of Asian Earth Sciences, 96, 374-385. https://doi.org/10.1016/j.jseaes.2014.09.020 Leever, K. A., Gabrielsen, R. H., Sokoutis, D., & Willingshofer, E. (2011). The effect of convergence angle on the kinematic evolution of strain partitioning in transpressional brittle wedges: Insight from analog modeling and high-resolution digital image analysis. Tectonics, 30(2), TC2013. https://doi.org/10.1029/2010tc002823 Lohrmann, J., Kukowski, N., Adam, J., & Oncken, O. (2003). The impact of analogue material properties on the geometry, kinematics, and dynamics of convergent sand wedges. Journal of Structural Geology, 25(10), 1691-1711. https://doi.org/10.1016/s0191-8141(03)00005-1 Lu, C., Jeng, F., Chang, K., & Jian, W. (1998). Impact of basement high on the structure and kinematics of the western Taiwan thrust wedge: insights from sandbox models. Terrestrial, Atmospheric and Oceanic Sciences, 9(3), 533-550. Lu, C. Y., & Hsu, K. J. (1992). Tectonic evolution of the Taiwan mountain belt. Petroleum Geology of Taiwan, 29, 15-35. Lu, C. Y., & Malavieille, J. (1994). Oblique convergence, indentation and rotation tectonics in the Taiwan Mountain Belt: Insights from experimental modelling. Earth and Planetary Science Letters, 121(3-4), 477-494. Lundberg, N., Reed, D. L., Liu, C. S., & Lieske Jr, J. (1997). Forearc-basin closure and arc accretion in the submarine suture zone south of Taiwan. Tectonophysics, 274(1-3), 5-23. Malavieille, J. (1984). Modélisation expérimentale des chevauchements imbriqués: application aux chaînes de montagnes. Bulletin de la Societe Geologique de France, 7 (1), 129–138 Malavieille, J., Calassou, S., Lallemand, S., Larroque, C. (1992). Modélisation analogique des prismes d’accrétion océanique, film vidéo VHS de 28 minutes, produit et réalisé par la SNEA (P), série cours. SECAM et NTSC, en français et anglais. Malavieille, J., Dominguez, S., Lu, C.-Y., Chen, C.-T., & Konstantinovskaya, E. (2021). Deformation partitioning in mountain belts: insights from analogue modelling experiments and the Taiwan collisional orogen. Geological Magazine, 158(1), 84-103. Malavieille, J., Lallemand, S. E., Dominguez, S., Deschamps, A., Lu, C. Y., Liu, C. S., Schnurle, P., & Crew, A. (2002). Arc-continent collision in Taiwan: New marine observations and tectonic evolution. Special Papers-Geological Society of America, 187-211. Malavieille, J., Molli, G., Genti, M., Dominguez, S., Beyssac, O., Taboada, A., Vitale-Brovarone, A., Lu, C. Y., & Chen, C. T. (2016). Formation of ophiolite-bearing tectono-sedimentary mélanges in accretionary wedges by gravity driven submarine erosion: Insights from analogue models and case studies. Journal of Geodynamics, 100, 87-103. https://doi.org/10.1016/j.jog.2016.05.008 Malavieille, J., & Trullenque, G. (2009). Consequences of continental subduction on forearc basin and accretionary wedge deformation in SE Taiwan: Insights from analogue modeling. Tectonophysics, 466(3-4), 377-394. https://doi.org/10.1016/j.tecto.2007.11.016 Mandal, N., & Chattopadhyay, A. (1997). Imbricate thrust spacing: experimental and theoretical. Evolution of geological structures in micro-to macro-scales, 143. Montanari, D., Agostini, A., Bonini, M., Corti, G., & Ventisette, C. D. (2017). The use of empirical methods for testing granular materials in analogue modelling. Materials, (Basel), 10(6), 635. https://doi.org/10.3390/ma10060635 Mulugeta, G. (1988). Squeeze box in a centrifuge. Tectonophysics, 148(3-4), 323-335. Persson, K. S., & Sokoutis, D. (2002). Analogue models of orogenic wedges controlled by erosion. Tectonophysics, 356(4), 323-336. Robertson, E. C. (1955). Experimental study of the strength of rocks. Geological Society of America Bulletin, 66(10), 1275-1314. Rodrigues, N., Cobbold, P. R., & Løseth, H. (2009). Physical modelling of sand injectites. Tectonophysics, 474(3-4), 610-632. https://doi.org/10.1016/j.tecto.2009.04.032 Sella, G. D., Dixon, T.H., &Mao, A. (2002). REVEL: A model for recent plate velocities from space geodesy. Journal of Geophysical Research, 107(B4), ETG11. Seno, T. (1977). The instantaneous rotation vector of the Philippine Sea plate relative to the Eurasian plate. Tectonophysics, 42(2-4), 209-226. Shyu, J., Sieh, K., & Chen, Y. (2005a). Tandem suturing and disarticulation of the Taiwan orogen revealed by its neotectonic elements. Earth and Planetary Science Letters, 233(1-2), 167-177. https://doi.org/10.1016/j.epsl.2005.01.018 Shyu, J. B. H. (2005b). Neotectonic architecture of Taiwan and its implications for future large earthquakes. Journal of Geophysical Research, 110, B08402. https://doi.org/10.1029/2004jb003251 Shyu, J. B. H., Chuang, Y. R., Chen, Y. L., Lee, Y. R., & Cheng, C. T. (2016). A New On-Land Seismogenic Structure Source Database from the Taiwan Earthquake Model (TEM) Project for Seismic Hazard Analysis of Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 27(3), 311-323. https://doi.org/10.3319/tao.2015.11.27.02(TEM) Shyu, J. B. H., Chung, L. H., Chen, Y. G., Lee, J. C., & Sieh, K. (2007). Re-evaluation of the surface ruptures of the November 1951 earthquake series in eastern Taiwan, and its neotectonic implications. Journal of Asian Earth Sciences, 31(3), 317-331. https://doi.org/10.1016/j.jseaes.2006.07.018 Shyu, J. B. H., Sieh, K., Chen, Y. G., Chuang, R. Y., Wang, Y., & Chung, L. H. (2008). Geomorphology of the southernmost Longitudinal Valley fault: Implications for evolution of the active suture of eastern Taiwan. Tectonics, 27(1), TC1019. Shyu, J. B. H., Sieh, K., Chen, Y. G., & Chung, L. H. (2006). Geomorphic analysis of the Central Range fault, the second major active structure of the Longitudinal Valley suture, eastern Taiwan. Geological Society of America Bulletin, 118(11-12), 1447-1462. https://doi.org/10.1130/b25905.1 Shyu, J. B. H., Wu, Y.-M., Chang, C.-H., & Huang, H.-H. (2011). Tectonic erosion and the removal of forearc lithosphere during arc-continent collision: Evidence from recent earthquake sequences and tomography results in eastern Taiwan. Journal of Asian Earth Sciences, 42(3), 415-422. https://doi.org/10.1016/j.jseaes.2011.05.015 Shyu, J. B. H., Yin, Y.-H., Chen, C.-H., Chuang, Y.-R., & Liu, S.