Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用物理研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90075
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林俊達zh_TW
dc.contributor.advisorGuin-Dar Linen
dc.contributor.author李芳瑜zh_TW
dc.contributor.authorFang-Yu Leeen
dc.date.accessioned2023-09-22T17:18:27Z-
dc.date.available2023-11-09-
dc.date.copyright2023-09-22-
dc.date.issued2023-
dc.date.submitted2023-08-10-
dc.identifier.citationTM Graham, Y Song, J Scott, C Poole, L Phuttitarn, K Jooya, P Eichler, X Jiang, A Marra, B Grinkemeyer, et al. Multi-qubit entanglement and algorithms on a neutral-atom quantum computer. Nature, 604(7906):457–462, 2022.
Dolev Bluvstein, Harry Levine, Giulia Semeghini, Tout T Wang, Sepehr Ebadi, Marcin Kalinowski, Alexander Keesling, Nishad Maskara, Hannes Pichler, Markus Greiner, et al. A quantum processor based on coherent transport of entangled atom arrays. Nature, 604(7906):451–456, 2022.
Mark Saffman, Thad G Walker, and Klaus Mølmer. Quantum information with Rydberg atoms. Reviews of modern physics, 82(3):2313, 2010.
Harry Levine, Alexander Keesling, Giulia Semeghini, Ahmed Omran, Tout T. Wang, Sepehr Ebadi, Hannes Bernien, Markus Greiner, Vladan Vuletić, Hannes Pichler, and Mikhail D. Lukin. Parallel implementation of high-fidelity multiqubit gates with neutral atoms. Phys. Rev. Lett., 123:170503, Oct 2019.
Zhuo Fu, Peng Xu, Yuan Sun, Yang-Yang Liu, Xiao-Dong He, Xiao Li, Min Liu, Run-Bing Li, Jin Wang, Liang Liu, and Ming-Sheng Zhan. High-fidelity entanglement of neutral atoms via a Rydberg-mediated single-modulated-pulse controlled-phase gate. Phys. Rev. A, 105:042430, Apr 2022.
Sylvain de Léséleuc, Daniel Barredo, Vincent Lienhard, Antoine Browaeys, and Thierry Lahaye. Analysis of imperfections in the coherent optical excitation of single atoms to Rydberg states. Phys. Rev. A, 97:053803, May 2018.
Harry Levine, Alexander Keesling, Ahmed Omran, Hannes Bernien, Sylvain Schwartz, Alexander S. Zibrov, Manuel Endres, Markus Greiner, Vladan Vuletić, and Mikhail D. Lukin. High-fidelity control and entanglement of Rydberg-atom qubits. Phys. Rev. Lett., 121:123603, Sep 2018.
Lincoln David Turner, KP Weber, CJ Hawthorn, and Robert E Scholten. Frequency noise characterisation of narrow linewidth diode lasers. Optics communications, 201(4-6):391–397, 2002.
Nur Ismail, Cristine Calil Kores, Dimitri Geskus, and Markus Pollnau. Fabry-pérot resonator: spectral line shapes, generic and related Airy distributions, linewidths, finesses, and performance at low or frequency-dependent reflectivity. Optics express, 24(15):16366–16389, 2016.
Vittorio Degiorgio. Phase shift between the transmitted and the reflected optical fields of a semireflecting lossless mirror is π/2. American Journal of Physics, 48(1):81–81, 01 1980.
Eric D Black. An introduction to pound–drever–hall laser frequency stabilization. American journal of physics, 69(1):79–87, 2001.
J. I. Thorpe, K. Numata, and J. Livas. Laser frequency stabilization and control through offset sideband locking to optical cavities. Opt. Express, 16(20):15980–15990, Sep 2008.
Orazio Svelto, David C Hanna, et al. Principles of lasers, volume 1. Springer, 2010.
Nitzan Akerman, Nir Navon, Shlomi Kotler, Yinnon Glickman, and Roee Ozeri. Universal gate-set for trapped-ion qubits using a narrow linewidth diode laser. New Journal of Physics, 17(11):113060, 2015.
Lintao Li, William Huie, Neville Chen, Brian DeMarco, and Jacob P Covey. Active cancellation of servo-induced noise on stabilized lasers via feedforward. Physical Review Applied, 18(6):064005, 2022.
Yang-Yang Liu, Zhuo Fu, Peng Xu, Xiao-Dong He, Jin Wang, and Ming-Sheng Zhan. Spectral filtering of dual lasers with a high-finesse length-tunable cavity for rubidium atom Rydberg excitation. Chinese Physics B, 30(7):074203, 2021.
Jérôme Poirson, Fabien Bretenaker, Marc Vallet, and Albert Le Floch. Analytical and experimental study of ringing effects in a fabry–perot cavity. application to the measurement of high finesses. JOSA B, 14(11):2811–2817, 1997.
RG DeVoe and RG Brewer. Laser-frequency division and stabilization. Physical Review A, 30(5):2827, 1984.
N Uehara and K Ueda. Accurate measurement of ultralow loss in a high-finesse fabry-perot interferometer using the frequency response functions. Applied Physics B, 61:9–15, 1995.
Hanne Ludvigsen, Mika Tossavainen, and Matti Kaivola. Laser linewidth measurements using self-homodyne detection with short delay. Optics Communications, 155(1):180–186, 1998.
Jae Won Hahn, Yong Shim Yoo, Jae Yong Lee, Jae Wan Kim, and Hai-Woong Lee. Cavity ringdown spectroscopy with a continuous-wave laser: calculation of coupling efficiency and a new spectrometer design. Appl. Opt., 38(9):1859–1866, Mar 1999.
Naoki Asuke, Nicolas Chauvet, André Röhm, Kazutaka Kanno, Atsushi Uchida, Tomoaki Niiyama, Satoshi Sunada, Ryoichi Horisaki, and Makoto Naruse. Analysis of temporal structure of laser chaos by allan variance. Physical Review E, 07(1):014211, 2023.
C. Patterson, A. D. Vira, M. T. Herd, W. B. Hawkins, and W. D. Williams. Calibrating an ultra-low expansion cavity for high precision spectroscopy from 630 THz to 685 THz using molecular tellurium lines. Review of Scientific Instruments, 89(3):033107, 03 2018.
WD Williams, MT Herd, and WB Hawkins. Spectroscopic study of the 7p1/2 and 7p3/2 states in cesium-133. Laser Physics Letters, 15(9):095702, 2018.
Sang Eon Park, Ho Seong Lee, Taeg Yong Kwon, and Hyuck Cho. Dispersion like signals in velocity-selective saturated-absorption spectroscopy. Optics Communications, 192(1):49–55, 2001.
J. A. Aman, B. J. DeSalvo, F. B. Dunning, T. C. Killian, S. Yoshida, and J. Burgdörfer. Trap losses induced by near-resonant Rydberg dressing of cold atomic gases. Phys. Rev. A, 93:043425, Apr 2016.
Jiandong Bai, Shuo Liu, Jieying Wang, Jun He, and Junmin Wang. Single-photon Rydberg excitation and trap-loss spectroscopy of cold cesium atoms in a magneto optical trap by using of a 319-nm ultraviolet laser system. IEEE Journal of Selected Topics in Quantum Electronics, 26(3):1–6, 2020.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90075-
dc.description.abstract將中性原子激發到雷德堡態是實現量子計算的具潛力的眾多平台之一。因為雷德堡態強偶極-偶極相互作用,有效範圍可達數微米,並且可以由雷射控制的此交互作用,因此能夠個別單獨對每個量子位進行操作,來實現快速控制的量子閘。由於雷德堡態的長生命期,其自然線寬相當窄,僅在亞千赫茲的範圍內。因此,我們需要一台亞千赫茲、線寬窄且能夠精確鎖定頻率的雷射來實現高保真度和長相干時間的雙量子邏輯閘。我們使用Pound-Drever-Hall技術將1039nm和918nm波長的外腔二極體雷射器精確鎖定到一個與超低膨脹玻璃組成的高精度法布里-珀羅腔。1039nm和459nm雷射器均用於激發銫原子至雷德堡態。459nm雷射是由918nm雷射通過二倍頻晶體產生的。得到1039 (918) nm雷射的反饋頻寬高達760kHz(1MHz)。另外,分析光通過共振腔體的強度擾動,我們估計在40毫秒的時間內,頻率的擾動範圍為350Hz(621Hz)。這說明我們成功地抑制了雷射的相位噪聲。此外,我們利用穿透共振腔的穩頻雷射進行光功率放大,窄線寬的共振腔有效防止伺服凸點成為額外的噪聲源。最後,為了確定腔體的零交叉溫度,我們採用無都普勒飽和光譜技術量測零交叉溫度,並在此溫度附近觀察約50天,平均每天頻率漂移7kHz,這使我們能夠根據觀察到的結果校正雷射的長期頻率頻移,並使用此雷射系統將原子激發到不同雷德堡態。zh_TW
dc.description.abstractNeutral atoms excited to Rydberg states are one potential platform to realize quantum computing. The laser-controllable, strong dipole-dipole interactions which are effective at several micrometer range allow the implementation of fast and individual-addressable quantum gates. Nevertheless, owing to the long lifetime of Rydberg states, the natural linewidth is at the sub-kilohertz level. This demands the use of a sub-kHz, narrow linewidth laser that is tightly locked to achieve two-qubit gates with high fidelity and long coherence time. We lock an external-cavity diode laser (ECDL) at both 1039nm and 918nm wavelengths to a high finesse Fabry-Pérot cavity spaced with an ultra-low expansion glass (ULE) using the Pound-Drever-Hall (PDH) technique. Furthermore, the 459nm laser is generated by passing the 918nm laser through a second harmonic generation crystal, resulting in frequency doubling. Both the 1039nm and 459nm lasers are utilized as excitation lasers to drive cesium