請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90084
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 高英哲 | zh_TW |
dc.contributor.advisor | Ying-Jer Kao | en |
dc.contributor.author | 邱翔彬 | zh_TW |
dc.contributor.author | Shiang-Bin Chiu | en |
dc.date.accessioned | 2023-09-22T17:20:40Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-09-22 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-10 | - |
dc.identifier.citation | [1] Adrian Del Maestro, Bernd Rosenow, and Subir Sachdev. From stripe to checker board ordering of charge-density waves on the square lattice in the presence of quenched disorder. Phys. Rev. B, 74:024520, Jul 2006.
[2] Philip W Anderson. More is different: broken symmetry and the nature of the hier archical structure of science. Science, 177(4047):393–396, 1972. [3] L. D. Landau. On the theory of phase transitions. Zh. Eksp. Teor. Fiz., 7:19-32, 1937. [4] V. L. Ginzburg and L. D. Landau. On the Theory of superconductivity. Zh. Eksp. Teor. Fiz., 20:1064–1082, 1950. [5] Ernst Ising. Beitrag zur theorie des ferromagnetismus. Zeitschrift für Physik, 31(1):253–258, 1925. [6] John Bardeen, Leon N Cooper, and John Robert Schrieffer. Theory of superconductivity. Physical review, 108(5):1175, 1957. [7] Kerson Huang. Statistical mechanics. John Wiley & Sons, 2008. [8] Lev Petrovich Gor'kov. Microscopic derivation of the ginzburg-landau equations in the theory of superconductivity. Sov. Phys. JETP, 9(6):1364–1367, 1959. [9] Kenneth G Wilson. The renormalization group and critical phenomena. Reviews of Modern Physics, 55(3):583, 1983. [10] Steven R White. Density-matrix algorithms for quantum renormalization groups. Physical review b, 48(14):10345, 1993. [11] Hamed Saberi, Andreas Weichselbaum, and Jan von Delft. Matrix-product-state comparison of the numerical renormalization group and the variational formulation of the density-matrix renormalization group. Physical Review B, 78(3):035124, 2008. [12] Ralf Bulla, Theo A Costi, and Thomas Pruschke. Numerical renormalization group method for quantum impurity systems. Reviews of Modern Physics, 80(2):395, 2008. [13] Leo P Kadanoff. Scaling laws for ising models near t c. Physics Physique Fizika, 2(6):263, 1966. [14] John Cardy. Scaling and renormalization in statistical physics, volume 5. Cambridge university press, 1996. [15] Don N Page. Average entropy of a subsystem. Physical review letters, 71(9):1291, 1993. [16] Ingemar Bengtsson and Karol Życzkowski. Geometry of quantum states: an introduction to quantum entanglement. Cambridge university press, 2017. [17] Matthew B Hastings. An area law for one-dimensional quantum systems. Journal of statistical mechanics: theory and experiment, 2007(08):P08024, 2007. [18] Lluís Masanes. Area law for the entropy of low-energy states. Physical Review A, 80(5):052104, 2009. [19] Henk WJ Blöte, John L Cardy, and M Peter Nightingale. Conformal invariance, the central charge, and universal finite-size amplitudes at criticality. Physical review letters, 56(7):742, 1986. [20] Shivaji Lal Sondhi, SM Girvin, JP Carini, and Dan Shahar. Continuous quantum phase transitions. Reviews of modern physics, 69(1):315, 1997. [21] Paul M Chaikin, Tom C Lubensky, and Thomas A Witten. Principles of condensed matter physics, volume 10. Cambridge university press Cambridge, 1995. [22] Shiming Lei, Viola Duppel, Judith M Lippmann, Jürgen Nuss, Bettina V Lotsch, and Leslie M Schoop. Charge density waves and magnetism in topological semimetal candidates gdsbxte2- x- δ. Advanced Quantum Technologies, 2(10):1900045, 2019. [23] Shiming Lei, Samuel ML Teicher, Andreas Topp, Kehan Cai, Jingjing Lin, Guangming Cheng, Tyger H Salters, Fanny Rodolakis, Jessica L McChesney, Saul Lapidus, et al. Band engineering of dirac semimetals using charge density waves. Advanced Materials, 33(30):2101591, 2021. [24] Steven A Kivelson, Eduardo Fradkin, and Victor J Emery. Electronic liquid-crystal phases of a doped mott insulator. Nature, 393(6685):550–553, 1998. [25] Yuan Cao, Valla Fatemi, Shiang Fang, Kenji Watanabe, Takashi Taniguchi, Efthimios Kaxiras, and Pablo Jarillo-Herrero. Unconventional superconductivity in magic-angle graphene superlattices. Nature, 556(7699):43–50, 2018. [26] N David Mermin and Herbert Wagner. Absence of ferromagnetism or antiferromagnetism in one-or two-dimensional isotropic heisenberg models. Physical Review Letters, 17(22):1133, 1966. [27] Nigel Goldenfeld. Lectures on phase transitions and the renormalization group. CRC Press, 2018. [28] John A. Robertson, Steven A. Kivelson, Eduardo Fradkin, Alan C. Fang, and Aharon Kapitulnik. Distinguishing patterns of charge order: Stripes or checkerboards. Phys. Rev. B, 74:134507, Oct 2006. [29] Adrian Del Maestro and Subir Sachdev. Thermal melting of density waves on the square lattice. Phys. Rev. B, 71:184511, May 2005. [30] Alan Fang, Joshua A. W. Straquadine, Ian R. Fisher, Steven A. Kivelson, and Aharon Kapitulnik. Disorder-induced suppression of charge density wave order: Stm study of pd-intercalated erte3. Phys. Rev. B, 100:235446, Dec 2019. [31] Pengjie Wang, Guo Yu, Yves H Kwan, Yanyu Jia, Shiming Lei, Sebastian Klemenz, F Alexandre Cevallos, Ratnadwip Singha, Trithep Devakul, Kenji Watanabe, et al. One-dimensional luttinger liquids in a two-dimensional moiré lattice. Nature, 605(7908):57–62, 2022. [32] HF Hess, RB Robinson, and JV Waszczak. Vortex-core structure observed with a scanning tunneling microscope. Physical review letters, 64(22):2711, 1990. [33] Ashvin Vishwanath and T Senthil. Luttinger liquid physics in the superconductor vortex core. Physical Review B, 63(1):014506, 2000. [34] Zhen Yao, Henk W Ch Postma, Leon Balents, and Cees Dekker. Carbon nanotube intramolecular junctions. Nature, 402(6759):273–276, 1999. [35] Edward A Laird, Ferdinand Kuemmeth, Gary A Steele, Kasper Grove-Rasmussen, Jesper Nygård, Karsten Flensberg, and Leo P Kouwenhoven. Quantum transport in carbon nanotubes. Reviews of Modern Physics, 87(3):703, 2015. [36] Liam A Cohen, Noah L Samuelson, Taige Wang, Takashi Taniguchi, Kenji Watanabe, Michael P Zaletel, and Andrea F Young. Universal chiral luttinger liquid behavior in a graphene fractional quantum hall point contact. arXiv preprint arXiv:2212.01374, 2022. [37] AM Chang. Chiral luttinger liquids at the fractional quantum hall edge. Reviews of Modern Physics, 75(4):1449, 2003. [38] Dominique Laroche, G Gervais, MP Lilly, and JL Reno. 1d-1d coulomb drag signature of a luttinger liquid. Science, 343(6171):631–634, 2014. [39] Shiang-Bin Chiu, Alina Mreńca-Kolasińska, Ka Long Lei, Ching-Hung Chiu, WunHao Kang, Szu-Chao Chen, and Ming-Hao Liu. Manipulating electron waves in graphene using carbon nanotube gating. Phys. Rev. B, 105:195416, May 2022. [40] JM Luttinger. An exactly soluble model of a many-fermion system. Journal of mathematical physics, 4(9):1154–1162, 1963. [41] Sin-itiro Tomonaga. Remarks on bloch’s method of sound waves applied to manyfermion problems. Progress of Theoretical Physics, 5(4):544–569, 1950. [42] Jacob C Bridgeman and Christopher T Chubb. Hand-waving and interpretive dance: an introductory course on tensor networks. Journal of physics A: Mathematical and theoretical, 50(22):223001, 2017. [43] Román Orús. A practical introduction to tensor networks: Matrix product states and projected entangled pair states. Annals of physics, 349:117–158, 2014. [44] E Wigner and Pascual Jordan. Über das paulische äquivalenzverbot. Z. Phys, 47(631):46, 1928. [45] Ian P McCulloch. From density-matrix renormalization group to matrix product states. Journal of Statistical Mechanics: Theory and Experiment, 2007(10):P10014, 2007. [46] Ying-Jer Kao, Yun-Da Hsieh, and Pochung Chen. Uni10: An open-source library for tensor network algorithms. In Journal of Physics: Conference Series, volume 640, page 012040. IOP Publishing, 2015. [47] Ian P McCulloch. Infinite size density matrix renormalization group, revisited. arXiv preprint arXiv:0804.2509, 2008. [48] Ho N Phien, Guifré Vidal, and Ian P McCulloch. Infinite boundary conditions for matrix product state calculations. Physical Review B, 86(24):245107, 2012. [49] Subir Sachdev. Quantum Phases of Matter. Cambridge University Press, 2023. [50] Naoto Nagaosa. Quantum field theory in strongly correlated electronic systems. Springer Science & Business Media, 1999. [51] Pasquale Calabrese and John Cardy. Entanglement entropy and conformal field theory. Journal of physics a: mathematical and theoretical, 42(50):504005, 2009. [52] Vladimir E Korepin. Universality of entropy scaling in one dimensional gapless models. Physical review letters, 92(9):096402, 2004. [53] Armin Rahmani, Chang-Yu Hou, Adrian Feiguin, Masaki Oshikawa, Claudio Chamon, and Ian Affleck. General method for calculating the universal conductance of strongly correlated junctions of multiple quantum wires. Phys. Rev. B, 85:045120, Jan 2012. [54] Chung-Yu Lo, Yoshiki Fukusumi, Masaki Oshikawa, Ying-Jer Kao, and Pochung Chen. Crossover of correlation functions near a quantum impurity in a tomonagaluttinger liquid. Phys. Rev. B, 99:121103, Mar 2019. [55] Yao-Tai Kang, Chung-Yu Lo, Masaki Oshikawa, Ying-Jer Kao, and Pochung Chen. Two-wire junction of inequivalent tomonaga-luttinger liquids. Phys. Rev. B, 104:235142, Dec 2021 [56] Dan Bohr and Peter Schmitteckert. Strong enhancement of transport by interaction on contact links. Physical Review B, 75(24):241103, 2007. [57] Guifré Vidal. Efficient simulation of one-dimensional quantum many-body systems. Physical review letters, 93(4):040502, 2004. [58] CL Kane and Matthew PA Fisher. Transport in a one-channel luttinger liquid. Physical review letters, 68(8):1220, 1992. [59] C. L. Kane and Matthew P. A. Fisher. Resonant tunneling in an interacting onedimensional electron gas. Phys. Rev. B, 46:7268–7271, Sep 1992. [60] Thierry Giamarchi. Quantum physics in one dimension, volume 121. Clarendon press, 2003. [61] Jan-Moritz Bischoff and Eric Jeckelmann. Density-matrix renormalization group method for the conductance of one-dimensional correlated systems using the kubo formula. Physical Review B, 96(19):195111, 2017. [62] Philip W Anderson. Absence of diffusion in certain random lattices. Physical review, 109(5):1492, 1958. [63] Tom Lancaster and Stephen J Blundell. Quantum field theory for the gifted amateur. OUP Oxford, 2014. [64] David H Dunlap, HL Wu, and Philip W Phillips. Absence of localization in a randomdimer model. Physical Review Letters, 65(1):88, 1990. [65] Philip Phillips. Advanced solid state physics. Cambridge University Press, 2012. [66] Ya-Lin Lo, Yun-Da Hsieh, Chang-Yu Hou, Pochung Chen, Ying-Jer Kao, et al. Quantum impurity in a luttinger liquid: Universal conductance with entanglement renormalization. Physical Review B, 90(23):235124, 2014. [67] Andrew M Goldsborough and Rudolf A Römer. Self-assembling tensor networks and holography in disordered spin chains. Physical Review B, 89(21):214203, 2014. [68] Raman Sankar, I Panneer Muthuselvam, K Ramesh Babu, G Senthil Murugan, Karthik Rajagopal, Rakesh Kumar, Tsung-Chi Wu, Cheng-Yen Wen, Wei-Li Lee, Guang-Yu Guo, et al. Crystal growth and magnetic properties of topological nodalline semimetal gdsbte with antiferromagnetic spin ordering. Inorganic Chemistry, 58(17):11730–11737, 2019. [69] Lev P Pitaevskii. Vortex lines in an imperfect bose gas. Sov. Phys. JETP, 13(2):451–454, 1961. [70] Eugene P Gross. Structure of a quantized vortex in boson systems. Il Nuovo Cimento (1955-1965), 20(3):454–477, 1961. [71] Jonathan R Friedman, Vijay Patel, Wei Chen, SK Tolpygo, and James E Lukens. Quantum superposition of distinct macroscopic states. nature, 406(6791):43–46, 2000. [72] Caspar H Van Der Wal, ACJ Ter Haar, FK Wilhelm, RN Schouten, CJPM Harmans, TP Orlando, Seth Lloyd, and JE Mooij. Quantum superposition of macroscopic persistent-current states. Science, 290(5492):773–777, 2000. [73] Yiren Wang, Vikram Khandelwal, Arindam K Das, and MP Anantram. Classification of dna sequences: Performance evaluation of multiple machine learning methods. In 2022 IEEE 22nd International Conference on Nanotechnology (NANO), pages 333–336. IEEE, 2022. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90084 | - |
dc.description.abstract | 本論文為二維和一維系統的理論研究。我們提出了一個現象學的二維自由能模型,用於描述 Gd1.02Sb0.87Te1.11 中電子的自發對稱破缺相和電荷序的拓撲缺陷。數值結果與掃描隧道顯微鏡的量測顯示令人滿意的一致性,並表明原子替代在穩定拓撲缺陷中起著關鍵作用。一維系統則為帶有雜質的 Luttinger 液體。我們使用密度矩陣重正化群和共形對稱性來研究電荷傳輸。我們發現,在存在兩個雜質和有限尺寸雜質的情況下,電荷傳輸的行為與單一雜質問題不同,這是由於釘住效應的相互抵銷。這一結果通過時間演化計算得到了進一步的確認。 | zh_TW |
dc.description.abstract | This thesis focuses on the theoretical investigation of two- and one- di mensional systems. The phenomenological two-dimensional free energy is proposed to model the spontaneous symmetry breaking phase of electrons in Gd1.02Sb0.87Te1.11 and the topological defects of the charge order. The nu merical results show a satisfactory agreement with the pattern imaged by a scanning tunnelling microscope and suggest the essential role of atomic sub stitution in stabilizing the topological defects. The one-dimensional system is the Luttinger wires with impurities. The density matrix renormalization group and conformal symmetry are employed to study charge transport. We find that the behavior of charge transport in the presence of two impurities and finite-size impurities can be strikingly different from a single impurity problem since the cancellation of the pinning effect. The result is doubly confirmed by time-evolving calculations. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T17:20:40Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-09-22T17:20:40Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員審定書 i
致謝 iii 摘要 v Abstract vii Contents ix Chapter 1 Introduction 1 1.1 Effective Theory 1 1.2 Momentum-Space and Real-Space Renormalization Group 3 1.3 Density Matrix Renormalization Group 5 1.4 Collective Phenomena and Defects 6 Chapter 2 Topological Defects in Charge Ordering: a Landau-Ginzburg Study 9 2.1 Significance of 2+1 Dimensions 9 2.2 Landau Theory to Landau-Ginzburg Theory 10 2.3 Broken Symmetry and Topological Defect 15 2.4 Model of Gd1.02Sb0.87Te1.11 17 2.5 Impact of Atomic Impurities 22 2.6 Comparison Between Experiment and Theory 23 Chapter 3 Transport in Luttinger Liquid Wires with Impurities: a DMRG Study 25 3.1 Significance of 1+1 Dimensions 25 3.2 Luttinger Liquid in the Language of Tensor Network 27 3.3 Density Matrix Renormalization Group and Infinite Boundary Conditions 30 3.4 Conformal Symmetry and Its Approximation using MPS 33 3.5 Tools for Studying Transport: Response Function and Time Evolution 35 3.6 Finite-Size Impurities and More than One Impurity 37 3.7 Escape from Localization: Resonance 40 Chapter 4 Summary and Outlook 43 References 45 | - |
dc.language.iso | en | - |
dc.title | 缺陷對低維強關聯電子系統的影響 | zh_TW |
dc.title | Electronic Properties of Low-Dimensional Strongly Correlated Systems in the Presence of Defects | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 陳柏中;莊天明 | zh_TW |
dc.contributor.oralexamcommittee | Po-Chung Chen;Tien-Ming Chuang | en |
dc.subject.keyword | 金茲堡-朗道理論,密度矩陣重整化群,張量網路,拉廷格液體,電子液晶,量子傳輸,相變, | zh_TW |
dc.subject.keyword | Ginzburg-Landau theory,Density matrix renormalization group,Tensor network,Luttinger liquid,Electronic liquid crystal,Quantum transport,Phase transition, | en |
dc.relation.page | 51 | - |
dc.identifier.doi | 10.6342/NTU202303030 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2023-08-11 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 物理學系 | - |
顯示於系所單位: | 物理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf | 6.11 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。