-C. (2020). Updates to the on-land seismogenic structure source database by the Taiwan Earthquake Model (TEM) project for seismic hazard analysis of Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 31(4), 469-478. https://doi.org/10.3319/tao.2020.06.08.01 Stamhuis, E. J. (2006). Basics and principles of particle image velocimetry (PIV) for mapping biogenic and biologically relevant flows. Aquatic Ecology, 40(4), 463-479. Storti, F., & McClay, K. (1995). Influence of syntectonic sedimentation on thrust wedges in analogue models. Geology, 23(11), 999-1002. Sun, C., Li, Z., Zuza, A. V., Zheng, W., Jia, D., He, Z., Hui, G., & Yang, S. (2022). Controls of mantle subduction on crustal-level architecture of intraplate orogens, insights from sandbox modeling. Earth and Planetary Science Letters, 584, 117476. Suppe, J. (1981). Mechanics of mountain building and metamorphism in Taiwan. Memoir of the Geological Society of China, 4(6), 67-89. Teng, L. S. (1987). Stratigraphic records of the late Cenozoic Penglai orogeny of Taiwan. Acta Geologica Taiwanica, 25, 205-224. Teng, L. S. (1990). Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan. Tectonophysics, 183(1-4), 57-76. Teng, L. S. (1996). Extensional collapse of the northern Taiwan mountain belt. Geology, 24(10), 949-952. Thielicke, W., & Stamhuis, E. (2014). PIVlab–towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB. Journal of open research software, 2(1), e30. http://dx.doi.org/10.5334/jors.bl Tsai, M. C., Yu, S. B., Shin, T. C., Kuo, K. W., Leu, P. L., Chang, C. H., & Ho, M. Y. (2015). Velocity Field Derived from Taiwan Continuous GPS Array (2007 - 2013). Terrestrial, Atmospheric and Oceanic Sciences, 26(5), 527-556. https://doi.org/10.3319/tao.2015.05.21.01(T) Wang, C. Y., Chen, H. L., Cheng, X. G., & Li, K. (2013). Evaluating the role of syn-thrusting sedimentation and interaction with frictional detachment in the structural evolution of the SW Tarim basin, NW China: insights from analogue modeling. Tectonophysics, 608, 642-652. White, D., Take, W., & Bolton, M. (2003). Soil deformation measurement using particle image velocimetry (PIV) and photogrammetry. Geotechnique, 53(7), 619-631. Wu, Y., Chen, Y., Shin, T., Kuochen, H., Hou, C., Hu, J., Chang, C., Wu, C., & Teng, T. (2006a). Coseismic versus interseismic ground deformations, fault rupture inversion and segmentation revealed by 2003 Mw 6.8 Chengkung earthquake in eastern Taiwan. Geophysical Research Letters, 33(2), L02312. Wu, Y. M., Chen, Y. G., Chang, C. H., Chung, L. H., Teng, T. L., Wu, F. T., & Wu, C. F. (2006b). Seismogenic structure in a tectonic suture zone: With new constraints from 2006 Mw6.1 Taitung earthquake. Geophysical Research Letters, 33(22), L22305. https://doi.org/10.1029/2006gl027572 Wu, Y. M., Zhao, L., Chang, C. H., Hsiao, N. C., Chen, Y. G., & Hsu, S. K. (2009). Relocation of the 2006 Pingtung earthquake sequence and seismotectonics in Southern Taiwan. Tectonophysics, 479(1-2), 19-27. Yen, J. Y., Lu, C. H., Dorsey, R. J., Kuo‐Chen, H., Chang, C. P., Wang, C. C., Chuang, R. Y., Kuo, Y. T., Chiu, C. Y., & Chang, Y. H. (2019). Insights into seismogenic deformation during the 2018 Hualien, Taiwan, earthquake sequence from InSAR, GPS, and modeling. Seismological Research Letters, 90(1), 78-87. Yu, S. B., Kuo, L. C., Punongbayan, R. S., & Ramos, E. G. (1999). GPS observation of crustal deformation in the Taiwan‐Luzon region. Geophysical Research Letters, 26(7), 923-926. Yu, S. B., Chen, H. Y., & Kuo, L. C. (1997). Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274(1-3), 41-59. 王源、陳文山 (1993)。十萬分之一海岸山脈地質圖。經濟部中央地質調查所。 石瑞銓、黃宏元、林啟文 (2003)。池上斷層中南段之淺層反射震測調查。經濟部中央地質調查所特刊,第14號,第193-201頁。 徐鐵良 (1955)。臺灣之地震。臺灣銀行季刊,第七期,第39-63頁。 盧詩丁、陳建良、陳致言、劉彥求、陳柏村、許晉瑋、莊釗鳴、鄭智仁、陳思婷、黃志遠、呂貞怡 (2018)。20180206 花蓮地震地質調查報告。經濟部中央地質調查所,共115頁。 許晉瑋、顏一勤、劉彥求 (2018)。臺灣東部嶺頂斷層之斷層跡及地質調查研究。 經濟部中央地質調查所特刊,第33號,第77-102頁。 陳文山 (1993)。海岸山脈地區花東縱谷斷層的活動性淺談。地工技術,第44期,第52-57頁。 陳文山、吳逸民、葉柏逸、賴奕修、柯明淳、柯孝勳、林義凱 (2019)。臺灣東南海域隱沒至碰撞轉換帶的孕震構造。經濟部中央地質調查所特刊,第三十四號, 第125-140頁。 陳文山、王源 (1996)。臺灣東部海岸山脈地質。經濟部中央地質調查所,臺灣地質之七,共101頁。 陳文山、林益正、顏一勤、楊志成、紀權窅、黃能偉、林啟文、林偉雄、侯進雄、劉彥求、林燕慧、石同生、盧詩丁 (2008)。從古地震研究與 GPS 資料探討縱谷斷層的分段意義。經濟部中央地質調查所特刊,第20期,第165-191頁。http://140.112.114.62/handle/246246/232679 黃欽煌 (2013)。由砂箱模型透視台灣南部弧前基磐隱沒機制及前緣增積系統。國立台灣大學地質科學研究所碩士論文,共126頁。 楊貴三 (1986)。台灣活斷層的地形學研究—特論活斷層與地形面的關係。私立中國文化大學地學研究所博士論文,共178頁。 潘昌志 (2009)。以砂箱實驗探討增積岩體的前緣增積作用。國立台灣大學地質科學研究所碩士論文,共105頁。 劉彥求、林燕慧、梁勝雄、周稟珊、陳盈璇、李忠勳、陳建良、石同生、王怡方 (2022)。20220917關山地震、0918 池上地震地質調查報告。經濟部中央地質調查所,共78頁。 鍾令和 (2003)。1951年池上-玉里地震地表破裂與其所指示之新期構造意義。國立台灣大學地質科學研究所碩士論文,共138頁。 鍾令和、石同生、劉彥求、許文靈、謝中敏、吳文綜 (2004)。活動斷層調查報告—米崙斷層。經濟部中央地質調查所。 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90101 | - |
| dc.description.abstract | 本研究使用二維砂箱模擬花東縱谷縫合帶中央山脈斷層系統(Central Range fault system, CRFs)與縱谷斷層系統(Longitudinal Valley fault system, LVFs)之間的幾何互動演化過程。花東縱谷是臺灣東部的板塊縫合帶,菲律賓海板塊於此相對中央山脈地塊往西北方運動,使其上的海岸山脈與中央山脈產生斜向的弧陸碰撞,形成活動的中央山脈斷層系統與縱谷斷層系統。由北向南的板塊斜向碰撞特色使花東縱谷縫合帶能夠以南北空間的地質證據驗證地體構造隨碰撞歷時的變化,讓花東縱谷成為適合研究斷層構造演化的重要地點。然而,由於位於花東縱谷縫合帶中的同震地表破裂及活動構造地形主要集中於瑞穗以南,瑞穗以北在中央山脈側的近地表處則無明顯的活動構造特徵,因此若僅從地表地質調查方式著手,於瑞穗以北區域則缺乏足夠的地質資料以判斷兩斷層系統間的空間幾何關係。
為進一步探討CRFs與LVFs於南北方向上可能的構造幾何演化,本研究使用二維砂箱模型建立花東縱谷縫合帶最南端的地質特徵,並觀察模型中兩斷層系統隨碰撞歷時的變化,以對應斷層幾何架構由南而北連續性的轉換過程。本研究在砂箱模型中使用不同的實驗材料以類比花東縱谷縫合帶多樣的岩性強度(例如:中央山脈變質岩、縱谷沉積岩,以及海岸山脈火成岩等),並於實驗過程中加入與板塊聚合同時進行的沉積作用及侵蝕作用。實驗模擬結果以相片定時記錄,經由多次對比CRFs與LVFs在模型和真實花東縱谷中的活動特性,將模型的地質物理參數反覆修正為較適合花東縱谷縫合帶的參數組合。 本研究結果顯示,CRFs與LVFs之間的空間互動關係共可分為三個階段:於第一階段中,兩斷層系統因板塊間聚合而逐漸靠近相交,彼此相互截切形成與共軛斷層相似的幾何架構。當進入第二階段後,LVFs則於淺部截切並超覆於CRFs之上,成為縫合帶中的主導活動斷層系統。在第三階段中,縫合帶中的主導活動斷層系統則轉為CRFs,且可發現CRFs持續向東發育新的破裂面,除截切LVFs外並貫穿海岸山脈中的火成岩體。本研究所模擬的斷層互動演化過程,除能提供未來建立CRFs與LVFs近南北向延伸的構造模型參考之外,也期待模型中各項變因的參數可成為未來建立三維模型的基礎,以更有效率地了解花東縱谷的構造演育模型。 | zh_TW |
| dc.description.abstract | In this study, we utilize 2D sandbox modeling to simulate the spatial and temporal interaction between the Central Range fault system (CRFs) and the Longitudinal Valley fault system (LVFs) in eastern Taiwan. The CRFs and LVFs are two major active faults along the Longitudinal Valley suture, accommodating more than 3 cm/yr oblique plate convergence between the Philippine Sea Plate and the Eurasian Plate. South to Ruisui, both the coseismic ruptures and the active landforms of CRFs and LVFs expose clearly, providing clear evidence to illustrate the overall geometric interaction between these two fault systems. North to Ruisui, however, the active features associated to CRFs on the surface are limited and discontinuous, limiting our understanding of the structural interaction between CRFs and LVFs from the geological investigations. Thus, how these two structures interact and evolve from south to north remains controvertial.
To address on these issues, we incorporate materials with different strength in the 2D sandbox model to simulate the structural deformation within the Longitudinal Valley suture. Both syn-tectonic erosion and sedimentation are introduced in our model to reflect the first order geological history along the valley. We also use particle image velocimetry (PIV) to analyze the deformation pattern and to objectively determine the fault activity. Our results suggest that the interaction between CRFs and LVFs can be divided into three stages. First, CRFs and LVFs crop to the surface separately and gradually form a conjugate-like fault system in the suture. In the second stage, LVFs crosscuts and overrides on CRFs, and LVFs takes dominance in our model. The CRFs regains dominance in the third stage as it propagates eastwards, crosscuts LVFs, and truncates the Coastal Range. These structural changes observed in our 2D model are comparable to seismological and geological observations along the valley, suggesting the plausible structural interaction within the Longitudinal Valley suture from south to north. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T17:25:08Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-22T17:25:08Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
誌謝 II 摘要 III Abstract IV 圖目錄 VII 表目錄 X 第1章 研究動機與目的 1 第2章 前人研究 6 2.1 花東縱谷縫合帶的地質背景 6 2.2 花東縱谷由南而北的活動斷層證據 16 第3章 研究方法 23 3.1 砂箱模擬簡介 24 3.2模型比例與材料 30 3.2.1實驗材料 30 3.2.2相似性原則與模型比例 41 3.3 本研究的模型設計 46 3.4 實驗結果之後處理分析 53 第4章 研究結果 56 4.1 中央山脈地形角度 58 4.2上下板塊間的初始接觸關係 64 4.3 海岸山脈的存在與縱谷斷層的弱面幾何 66 4.4 與板塊聚合同時的沉積作用 73 4.5 花東縱谷寬度 76 4.6 既有沉積岩厚度 80 4.7 海岸山脈既有沉積岩的存在 84 4.8 與板塊聚合同時的侵蝕作用 88 第5章 討論 95 5.1 建立模型斷層初始條件的過程:東南外海至臺東池上一帶 96 5.2 CRFs和LVFs的競爭與截切:池上至瑞穗 99 5.3 LVFs超覆CRFs:瑞穗至光復 103 5.4 CRFs超覆LVFs:光復至花蓮 107 5.5 模型限制 118 第6章 結論 121 參考資料 122 附錄 133 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 構造演化 | zh_TW |
| dc.subject | 縱谷斷層 | zh_TW |
| dc.subject | 砂箱模型模擬 | zh_TW |
| dc.subject | 中央山脈斷層 | zh_TW |
| dc.subject | 花東縱谷縫合帶 | zh_TW |
| dc.subject | Structural evolution | en |
| dc.subject | Central Range fault | en |
| dc.subject | Longitudinal Valley fault | en |
| dc.subject | Sandbox modeling | en |
| dc.subject | Longitudinal Valley suture | en |
| dc.title | 運用砂箱模型模擬花東縱谷縫合帶內活動構造之時空互動過程 | zh_TW |
| dc.title | Spatial and Temporal Interaction Between the Active Structures in the Longitudinal Valley Suture: Insights From Sandbox Modeling | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃信樺;鍾令和;郭力維;陳致同 | zh_TW |
| dc.contributor.oralexamcommittee | Hsin-Hua Huang;Ling-Ho Chung;Li-Wei Kuo;Chih-Tung Lin | en |
| dc.subject.keyword | 花東縱谷縫合帶,中央山脈斷層,縱谷斷層,砂箱模型模擬,構造演化, | zh_TW |
| dc.subject.keyword | Longitudinal Valley suture,Central Range fault,Longitudinal Valley fault,Sandbox modeling,Structural evolution, | en |
| dc.relation.page | 138 | - |
| dc.identifier.doi | 10.6342/NTU202303124 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-08-11 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 地質科學系 | - |
| dc.date.embargo-lift | 2024-08-09 | - |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf | 19.54 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