atoms to Rydberg states. The feedback bandwidth of the 1039nm (918nm) laser is as high as 760kHz (1MHz), allowing for precise control of the laser frequency. By analyzing the fluctuations in the transmitted light through the cavity, we estimate a frequency disturbance of 350Hz (621Hz) within a 40ms time interval, demonstrating the effective suppression of laser phase noise. Furthermore, we utilize the transmitted light through the cavity to amplify the optical power, effectively preventing servo bumps from becoming additional sources of noise. To determine the zero-crossing temperature of the cavity, we utilize Doppler-free saturation spectroscopy to accurately measure the frequency drift. The cavity is set near the zero-crossing temperature, and over a period of 50 days, we observe an average frequency drift of 7kHz per day. Using trap-loss spectroscopy, we have excited atoms to Rydberg states with this laser system.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T17:18:27Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-22T17:18:27Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 ii
致謝 iii
摘要 v
Abstract vii
Contents ix
List of Figures xiii
List of Tables xix
1 Introduction 1
1.1 Rydberg Atoms in Quantum Information Processing 2
1.2 Implementation of Two-Qubit Quantum Gates 2
1.3 Laser Phase and Frequency Noise 4
1.3.1 Laser Noise Sources 5
1.3.2 Laser Linewidth and Stability 7
1.4 Thesis Outline 8
2 Frequency Stabilization of Lasers 9
2.1 Control System 10
2.1.1 Closed-Loop System 10
2.1.2 Loop Stability 12
2.2 Laser locking system 12
2.2.1 Frequency Discriminator 13
2.2.2 Actuator 13
2.2.3 PID Servo 14
2.3 High Finesse Cavity 15
2.3.1 Light Propagation in Optical Cavity 15
2.4 Pound-Drever-Hall (PDH) Locking Technique 18
2.4.1 Phase Modulation 18
2.4.2 Demodulation 20
2.4.3 Frequency Offset Locking Technique 22
3 Experimental Realisations 25
3.1 ULE Cavity in the Vacuum System 25
3.1.1 Mode Matching 26
3.2 Rydberg Laser Experimental Setup 28
3.2.1 1039nm Rydberg Laser 29
3.2.2 459nm Rydberg Laser 31
3.3 RF Layout 33
3.3.1 RF Oscillator 33
3.3.2 Phase Shifter 34
3.3.3 Mixer 35
3.3.4 Photodetector 36
3.3.5 Filter and Amplifier 37
3.4 Phase Lock to Laser Stabilization 37
3.4.1 Servo Bump 40
3.5 Measurement of Cavity Characterization 41
3.5.1 Cavity Ring-Down Signal 41
3.5.2 FSR Locking 42
3.5.2.1 Dual Frequency Modulation (DFM) 43
3.5.2.2 Demodulation 44
3.5.2.3 Setup 45
3.5.3 Cavity Linewidth 48
3.6 Laser Characterization 50
3.6.1 Laser Linewidth 50
3.6.2 Laser Stability 52
4 Lasers for Rydberg Excitation 55
4.1 Cavity Filtering 56
4.1.1 Injection Lock 56
4.2 Laser Calibration 58
4.2.1 Doppler-Free Saturation Spectroscopy 59
4.2.2 Experiential Setup 62
4.2.3 Long-Term Cavity Drift 65
4.3 Rydberg Excitation 69
5 Conclusion 71
References 73
-
dc.language.isoen-
dc.title雷射頻率穩定於高精密度腔體用於銫原子的雷德堡激發zh_TW
dc.titleLaser Frequency Stabilization to a High-Finesse Cavity for Cesium Rydberg Excitationsen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.coadvisor陳應誠zh_TW
dc.contributor.coadvisorYing-Cheng Chenen
dc.contributor.oralexamcommittee劉怡維;陳姿伶zh_TW
dc.contributor.oralexamcommitteeYi- Wei Liu;Tzu-Ling Chenen
dc.subject.keyword雷射相位噪音,雷射穩頻,雷德堡態,Pound-Drever-Hall 技術,飽和吸收光譜,zh_TW
dc.subject.keywordLaser phase noise,Laser frequency stabilization,Rydberg states,Pound-Drever-Hall technique,Doppler-free saturation spectroscopy,en
dc.relation.page76-
dc.identifier.doi10.6342/NTU202302912-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-08-11-
dc.contributor.author-college理學院-
dc.contributor.author-dept應用物理研究所-
顯示於系所單位:應用物理研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf5.62 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved