Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90081
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周佳靚zh_TW
dc.contributor.advisorChia-Ching Chouen
dc.contributor.author王澄葦zh_TW
dc.contributor.authorCheng-Wei Wangen
dc.date.accessioned2023-09-22T17:19:58Z-
dc.date.available2023-11-09-
dc.date.copyright2023-09-22-
dc.date.issued2023-
dc.date.submitted2023-08-10-
dc.identifier.citation1. Yuk, H., et al., 3D printing of conducting polymers. Nature communications, 2020. 11(1): p. 1604.
2. Tasnim, N., et al., 3D bioprinting stem cell derived tissues. Cellular and Molecular Bioengineering, 2018. 11: p. 219-240.
3. Hölzl, K., et al., Bioink properties before, during and after 3D bioprinting. Biofabrication, 2016. 8(3): p. 032002.
4. Bhattacharyya, A., G. Janarthanan, and I. Noh, Nano-biomaterials for designing functional bioinks towards complex tissue and organ regeneration in 3D bioprinting. Additive Manufacturing, 2021. 37: p. 101639.
5. Antich, C., et al., Bio-inspired hydrogel composed of hyaluronic acid and alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs. Acta biomaterialia, 2020. 106: p. 114-123.
6. Xu, T., et al., Inkjet printing of viable mammalian cells. Biomaterials, 2005. 26(1): p. 93-99.
7. Wang, B., et al., Keratin: Structure, mechanical properties, occurrence in biological organisms, and efforts at bioinspiration. Progress in Materials Science, 2016. 76: p. 229-318.
8. Lee, H., et al., Human hair keratin and its-based biomaterials for biomedical applications. Tissue Engineering and Regenerative Medicine, 2014. 11: p. 255-265.
9. Schweitzer, M.H., et al., Beta‐keratin specific immunological reactivity in feather‐like structures of the Cretaceous alvarezsaurid, Shuvuuia deserti. Journal of Experimental Zoology, 1999. 285(2): p. 146-157.
10. Feroz, S., et al., Keratin-Based materials for biomedical applications. Bioactive materials, 2020. 5(3): p. 496-509.
11. Feughelman, M., Mechanical properties and structure of alpha-keratin fibres: wool, human hair and related fibres. 1997: UNSW press.
12. Donato, R.K. and A. Mija, Keratin associations with synthetic, biosynthetic and natural polymers: An extensive review. Polymers, 2019. 12(1): p. 32.
13. Esparza, Y., et al., Hydrogels from feather keratin show higher viscoelastic properties and cell proliferation than those from hair and wool keratins. Materials Science and Engineering: C, 2018. 90: p. 446-453.
14. Lazarus, B.S., et al., Engineering with keratin: A functional material and a source of bioinspiration. Iscience, 2021. 24(8): p. 102798.
15. Danciulescu, C., B. Nick, and F.-J. Wortmann, Structural stability of wild type and mutated α-keratin fragments: Molecular dynamics and free energy calculations. Biomacromolecules, 2004. 5(6): p. 2165-2175.
16. Kumar, S.L., S. Anandhavelu, and M. Swathy, Preparation and characterization of goat hoof keratin/gelatin/sodium alginate base biofilm for tissue engineering application. Integrated Ferroelectrics, 2019. 202(1): p. 1-12.
17. Rinaudo, M., Chitin and chitosan: Properties and applications. Progress in polymer science, 2006. 31(7): p. 603-632.
18. Muzzarelli, R.A., Chitin. 2013: Elsevier.
19. Shahidi, F., J.K.V. Arachchi, and Y.-J. Jeon, Food applications of chitin and chitosans. Trends in food science & technology, 1999. 10(2): p. 37-51.
20. Ilnicka, A. and J.P. Lukaszewicz, Discussion remarks on the role of wood and chitin constituents during carbonization. Frontiers in Materials, 2015: p. 20.
21. Kwon, S., et al., Physicochemical characteristics of self-assembled nanoparticles based on glycol chitosan bearing 5β-cholanic acid. Langmuir, 2003. 19(24): p. 10188-10193.
22. Huang, T.-H., S.-h. Hsu, and S.-W. Chang, Molecular interaction mechanisms of glycol chitosan self-healing hydrogel as a drug delivery system for gemcitabine and doxorubicin. Computational and Structural Biotechnology Journal, 2022. 20: p. 700-709.
23. Yang, H.-C. and M.-H. Hon, The effect of the molecular weight of chitosan nanoparticles and its application on drug delivery. Microchemical Journal, 2009. 92(1): p. 87-91.
24. Chen, Y., L. Zhang, and G. Chen, Fabrication, modification, and application of poly (methyl methacrylate) microfluidic chips. Electrophoresis, 2008. 29(9): p. 1801-1814.
25. Amsden, B.G., et al., Methacrylated glycol chitosan as a photopolymerizable biomaterial. Biomacromolecules, 2007. 8(12): p. 3758-3766.
26. Bucciarelli, A., et al., Preparation and statistical characterization of tunable porous sponge scaffolds using UV crosslinking of methacrylate-modified silk fibroin. ACS biomaterials science & engineering, 2019. 5(12): p. 6374-6388.
27. Ali, U., K.J.B.A. Karim, and N.A. Buang, A review of the properties and applications of poly (methyl methacrylate)(PMMA). Polymer Reviews, 2015. 55(4): p. 678-705.
28. Smith, K.C., Dose dependent decrease in extractability of DNA from bacteria following irradiation with ultraviolet light or with visible light plus dye. Biochemical and biophysical research communications, 1962. 8(3): p. 157-163.
29. Pashev, I.G., S.I. Dimitrov, and D. Angelov, Crosslinking proteins to nucleic acids by ultraviolet laser irradiation. Trends in biochemical sciences, 1991. 16: p. 323-326.
30. Chodosh, L.A., UV crosslinking of proteins to nucleic acids. Current protocols in molecular biology, 1996. 36(1): p. 12.5. 1-12.5. 8.
31. McCaig, M. and D. Paul, Effect of UV crosslinking and physical aging on the gas permeability of thin glassy polyarylate films. Polymer, 1999. 40(26): p. 7209-7225.
32. Jia, J., et al., Engineering alginate as bioink for bioprinting. Acta biomaterialia, 2014. 10(10): p. 4323-4331.
33. Barrs, R.W., et al., Engineering a chemically defined hydrogel bioink for direct bioprinting of microvasculature. Biomacromolecules, 2020. 22(2): p. 275-288.
34. Yu, K.-F., et al., Design and Synthesis of Stem Cell-Laden Keratin/Glycol Chitosan Methacrylate Bioinks for 3D Bioprinting. Biomacromolecules, 2022. 23(7): p. 2814-2826.
35. Watt, I., The relation between longitudinal swelling and water sorption by keratin fibers. Textile Research Journal, 1965. 35(12): p. 1072-1077.
36. Hansson, T., C. Oostenbrink, and W. van Gunsteren, Molecular dynamics simulations. Current opinion in structural biology, 2002. 12(2): p. 190-196.
37. Karplus, M. and G.A. Petsko, Molecular dynamics simulations in biology. Nature, 1990. 347(6294): p. 631-639.
38. Thompson, A.P., et al., LAMMPS-a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Computer Physics Communications, 2022. 271: p. 108171.
39. Yonezawa, F., Molecular Dynamics Simulations. 1992: Springer.
40. Vanommeslaeghe, K. and A.D. MacKerell Jr, Automation of the CHARMM General Force Field (CGenFF) I: bond perception and atom typing. Journal of chemical information and modeling, 2012. 52(12): p. 3144-3154.
41. Huang, J. and A.D. MacKerell Jr, CHARMM36 all‐atom additive protein force field: Validation based on comparison to NMR data. Journal of computational chemistry, 2013. 34(25): p. 2135-2145.
42. Buck, M., et al., Importance of the CMAP correction to the CHARMM22 protein force field: dynamics of hen lysozyme. Biophysical journal, 2006. 90(4): p. L36-L38.
43. Best, R.B., et al., Inclusion of many-body effects in the additive CHARMM protein CMAP potential results in enhanced cooperativity of α-helix and β-hairpin formation. Biophysical journal, 2012. 103(5): p. 1045-1051.
44. Lee, J., et al., CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. Journal of chemical theory and computation, 2016. 12(1): p. 405-413.
45. Hockney, R.W. and J.W. Eastwood, Computer simulation using particles. 2021: crc Press.
46. Chipot, C., Numerical methods for molecular dynamics simulations of biological systems. 2010, France.
47. Humphrey, W., A. Dalke, and K. Schulten, VMD: visual molecular dynamics. Journal of molecular graphics, 1996. 14(1): p. 33-38.
48. Martínez, L., et al., PACKMOL: A package for building initial configurations for molecular dynamics simulations. Journal of computational chemistry, 2009. 30(13): p. 2157-2164.
49. Abbott, L.J., K.E. Hart, and C.M. Colina, Polymatic: a generalized simulated polymerization algorithm for amorphous polymers. Theoretical Chemistry Accounts, 2013. 132: p. 1-19.
50. Rukmani, S.J., et al., Molecular modeling of complex cross-linked networks of PEGDA nanogels. The Journal of Physical Chemistry B, 2019. 123(18): p. 4129-4138.
51. Levine, B.G., J.E. Stone, and A. Kohlmeyer, Fast analysis of molecular dynamics trajectories with graphics processing units—Radial distribution function histogramming. Journal of computational physics, 2011. 230(9): p. 3556-3569.
52. Hsu, S.-C., S.-h. Hsu, and S.-W. Chang, Effect of pH on molecular structures and network of glycol chitosan. ACS Biomaterials Science & Engineering, 2019. 6(1): p. 298-307.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90081-
dc.description.abstract生物 3D 列印應用於生物醫學領域是一項創新的技術,可用於製造出具有生物相容性和生物活性的器官和組織,它結合了生物材料、細胞和 3D 列印技術可以設計和製造具有適當機械性能和生物活性特性,三維列印 3D 墨水有多種功能,3D 墨水用於在 3D 列印中製造出物體的形狀與結構。它可以被逐層固化,以構建具有複雜幾何形狀的物體。特殊的 3D 生物墨水可用於生物打印,用於構建生物組織和器官的三維結構。這種墨水通常包含細胞、生物活性分子和支持材料。隨著科技的發展,可能會湧現出更多創新的應用。然而,現有的生物墨水供應不足。在這項模擬中,本文選擇了模擬中的 alpha 角蛋白和乙二醇殼聚醣再藉由甲基丙烯酸改質來模擬三維生物列印的可固化生物墨水,在微觀尺度中先分析出角蛋白和聚乙二醇殼聚醣是否有因甲基丙烯酸的改質夠型上有所改變,以及探討在不同濃度下所造成的影響,進而來觀察是否影響角蛋白和聚乙二醇殼聚醣結構上與改質前的差異,再通過 Polymatic 的交聯,比較出各種模型的交聯度。儘管人髮角蛋白可以提供生物所需的功能,但乙二醇殼聚醣等其他成分可以更顯著增強結構的生物墨水強度。透過使用不同比例的角蛋白甲基丙烯酸酯和聚乙二醇殼聚醣甲基丙烯酸酯來分析材料不同比例下的構型及交聯度。通過不同比例的角蛋白甲基丙烯酸酯和聚乙二醇殼聚醣甲基丙烯酸酯進行了結構上及分子間及分子內的交互作用力以及交聯度的比較。希望透過分子模擬,可以幫助開發 3D 墨水的開發者對於生物墨水有更加深入的認識,並促進生物墨水材料的研發。zh_TW
dc.description.abstract 3D bioprinting in the field of biomedical applications is an innovative technology that enables the manufacturing of organs and tissues with biocompatibility and bioactivity. It combines biomaterials, cells, and 3D printing techniques to design and fabricate structures with appropriate mechanical properties and biological functionality. The use of3D bio-inks with various functionalities is crucial for shaping and structuring objects during 3D printing. These bio-inks can be selectively cured layer by layer to build objects with complex geometries. Specifically designed 3D bio-inks are used in bioprinting to create three-dimensional structures of biological tissues and organs. Such bioinks typically contain cells, bioactive molecules, and supporting materials. In this study, common biomaterials such as keratin and glycol chitosan were selected as readily available sources to develop UV-curable bio-inks for 3D bioprinting. The impact methacrylate on the structures of keratin and glycol chitosan, as well as their differences before and after modification, were investigated at the microscopic scale. The crosslinking of various formulations was then compared using Polymatic to determine the crosslinking density. While keratin can provide the necessary biological functions, other components such as glycol chitosan significantly enhance the strength of the bio ink. Different ratios of keratin methacrylate and glycol chitosan methacrylate were analyzed to understand their structural configurations and crosslinking densities. Molecular simulations were employed to investigate the intermolecular and intramolecular interactions and to gain deeper insights into bio-ink materials. It is hoped that these molecular simulations can assist bio-ink developers in understanding the characteristics of bio-inks and further advance the development of bio-ink materials.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T17:19:58Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-22T17:19:58Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
摘要 ii
ABSTRACT iii
目錄 v
圖目錄 ix
表目錄 xii
第一章、緒論 1
1.1 生物3D列印及3D生物墨水 1
1.2 文獻回顧 2
1.2.1 alpha角蛋白 2
1.2.2 乙二醇殼聚醣 3
1.2.3 甲基丙烯酸酯 4
1.2.4 UV紫外光交聯 5
1.2.5 alpha角蛋白/乙二醇殼聚醣生物墨水 6
1.3 研究目的及動機 9
1.4 論文架構 10
第二章、研究理論及分析方法 11
2.1分子動力學 11
2.1.1 CHARMM力場 12
2.1.2 CHARMM力場修改 13
2.1.3 能量最小化 16
2.1.4週期性邊界條件設定和Particle-Particle Particle-Mesh 16
2.1.5分子動力學模擬程序 19
2.2模型設計 22
2.2.1 建模方法 22
2.2.2 alpha角蛋白及乙二醇殼聚醣甲基丙烯酸脂改質 25
2.2.3 建模配比設計 26
2.2.4 模擬細節 27
2.3 交聯 28
2.3.1 Polymatic 28
2.3.2 交聯方法 30
2.4分析方法 30
2.4.1 均方根偏差 30
2.4.2 頭尾距和迴轉半徑 31
2.4.3 徑向分布函數 32
2.4.4 二級結構 33
2.4.5 氫鍵 34
第三章、純溶液10% alpha角蛋白及10%乙二醇殼聚醣分析 36
3.1 10%KE和10%KEMA以及10%GC和GCMA平衡分析 36
3.1.1 10%KE 和10%KEMA均方根偏差平衡分析 36
3.1.2 10%GC 和10%GCMA均方根偏差平衡分析 36
3.2 迴轉半徑及頭尾距分析 37
3.2.1 10% alpha角蛋白頭尾距及迴轉半徑 37
3.2.2 10%乙二醇殼聚醣迴轉半徑及頭尾距 38
3.3 徑向分布函數分析 39
3.3.1 10% alpha角蛋白徑向分布函數分析 39
3.3.2 10%乙二醇殼聚醣徑向分布函數分析 39
3.4 二級結構分析 40
3.5 氫鍵分析 42
3.5.1 10% alpha角蛋白氫鍵分析 42
3.5.2 10%乙二醇殼聚醣氫鍵分析 46
3.6 Polymatic交聯分析 50
3.6.1 10% alpha角蛋白交聯分析結果 50
3.6.2 10%乙二醇殼聚醣交聯結果 53
第四章、混和溶液2.5%KE+7.5%GC及5%KE+5%GC分析 57
4.1 2.5%KE+7.5%GC及5%KE+5%GC平衡分析 57
4.1.1 2.5%KE+7.5%GC均方根偏差平衡分析 57
4.1.2 5.0%KE+5.0%GC均方根偏差平衡分析 57
4.2 迴轉半徑及頭尾距分析 58
4.2.1 2.5%KE+7.5%GC迴轉半徑及頭尾距分析 58
4.2.2 5.0%KE+5.0%GC迴轉半徑及頭尾距分析 60
4.3 徑向分布函數分析 62
4.3.1 2.5%KE+7.5%GC徑向分布函數 62
4.3.2 5.0%KE+5.0%GC徑向分布函數 63
4.4 二級結構分析 64
4.4.1 2.5%KE+7.5%GC及5.0%KE+5.0%GC二級結構分析 64
4.5 氫鍵分析 65
4.5.1 2.5%KE+7.5%GC氫鍵分析 65
4.5.2 5.0%KE+5.0%GC氫鍵分析 68
4.6 Polymatic交聯分析 74
4.6.1 2.5%KEMA+7.5%GCMA模型交聯分析 74
4.6.2 5.0%KEMA+5.0%GCMA模型交聯分析 77
第五章、結論及未來展望 82
5.1 結論 82
5.2 未來展望 82
參考文獻 83
附錄 89
-
dc.language.isozh_TW-
dc.title以分子動力學模擬探討由甲基丙烯酸酯改質之 alpha 角蛋白及乙二醇殼聚醣混和溶液之分子結構 及交互作用zh_TW
dc.titleA molecular dynamics study of molecular structure and interaction of methacrylate-modified alpha-keratin with glycol chitosan moleculesen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張書瑋;游佳欣;陳志鴻zh_TW
dc.contributor.oralexamcommitteeShu-Wei Chang;Jia-Shing Yu;Chih-Hung Chenen
dc.subject.keyword生物3D列印,3D生物墨水,角蛋白,乙二醇幾丁聚醣,分子動力學,zh_TW
dc.subject.keyword3D bioprinting,3D bioink,keratin,glycol chitosan,molecular dynamics,en
dc.relation.page122-
dc.identifier.doi10.6342/NTU202303378-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-08-12-
dc.contributor.author-college工學院-
dc.contributor.author-dept應用力學研究所-
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
6.82 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved